|
1 Kwon, H., Kim, D., Seo, J. & Han, H. Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending. Macromolecular Research 21, 987-994 (2013). 2 Cabedo, L. s., Giménez, E., Lagaron, J. M., Gavara, R. & Saura, J. J. Development of EVOH-kaolinite nanocomposites. Polymer 45, 5233-5238, doi:http://dx.doi.org/10.1016/j.polymer.2004.05.018 (2004). 3 Sidwell, J. A. Food contact polymeric materials. Vol. 61 (iSmithers Rapra publishing, 1992). 4 Faisant, J. B., Aït-Kadi, A., Bousmina, M. & Descheˆnes, L. Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends. Polymer 39, 533-545, doi:http://dx.doi.org/10.1016/S0032-3861(97)00313-3 (1998). 5 Iwanami, T. & Hirai, Y. Ethylene vinyl alcohol resins for gas-barrier material. Tappi journal 66, 85-90 (1983). 6 Aucejo, S., Marco, C. & Gavara, R. Water effect on the morphology of EVOH copolymers. Journal of Applied Polymer Science 74, 1201-1206, doi:10.1002/(SICI)1097-4628(19991031)74:5<1201::AID-APP17>3.0.CO;2-8 (1999). 7 Zhang, Z., Britt, I. J. & Tung, M. A. Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity. Journal of Applied Polymer Science 82, 1866-1872, doi:10.1002/app.2030 (2001). 8 Tsai, B. C. & Jenkins, B. J. Effect of retorting on the barrier properties of EVOH. Journal of plastic film and sheeting 4, 63-71 (1988). 9 Koros, W. J. Barrier Polymers and Structures. Vol. 423 (American Chemical Society, 1990). 10 Ikegami, T., Nagashima, K., Shimoda, M., Tanaka, Y. & Osajima, Y. Sorption of Volatile Compounds in Aqueous Solution by Ethylene-Vinyl Alcohol Copolymer Films. Journal of Food Science 56, 500-503, doi:10.1111/j.1365-2621.1991.tb05313.x (1991). 11 López-Rubio, A. et al. Effect of high pressure treatments on the properties of EVOH-based food packaging materials. Innovative Food Science & Emerging Technologies 6, 51-58, doi:http://dx.doi.org/10.1016/j.ifset.2004.09.002 (2005). 12 Lagaron, J. et al. Improving packaged food quality and safety. Part 2: Nanocomposites. Food Additives and Contaminants 22, 994-998 (2005).
13 Cerrada, M. L. et al. Self-Sterilized EVOH-TiO2 Nanocomposites: Interface Effects on Biocidal Properties. Advanced Functional Materials 18, 1949-1960, doi:10.1002/adfm.200701068 (2008). 14 Balas, F., Kokubo, T., Kawashita, M. & Nakamura, T. Surface modification of organic polymers with bioactive titanium oxide without the aid of a silane-coupling agent. Journal of Materials Science: Materials in Medicine 18, 1167-1174, doi:10.1007/s10856-007-0130-5 (2007). 15 Kubacka, A. et al. Tailoring polymer–TiO 2 film properties by presence of metal (Ag, Cu, Zn) species: Optimization of antimicrobial properties. Applied Catalysis B: Environmental 104, 346-352 (2011). 16 Somwangthanaroj, A., Photyotin, K., Limpanart, S. & Tanthapanichakoon, W. Effect of type of surfactants and organoclay loading on the mechanical properties of EVOH/clay nanocomposite blown films. Polymer-Plastics Technology and Engineering 51, 1173-1180 (2012). 17 Zhang, Z., Britt, I. J. & Tung, M. A. Water absorption in EVOH films and its influence on glass transition temperature. Journal of Polymer Science Part B: Polymer Physics 37, 691-699, doi:10.1002/(SICI)1099-0488(19990401)37:7<691::AID-POLB20>3.0.CO;2-V (1999). 18 Vieth, W. R. Diffusion in and through polymers. (Hanser; Distributed in the USA and in Canada by Oxford University Press, 1991). 19 Wang, L., Wang, K., Chen, L., Zhang, Y. & He, C. Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Composites Part A: Applied Science and Manufacturing 37, 1890-1896 (2006). 20 Klinkenberg, L. in Drilling and production practice. (American Petroleum Institute). 21 Adame, D. & Beall, G. W. Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science 42, 545-552, doi:http://dx.doi.org/10.1016/j.clay.2008.03.005 (2009). 22 Nielsen, L. J Macromol Sci (Chem) 1967. A1 (5) 929. 23 Grunlan, J. C., Grigorian, A., Hamilton, C. B. & Mehrabi, A. R. Effect of clay concentration on the oxygen permeability and optical properties of a modified poly (vinyl alcohol). Journal of applied polymer science 93, 1102-1109 (2004). 24 Kakuta, S., Okayama, T., Kato, M., Oda, A. & Abe, T. Clarification of photocatalysis induced by iron ion species naturally contained in a clay compound. Catalysis Science & Technology 1, 1671-1676, doi:10.1039/C1CY00286D (2011). 25 Grim, R. E. Clay mineralogy. International series in the earth and planetary sciences. McGraw-Hill, New York (1968). 26 Alexandre, M. & Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports 28, 1-63, doi:http://dx.doi.org/10.1016/S0927-796X(00)00012-7 (2000). 27 Azeredo, H. M. C. d. Nanocomposites for food packaging applications. Food Research International 42, 1240-1253, doi:http://dx.doi.org/10.1016/j.foodres.2009.03.019 (2009). 28 Dimonie, D., Constantin, R., Vasilievici, G., Popescu, M. C. & Garea, S. The Dependence of the XRD Morphology of Some Bionanocomposites on the Silicate Treatment. Journal of Nanomaterials 2008, 7, doi:10.1155/2008/538421 (2008). 29 Bae, H.-J. & Chang, J.-H. High Gas Barrier of Equibiaxially Stretched EVOH Nanocomposite Film. International Journal of Applied Engineering Research 11, 5758-5761 (2016). 30 Kim, S. W. & Cha, S.-H. Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer-based nanocomposites for food packaging films: Effects of nanoclay loading. Journal of Applied Polymer Science 131, n/a-n/a, doi:10.1002/app.40289 (2014). 31 Vannini, M. et al. Synergistic effect of dipentaerythritol and montmorillonite in EVOH-based nanocomposites. Journal of Applied Polymer Science 132, n/a-n/a, doi:10.1002/app.42265 (2015). 32 Aleperstein, D., Artzi, N., Siegmann, A. & Narkis, M. Experimental and computational investigation of EVOH/clay nanocomposites. Journal of Applied Polymer Science 97, 2060-2066, doi:10.1002/app.21937 (2005). 33 Kim, J. S. et al. Morphological, thermal, rheological, and mechanical properties of PP/EVOH blends compatibilized with PP-g-IA. Polymer Engineering & Science, n/a-n/a, doi:10.1002/pen.24357 (2016). 34 Lee, S.-S., Hur, M. H., Yang, H., Lim, S. & Kim, J. Effect of interfacial attraction on intercalation in polymer/clay nanocomposites. Journal of Applied Polymer Science 101, 2749-2753, doi:10.1002/app.23027 (2006). 35 Durmus, A., Kasgoz, A. & Macosko, C. W. Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer 48, 4492-4502, doi:http://dx.doi.org/10.1016/j.polymer.2007.05.074 (2007).
36 Artzi, N., Narkis, M. & Siegmann, A. Review of melt-processed nanocomposites based on EVOH/organoclay. Journal of Polymer Science Part B: Polymer Physics 43, 1931-1943, doi:10.1002/polb.20481 (2005). 37 Rybnikář, F. Efficiency of nucleating additives in polypropylene. Journal of Applied Polymer Science 13, 827-833, doi:10.1002/app.1969.070130502 (1969). 38 Binsbergen, F. L. & de Lange, B. G. M. Heterogeneous nucleation in the crystallization of polyolefins: Part 2. Kinetics of crystallization of nucleated polypropylene. Polymer 11, 309-332, doi:http://dx.doi.org/10.1016/0032-3861(70)90071-6 (1970). 39 Feng, Y., Jin, X. & Hay, J. Effect of nucleating agent addition on crystallization of isotactic polypropylene. Journal of applied polymer science 69, 2089-2095 (1998). 40 Bai, H., Huang, C., Xiu, H., Zhang, Q. & Fu, Q. Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 55, 6924-6934, doi:http://dx.doi.org/10.1016/j.polymer.2014.10.059 (2014). 41 Qin, J. et al. Sonochemical activation calcium sulfate whisker with enhanced beta-nucleating ability for isotactic polypropylene. Colloid and Polymer Science 291, 2579-2587 (2013). 42 Ma, J., Zhang, S., Qi, Z., Li, G. & Hu, Y. Crystallization behaviors of polypropylene/montmorillonite nanocomposites. Journal of Applied Polymer Science 83, 1978-1985, doi:10.1002/app.10127 (2002). 43 Jeong, H., Kim, B. & Kim, E. Structure and properties of EVOH/organoclay nanocomposites. J Mater Sci 40, 3783-3787, doi:10.1007/s10853-005-3719-4 (2005). 44 Van der Velden, G. & Beulen, J. 300-MHz Proton NMR and 25-MHz carbon-13 NMR investigations of sequence distributions in vinyl alcohol-vinyl acetate copolymers. Macromolecules 15, 1071-1075, doi:10.1021/ma00232a022 (1982). 45 Isasi, J. R., Cesteros, L. C. & Katime, I. Hydrogen bonding and sequence distribution in poly (vinyl acetate-co-vinyl alcohol) copolymers. Macromolecules 27, 2200-2205 (1994). 46 Garnaik, B. & Thombre, S. M. Self‐association through hydrogen bonding and sequence distribution in poly (vinyl acetate‐co‐vinyl alcohol) copolymers. Journal of applied polymer science 72, 123-133 (1999).
47 Moritani, T. & Fujiwara, Y. 13C-and 1H-NMR investigations of sequence distribution in vinyl alcohol-vinyl acetate copolymers. Macromolecules 10, 532-535 (1977). 48 Hagen, H., Boersma, J. & van Koten, G. Homogeneous vanadium-based catalysts for the Ziegler–Natta polymerization of α-olefins. Chemical Society Reviews 31, 357-364 (2002). 49 Nakamae, K., Nishino, T., Ohkubo, H., Matsuzawa, S. & Yamaura, K. Studies on the temperature dependence of the elastic modulus of crystalline regions of polymers: 14. Poly(vinyl alcohol) with different tacticities. Polymer 33, 2581-2586, doi:http://dx.doi.org/10.1016/0032-3861(92)91141-N (1992). 50 Yamada, K., Nakano, T. & Okamoto, Y. Synthesis of Syndiotactic Poly(vinyl alcohol) from Fluorine-Containing Vinyl Esters. Polym J 30, 641-645, doi:10.1295/polymj.30.641 (1998). 51 Morishima, Y., Irie, Y., Iimuro, H. & Nozakura, S.-i. Short Branching in Poly(vinyl alcohol). I. Syntheses of the Model Polymers. Polym J 7, 481-489, doi:10.1295/polymj.7.481 (1975). 52 Nozakura, S. I., Morishima, Y., Iimuro, H. & Irie, Y. Short branching in poly (vinyl alcohol). II. NMR spectroscopy of model polymers of short‐branched poly (vinyl alcohol). Journal of Polymer Science: Polymer Chemistry Edition 14, 759-766 (1976). 53 Congdon, T., Shaw, P. & Gibson, M. I. Thermoresponsive, well-defined, poly (vinyl alcohol) co-polymers. Polym. Chem. 6, 4749-4757 (2015). 54 Moritani, T. & Fujiwara, Y. 13C- and 1H-NMR Investigations of Sequence Distribution in Vinyl Alcohol-Vinyl Acetate Copolymers. Macromolecules 10, 532-535, doi:10.1021/ma60057a007 (1977). 55 Guerrouani, N., Mas, A. & Schué, F. Synthesis of poly(vinyl alcohol)-graft-poly(ε-caprolactone) and poly(vinyl alcohol)-graft-poly(lactide) in melt with magnesium hydride as catalyst. Journal of Applied Polymer Science 113, 1188-1197, doi:10.1002/app.30039 (2009).
|