帳號:guest(3.21.98.78)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧怡靜
作者(外文):Lu, Yi Jing
論文名稱(中文):氧化鋅奈米陣列電極之製備、光電化學性質與穩定性之探討
論文名稱(外文):Fabrication, photoelectrochemical properties and stability of ZnO nanowire array electrodes
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi Chang
口試委員(中文):鄧熙聖
衛子健
口試委員(外文):Teng, Hsi Sheng
Wei, Tzu Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032559
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:130
中文關鍵詞:氧化鋅種子層實驗設計法二氧化鈦光腐蝕
外文關鍵詞:Zinc oxideSeed layerDesign of experimentTitanium dioxidePhotocorrosion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:74
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要分為三個部分:
第一部分為使用兩步驟水熱法製備氧化鋅奈米柱陣列,藉由種子層的鍛燒時間增加使氧化鋅奈米柱的光電化學效能提升。其中,種子層於350 oC鍛燒5小時之樣品,僅施加相當低的偏壓(0.6V vs. RHE)即可達最大的半電池太陽光轉氫效率為0.26%。此外,也藉由24部分因素實驗設計法將種子層製備條件做最適化。
第二部分藉由溶膠-凝膠法於不同濃度的二氧化鈦前驅液下,製備二氧化鈦殼層成長於氧化鋅奈米柱陣列表面。二氧化鈦與氧化鋅形成異質結構而使光電流提升,於100 mW cm−2模擬太陽光下最大可達720 A cm-2 , 比未摻雜二氧化鈦的氧化鋅奈米柱提升了130 %倍的光電流。
第三部分於模擬太陽光與紫外光照光下,鑑定氧化鋅奈米柱光陽極於不同的電解液下之穩定性。氧化鋅光陽極於硫酸鈉電解液中光電流衰減的非常迅速;然而使用硼酸緩衝液作為電解液則可使氧化鋅達到長時間穩定的光電流。
The results of these studies were divided into three parts. The first part demonstrate that ZnO nanowire (NW) arrays were successfully fabricated via a hydrothermal method in two steps. Prolonging the calcination time of the seed layer makes the ZnO NWs improve the photo-electrochemical performance. The ZnO NWs array electrode prepared from the seed layer with calcination at 350oC for 5 h shows a maximum half-cell solar-to-hydrogen (HC-STH) efficiency of 0.26% was obtained at a relatively low potential bias (0.6 V vs. RHE). In addition, we use design of experiment (DOE) to optimize the seed layer condition.
In the second part, the TiO2 deposited onto ZnO NWs were synthesized via a sol–gel method with the varied concentration of titanium precursor. This heterojunction structure enhanced photocurrent densities, reaching values of about 720 A cm-2 under 100 mW cm−2 simulated solar light, which is 130% folds better than the bare ZnO NWs.
In the third part, we conduct the stability of ZnO NWs in varied electrolytes under the solar light and UV light. The photocurrent of ZnO photoanodes measured in the sodium sulfate electrolyte decayed rapidly, whereas ZnO photoanodes exhibited the long-term stability when tested in a borate buffer.
誌謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 VIII
表目錄 XV
第一章 緒論與文獻回顧 1
1-1前言 1
1-2觸媒與半導體基本原理 2
1-3光電催化分解水產氫基本原理 4
1-4 ZnO之物理與光學性質 6
1-5 ZnO之製備方法 8
1-5-1溶膠凝膠法(Sol Gel Method) 8
1-5-2化學氣相沉積法(Chemical Vapor Deposition, CVD) 9
1-5-3水熱法(The Hydrothermal Method) 10
1-6 ZnO奈米光觸媒之光化學催化反應 13
1-7 ZnO氧化鋅之穩定性 14
1-7-1光腐蝕機制 14
1-7-2氧化鋅之抗腐蝕層 16
1-8實驗設計法 21
1-8-1前言 21
1-8-2部分因素設計法 22
1-8-3應答曲面設計 26
1-8-4缺適度的檢驗 28
1-9研究動機 30
第二章 實驗方法與儀器簡介 32
2-1儀器與藥品 32
2-1-1儀器 32
2-1-2藥品 34
2-2水熱法成長氧化鋅奈米柱 35
2-3材料分析儀器與原理簡介 36
2-3-1 X光繞射分析(X-ray Diffraction Analysis ,XRD) 36
2-3-2掃描式電子顯微鏡(Scanning Electron Microscopy ,SEM) 37
2-3-3穿透式電子顯微鏡(Transmission Electron Microscopy ,TEM) 37
2-3-4 光子激發放光光譜法(Photoluminenscence ,PL) 38
2-3-5 紫外光可見光分光光譜儀(UV-Visible Spectroscopy,UV-Vis) 39
2-3-6 太陽光模擬器(Solar Simulator) 40
2-3-7 熱重量分析儀(Thermogravimetric Analyzer,TGA) 40
第三章ZnO之種子層分析與光電性質探討 41
3-1前言 41
3-2 ZnO材料之製備 41
3-2-1電極之前處理與製備 41
3-2-2水熱法實驗流程 41
3-3 ZnO材料之分析 43
3-3-1 X光繞射分析 43
3-3-2 SEM之表面分析 46
3-3-3 TEM之微結構分析 51
3-3-4 PL之結構缺陷分析 52
3-3-5 UV-Vis之能隙分析 54
3-4電化學測試與分析 56
3-4-1開路電位之測試 56
3-4-2線性掃瞄伏安法之測試(LSV) 58
3-5總結 65
第四章 24全因素實驗設計法調整種子層以控制飽和光電流大小 66
4-1前言 66
4-2實驗設計法之參數設定 66
4-3 24全因素實驗設計法 68
4-4變異數分析(Analysis Of Variation , ANOVA) 69
4-5陡升途徑(Steepest Ascent)之飽和光電流控制 77
4-5-1光電流之測試與分析 78
4-5-2開路電位之測試與分析 81
4-5-3層數與再現性的關係 85
4-6材料分析 87
4-6-1 TGA-DTA熱重分析 87
4-6-2 XRD分析 89
4-6-3 SEM分析 92
4-7結論 95
第五章 二氧化鈦摻雜氧化鋅與電解液效應之光穩定性探討 97
5-1前言 97
5-2 溶膠凝膠法製備TiO2@ZnO材料 97
5-3 TiO2@ZnO之材料分析 99
5-3-1 SEM之表面分析 99
5-3-2 X光繞射分析 101
5-3-3 UV-Vis之能隙分析 103
5-4 TiO2@ZnO之電化學分析 105
5-5 TiO2@ZnO之穩定性測試 110
5-6硼酸緩衝溶液對抗光腐蝕之影響 112
5-7總結 120
第六章 總結與未來展望 122
6-1總結 122
6-2未來展望 124
參考文獻 125
[1] L. Znaidi, G. J. A. A. Soler Illia, S. Benyahia, C. Sanchez, A. V. Kanaev, Thin Solid Films 2003, 428, 257-262.
[2] L. Luo, Y. Zhang, S. S. Mao, L. Lin, Sensors and Actuators A: Physical 2006, 127, 201-206.
[3] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, Nature materials 2005, 4, 42-46.
[4] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, H. Shen, Journal of Crystal Growth 2001, 225, 110-113.
[5] P. Mitra, A. P. Chatterjee, H. S. Maiti, Materials Letters 1998, 35, 33-38.
[6] C. J. Lee, T. Lee, S. Lyu, Y. Zhang, H. Ruh, H. Lee, Applied Physics Letters 2002, 81, 3648-3650.
[7] T. K. Gupta, Journal of the American Ceramic Society 1990, 73, 1817-1840.
[8] A. B. F. Martinson, J. W. Elam, J. T. Hupp, M. J. Pellin, Nano Letters 2007, 7, 2183-2187.
[9] M. Gratzel, Nature 2001, 414, 338-344.
[10] X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, Q. Li, ACS Nano 2010, 4, 3302-3308.
[11] I. Gonzalez-Valls, M. Lira-Cantu, Energy & Environmental Science 2009, 2, 19-34.
[12] K. Maeda, K. Domen, The Journal of Physical Chemistry Letters 2010, 1, 2655-2661.
[13] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, H. Morkoç, Journal of Applied Physics 2005, 98, 041301.
[14] E. Dumont, B. Dugnoille, S. Bienfait, Thin Solid Films 1999, 353, 93-99.
[15] D. Fernandez-Hevia, J. De Frutos, A. Caballero, J. Fernández, Applied physics letters 2003, 83, 2692-2694.
[16] J. Wang, P. Liu, X. Fu, Z. Li, W. Han, X. Wang, Langmuir 2008, 25, 1218-1223.
[17] C. J. Brinker, G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic press, 2013, ch.1-ch.2.
[18] M. A. Verges, A. Mifsud, C. J. Serna, Journal of the Chemical Society, Faraday Transactions 1990, 86, 959-963.
[19] C.-H. Lu, C.-H. Yeh, Ceramics International 2000, 26, 351-357.
[20] Z. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, H. Xu, Nature materials 2003, 2, 821-826.
[21] A. Sugunan, H. Warad, M. Boman, J. Dutta, Journal of Sol-Gel Science and Technology 2006, 39, 49-56.
[22] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun, P. Yang, Inorganic Chemistry 2006, 45, 7535-7543.
[23] S.-F. Wang, T.-Y. Tseng, Y.-R. Wang, C.-Y. Wang, H.-C. Lu, W.-L. Shih, International Journal of Applied Ceramic Technology 2008, 5, 419-429.
[24] G. Kenanakis, D. Vernardou, E. Koudoumas, N. Katsarakis, Journal of Crystal Growth 2009, 311, 4799-4804.
[25] M. Kwiatkowski, I. Bezverkhyy, M. Skompska, Journal of Materials Chemistry A 2015, 3, 12748-12760.
[26] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, Progress in Materials Science 2005, 50, 293-340.
[27] J. Zhao, X. Yang, Building and Environment 2003, 38, 645-654.
[28] S. Chen, L.-W. Wang, Chemistry of Materials 2012, 24, 3659-3666.
[29] A. L. Rudd, C. B. Breslin, Electrochimica acta 2000, 45, 1571-1579.
[30] Y.-K. Hsu, Y.-C. Chen, Y.-G. Lin, ACS applied materials & interfaces 2015, 7, 14157-14162.
[31] R. Liu, Z. Zheng, J. Spurgeon, X. Yang, Energy & Environmental Science 2014, 7, 2504-2517.
[32] R. Wang, H. Tan, Z. Zhao, G. Zhang, L. Song, W. Dong, Z. Sun, Journal of Materials Chemistry A 2014, 2, 7313-7318.
[33] X. Yin, W. Que, D. Fei, H. Xie, Z. He, Electrochimica Acta 2013, 99, 204-210.
[34] J. Fan, R. Zamani, C. Fábrega, A. Shavel, C. Flox, M. Ibáñez, T. Andreu, A. M. López, J. Arbiol, J. R. Morante, Journal of Physics D: Applied Physics 2012, 45, 415301.
[35] Y. Mao, Y. Cheng, J. Wang, H. Yang, M. Li, J. Chen, M. Chao, Y. Tong, E. Liang, New Journal of Chemistry 2016, 40, 107-112.
[36] Y. Zhang, Z. Chen, S. Liu, Y.-J. Xu, Applied Catalysis B: Environmental 2013, 140, 598-607.
[37] T. Xu, L. Zhang, H. Cheng, Y. Zhu, Applied Catalysis B: Environmental 2011, 101, 382-387.
[38] X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Langmuir 2013, 29, 3097-3105.
[39] H. Fu, T. Xu, S. Zhu, Y. Zhu, Environmental science & technology 2008, 42, 8064-8069.
[40] L. Zhang, H. Cheng, R. Zong, Y. Zhu, The Journal of Physical Chemistry C 2009, 113, 2368-2374.
[41] H. Zhang, R. Zong, Y. Zhu, The Journal of Physical Chemistry C 2009, 113, 4605-4611.
[42] G. E. Box, W. G. Hunter, J. S. Hunter, Statistics for experimenters, 1978, 374-433.
[43] D. C. Montgomery, Design and analysis of experiments, 4 ed., John Wiley & Sons, 2008.
[44] A. Fujishima, K. Honda, Nature 1972, 238, 37-38.
[45] A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, J. Z. Zhang, Advanced Functional Materials 2009, 19, 1849-1856.
[46] C. A. Gouvea, F. Wypych, S. G. Moraes, N. Duran, N. Nagata, P. Peralta-Zamora, Chemosphere 2000, 40, 433-440.
[47] A. Akyol, H. Yatmaz, M. Bayramoglu, Applied Catalysis B: Environmental 2004, 54, 19-24.
[48] G. Colón, M. C. Hidalgo, J. A. Navío, E. Pulido Melián, O. González Díaz, J. M. Doña Rodríguez, Applied Catalysis B: Environmental 2008, 83, 30-38.
[49] F. Masuoka, K. Ooba, H. Sasaki, H. Endo, S. Chiba, K. Maeda, H. Yoneyama, I. Niikura, Y. Kashiwaba, physica status solidi (c) 2006, 3, 1238-1241.
[50] N. H. Al-Hardan, A. Hamid, M. Azmi, N. M. Ahmed, A. Jalar, R. Shamsudin, N. K. Othman, L. K. Keng, S. M. Mohammed, Sensors Journal, IEEE 2015, 15, 6811-6818.
[51] J. Chang, E. R. Waclawik, CrystEngComm 2012, 14, 4041-4048.
[52] K. Vanheusden, W. Warren, C. Seager, D. Tallant, J. Voigt, B. Gnade, Journal of Applied Physics 1996, 79, 7983-7990.
[53] S. A. S. N. Golego, M. Cocivera, J. Appl. Phys. 1998, 84, 2287.
[54] M. H. H. Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater. 2001 13, 113-116.
[55] J. L. Wu, SC Advanced Materials 2002, 14, 215.
[56] X. Sun, H. Kwok, Journal of Applied Physics 1999, 86, 408-411.
[57] L. Spanhel, M. A. Anderson, Journal of the American Chemical Society 1991, 113, 2826-2833.
[58] W. Lin, D. Chen, J. Zhang, Z. Lin, J. Huang, W. Li, Y. Wang, F. Huang, Crystal Growth & Design 2009, 9, 4378-4383.
[59] Y. Sun, D. J. Riley, M. N. Ashfold, The Journal of Physical Chemistry B 2006, 110, 15186-15192.
[60] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, Journal of Applied Physics 1996, 79, 7983-7990.
[61] J. Tauc, Materials Research Bulletin 1968, 3, 37-46.
[62] Y. Tao, M. Fu, A. Zhao, D. He, Y. Wang, Journal of Alloys and compounds 2010, 489, 99-102.
[63] Y. Cong, J. Zhang, F. Chen, M. Anpo, The Journal of Physical Chemistry C 2007, 111, 6976-6982.
[64] S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. Wong, J. B. Ketterson, Applied Physics Letters 1999, 75, 2761-2763.
[65] M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Materials 2010, 3, 2643-2667.
[66] S. G. Kumar, K. K. Rao, RSC Advances 2015, 5, 3306-3351.
[67] S. Zhang, S.-H. Wei, A. Zunger, Physical Review B 2001, 63, 075205.
[68] M. Wang, C.-H. Ye, Y. Zhang, G.-M. Hua, H.-X. Wang, M.-G. Kong, L.-D. Zhang, Journal of Crystal Growth 2006, 291, 334-339.
[69] G. Thennarasu, A. Sivasamy, Powder technology 2013, 250, 1-12.
[70] Ü. Alver, A. Kudret, S. Tekerek, Journal of Physics and Chemistry of Solids 2011, 72, 701-704.
[71] Y.-H. Lee, F. Li, K.-H. Chang, C.-C. Hu, T. Ohsaka, Applied Catalysis B: Environmental 2012, 126, 208-214.
[72] Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, J. Ye, Journal of Materials Chemistry A 2013, 1, 5766-5774.
[73] A. Leelavathi, G. Madras, N. Ravishankar, Physical Chemistry Chemical Physics 2013, 15, 10795-10802.
[74] N. Nuraje, R. Asmatulu, G. Mul, Green Photo-active Nanomaterials: Sustainable Energy and Environment Remediation, Royal Society of Chemistry, 2015.
[75] Y. Hou, F. Zuo, A. P. Dagg, J. Liu, P. Feng, Advanced Materials 2014, 26, 5043-5049.
[76] X. Sun, Q. Li, J. Jiang, Y. Mao, Nanoscale 2014, 6, 8769-8780.
[77] Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang, Y. Zhang, Nano Energy 2015, 14, 392-400.
[78] H. Chen, Z. Wei, K. Yan, Y. Bai, Z. Zhu, T. Zhang, S. Yang, Small 2014, 10, 4760-4769.
[79] X. Zhang, Y. Liu, Z. Kang, ACS applied materials & interfaces 2014, 6, 4480-4489.
[80] X. Wu, G. Siu, C. Fu, H. Ong, Applied Physics Letters 2001, 78, 2285-2287.
[81] Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Y. Zhang, Nano Research 2015, 8, 2891-2900.
[82] Y. Hu, X. Yan, Y. Gu, X. Chen, Z. Bai, Z. Kang, F. Long, Y. Zhang, Applied Surface Science 2015, 339, 122-127.
[83] M. Guo, P. Diao, S. Cai, Journal of Solid State Chemistry 2005, 178, 1864-1873.
[84] X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li, Nano Letters 2009, 9, 2331-2336.
[85] M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, The Journal of Physical Chemistry C 2007, 111, 1035-1041.
[86] T. Arii, A. Kishi, Thermochimica Acta 2003, 400, 175-185.
[87] R. Dom, H. G. Kim, P. H. Borse, CrystEngComm 2014, 16, 2432-2439.
[88] D. Howarth, J. Rowlands, Rock Mechanics and Rock Engineering 1987, 20, 57-85.
[89] aJ. Wu, H. Cui, X. Zhang, Y. Luan, L. Jing, Physical Chemistry Chemical Physics 2015, 17, 15837-15842; bZ. Li, Y. Luan, Y. Qu, L. Jing, ACS applied materials & interfaces 2015, 7, 22727-22740.
[90] S. Mahshid, M. Askari, M. S. Ghamsari, Journal of Materials Processing Technology 2007, 189, 296-300.
[91] Y. Xu, K. Lv, Z. Xiong, W. Leng, W. Du, D. Liu, X. Xue, The Journal of Physical Chemistry C 2007, 111, 19024-19032.
[92] G. H. Li, L. Yang, Y. X. Jin, L. D. Zhang, Thin Solid Films 2000, 368, 164-167.
[93] D. Liao, C. Badour, B. Liao, Journal of Photochemistry and Photobiology A: Chemistry 2008, 194, 11-19.
[94] Y.-H. Lu, W.-H. Lin, C.-Y. Yang, Y.-H. Chiu, Y.-C. Pu, M.-H. Lee, Y.-C. Tseng, Y.-J. Hsu, Nanoscale 2014, 6, 8796-8803.
[95] S. Hernández, V. Cauda, A. Chiodoni, S. Dallorto, A. Sacco, D. Hidalgo, E. Celasco, C. F. Pirri, ACS applied materials & interfaces 2014, 6, 12153-12167.
[96] S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, J. Tang, Energy & Environmental Science 2015, 8, 731-759.
[97] K. Park, Q. Zhang, B. B. Garcia, X. Zhou, Y. H. Jeong, G. Cao, Advanced Materials 2010, 22, 2329-2332.
[98] I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, X. Zheng, Nano Letters 2011, 11, 4978-4984.
[99] D. Zhao, C. Chen, Y. Wang, H. Ji, W. Ma, L. Zang, J. Zhao, The Journal of Physical Chemistry C 2008, 112, 5993-6001.
[100] F.-Q. Xiong, J. Shi, D. Wang, J. Zhu, W.-H. Zhang, C. Li, Catalysis Science & Technology 2013, 3, 1699-1702.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *