帳號:guest(18.118.193.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江秉謙
作者(外文):Jiang, Bing Qian
論文名稱(中文):EVOH/黏土奈米複合材料之形態學與結晶行為研究
論文名稱(外文):Morphology and Crystallization Behavior of EVOH/Clay Nanocomposite
指導教授(中文):陳信龍
指導教授(外文):Chen, Hsin Lung
口試委員(中文):黎彥成
賴偉淇
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032558
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:聚乙烯乙烯醇蒙脫土層間插入階層性結構結晶動力學
外文關鍵詞:EVOHmomtmorillonite clayintercalationhierarchical structurecrystallization kinetics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:74
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
  聚乙烯乙烯醇(EVOH) 是一種乙烯與乙烯醇單元隨機排列的高分子材料,由乙烯與乙烯醇兩種單體共聚合而成。由於其對氧氣和大多數有機溶劑優異的阻隔性質,EVOH在食品包裝工業上有著廣泛且大量的運用。本研究著重在於提高EVOH薄膜的阻隔性質、機械性質以及熱性質。利用界面活性劑改質後的奈米蒙脫土(Montmorillonite)添加於EVOH高分子薄膜當中,成為一高分子奈米複合材料,觀察其形態、結晶行為和阻隔性質造成。
  研究中發現到,EVOH高分子鍵會插入或者是鑲嵌到奈米黏土的層間距離當中,使得其層間距離由原本的1.9nm增加至3.4nm,稱之為層間插入。而層間距離增大的現象,是目前EVOH/奈米黏土複合材料的研究中,達到最佳的效果。由EVOH高分子與奈米黏土所形成之層間插入的構造會再進一步的堆疊成較大的盤形結構,此一盤形結構會再進一步聚集而形成較大大尺度之不規則的碎形結構,故,在添加奈米黏土於EVOH高分子中所製備而得的複合材料係形成一階層性結構,形態上可以分為三個部分:由發生層間插入的EVOH與奈米黏土構成小型板狀體(第一階層),此一小型板狀體進一步堆疊成較大的盤形結構(第二階層),最後的部分係由許多盤形結構聚集而成所產生之大型碎形結構體。
  另外也發現到,在添加少量(~1wt%)的奈米蒙脫土於EVOH高分子基質當中,能夠提升EVOH高分子的結晶速率,顯示奈米黏土作為晶核劑的效果。但是,當添加了過多(~5wt%)的奈米黏土時,卻又會出現結晶速率大幅降低的現象。在增加結晶性質的同時,熱穩定性也一並得到提升。
Ethylene vinyl alcohol (EVOH) is a random copolymer of ethylene and vinyl alcohol, which has been widely used for food package due to its excellent barrier property against oxygen, moisture and organic solvents. With the objective of further enhancing the barrier, mechanical and thermal properties of EVOH, here we investigate the nanocomposite of EVOH with surfactant-modified montmorillonite nanoclay.
A fraction of the EVOH chains were found to be intercalated between the clay galleries, leading to a swelling of the interlamellar distance of clay platelets from 1.9 nm to 3.4 nm. This is the best degree of intercalation having been achieved in this type of nanocomposite with EVOH. The EVOH-intercalated platelets stacked coherently over a limited length (ca. 10 nm), forming the dislike clusters which further aggregated to construct a fractal superstructure with the mass fractal dimension of ca. 2.8. Consequently, the morphology of the nanocomposite was characterized by a hierarchical structure with three distinct levels, i.e., the EVOH-intercalated clay platelets (level one) stacked to form disklike clusters (level two) which further constructed a fractal network.
The addition of a small amount of clay ( ~ 1 wt%) accelerated the crystallization of EVOH slightly, showing the effect of nucleating agent. However, EVOH crystallization was slowed down drastically upon the addition of 5 wt% of clay. The thermal stability of EVOH was significantly enhanced by forming the composite with clay.
Abstract I
摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 概述以及文獻回顧 1
1.1 聚乙烯乙烯醇Ethylene Vinyl Alcohol(EVOH) 高分子聚合物 1
1.2 Montmorillonite奈米黏土作為填充插層(Filler)的使用 5
1.3 Montmorillonite奈米黏土在高分子基質(Matrix)中的形態及結構變化所造成的影響 7
1.4 控制與改變奈米黏土層間距離(interlayer distance)的因素 12
1.5 Montmorillonite奈米黏土在EVOH高分子基質(Matrix)中產生之晶核效應(Nucleation Effect) 15
1.6 研究動機 20
第二章 實驗部分 21
2.1 實驗材料 21
2.2 製膜過程 23
2.3 實驗項目 25
第三章 結果與討論 28
3.1 奈米蒙脫土(Montmorillonite)之基本性質確立 28
3.1.1 奈米蒙脫土之X光散射性質 28
3.1.2 奈米蒙脫土之熱性質 31
3.2 EVOH38高分子複合材料之物理性質 32
3.2.1 添加比例對於EVOH38高分子複合材料之X光散射影響 32
3.2.2 TEM下所觀察之EVOH38高分子複合材料結構 39
3.2.3 EVOH高分子與奈米黏土間的相互作用力 44
3.2.4 EVOH高分子複合材料之基礎熱性質 47
3.2.5 EVOH高分子複合材料之晶核效應(Nucleate Effect) 54
3.3 EVOH高分子複合材料於阻隔性質以及外觀之表現 59
3.3.1 EVOH高分子複合材料之阻隔性質(Barrier Property) 59
3.3.2 EVOH高分子複合材料之外觀差異(Barrier Property) 62
3.4 不同乙烯含量之EVOH高分子複合材料 64
3.4.1 高分子基質中之奈米黏土分散狀態轉變 64
第四章 結論 70
附錄 利用核磁共振儀(NMR)解析聚乙烯醇(PVA)之微結構 72
附一 前言 72
附二 文獻探討 72
附二-1 聚乙烯醇高分子產品中產物(PVA)與副產物(PVAc)之比例 72
附二-2 立體構造(tacticity)與分子結構探討 74
附二-3 聚乙烯醇高分子接枝(branching)比例之研究 79
附三 數據分析 82
附三-1 實驗材料與樣品製備 82
附三-2 不同廠家、製程所得之NMR數據 83
參考文獻 90
1 Kwon, H., Kim, D., Seo, J. & Han, H. Enhanced moisture barrier films based on EVOH/exfoliated graphite (EGn) nanocomposite films by solution blending. Macromolecular Research 21, 987-994 (2013).
2 Cabedo, L. s., Giménez, E., Lagaron, J. M., Gavara, R. & Saura, J. J. Development of EVOH-kaolinite nanocomposites. Polymer 45, 5233-5238, doi:http://dx.doi.org/10.1016/j.polymer.2004.05.018 (2004).
3 Sidwell, J. A. Food contact polymeric materials. Vol. 61 (iSmithers Rapra publishing, 1992).
4 Faisant, J. B., Aït-Kadi, A., Bousmina, M. & Descheˆnes, L. Morphology, thermomechanical and barrier properties of polypropylene-ethylene vinyl alcohol blends. Polymer 39, 533-545, doi:http://dx.doi.org/10.1016/S0032-3861(97)00313-3 (1998).
5 Iwanami, T. & Hirai, Y. Ethylene vinyl alcohol resins for gas-barrier material. Tappi journal 66, 85-90 (1983).
6 Aucejo, S., Marco, C. & Gavara, R. Water effect on the morphology of EVOH copolymers. Journal of Applied Polymer Science 74, 1201-1206, doi:10.1002/(SICI)1097-4628(19991031)74:5<1201::AID-APP17>3.0.CO;2-8 (1999).
7 Zhang, Z., Britt, I. J. & Tung, M. A. Permeation of oxygen and water vapor through EVOH films as influenced by relative humidity. Journal of Applied Polymer Science 82, 1866-1872, doi:10.1002/app.2030 (2001).
8 Tsai, B. C. & Jenkins, B. J. Effect of retorting on the barrier properties of EVOH. Journal of plastic film and sheeting 4, 63-71 (1988).
9 Koros, W. J. Barrier Polymers and Structures. Vol. 423 (American Chemical Society, 1990).
10 Ikegami, T., Nagashima, K., Shimoda, M., Tanaka, Y. & Osajima, Y. Sorption of Volatile Compounds in Aqueous Solution by Ethylene-Vinyl Alcohol Copolymer Films. Journal of Food Science 56, 500-503, doi:10.1111/j.1365-2621.1991.tb05313.x (1991).
11 López-Rubio, A. et al. Effect of high pressure treatments on the properties of EVOH-based food packaging materials. Innovative Food Science & Emerging Technologies 6, 51-58, doi:http://dx.doi.org/10.1016/j.ifset.2004.09.002 (2005).
12 Lagaron, J. et al. Improving packaged food quality and safety. Part 2: Nanocomposites. Food Additives and Contaminants 22, 994-998 (2005).

13 Cerrada, M. L. et al. Self-Sterilized EVOH-TiO2 Nanocomposites: Interface Effects on Biocidal Properties. Advanced Functional Materials 18, 1949-1960, doi:10.1002/adfm.200701068 (2008).
14 Balas, F., Kokubo, T., Kawashita, M. & Nakamura, T. Surface modification of organic polymers with bioactive titanium oxide without the aid of a silane-coupling agent. Journal of Materials Science: Materials in Medicine 18, 1167-1174, doi:10.1007/s10856-007-0130-5 (2007).
15 Kubacka, A. et al. Tailoring polymer–TiO 2 film properties by presence of metal (Ag, Cu, Zn) species: Optimization of antimicrobial properties. Applied Catalysis B: Environmental 104, 346-352 (2011).
16 Somwangthanaroj, A., Photyotin, K., Limpanart, S. & Tanthapanichakoon, W. Effect of type of surfactants and organoclay loading on the mechanical properties of EVOH/clay nanocomposite blown films. Polymer-Plastics Technology and Engineering 51, 1173-1180 (2012).
17 Zhang, Z., Britt, I. J. & Tung, M. A. Water absorption in EVOH films and its influence on glass transition temperature. Journal of Polymer Science Part B: Polymer Physics 37, 691-699, doi:10.1002/(SICI)1099-0488(19990401)37:7<691::AID-POLB20>3.0.CO;2-V (1999).
18 Vieth, W. R. Diffusion in and through polymers. (Hanser; Distributed in the USA and in Canada by Oxford University Press, 1991).
19 Wang, L., Wang, K., Chen, L., Zhang, Y. & He, C. Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Composites Part A: Applied Science and Manufacturing 37, 1890-1896 (2006).
20 Klinkenberg, L. in Drilling and production practice. (American Petroleum Institute).
21 Adame, D. & Beall, G. W. Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Applied Clay Science 42, 545-552, doi:http://dx.doi.org/10.1016/j.clay.2008.03.005 (2009).
22 Nielsen, L. J Macromol Sci (Chem) 1967. A1 (5) 929.
23 Grunlan, J. C., Grigorian, A., Hamilton, C. B. & Mehrabi, A. R. Effect of clay concentration on the oxygen permeability and optical properties of a modified poly (vinyl alcohol). Journal of applied polymer science 93, 1102-1109 (2004).
24 Kakuta, S., Okayama, T., Kato, M., Oda, A. & Abe, T. Clarification of photocatalysis induced by iron ion species naturally contained in a clay compound. Catalysis Science & Technology 1, 1671-1676, doi:10.1039/C1CY00286D (2011).
25 Grim, R. E. Clay mineralogy. International series in the earth and planetary sciences. McGraw-Hill, New York (1968).
26 Alexandre, M. & Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports 28, 1-63, doi:http://dx.doi.org/10.1016/S0927-796X(00)00012-7 (2000).
27 Azeredo, H. M. C. d. Nanocomposites for food packaging applications. Food Research International 42, 1240-1253, doi:http://dx.doi.org/10.1016/j.foodres.2009.03.019 (2009).
28 Dimonie, D., Constantin, R., Vasilievici, G., Popescu, M. C. & Garea, S. The Dependence of the XRD Morphology of Some Bionanocomposites on the Silicate Treatment. Journal of Nanomaterials 2008, 7, doi:10.1155/2008/538421 (2008).
29 Bae, H.-J. & Chang, J.-H. High Gas Barrier of Equibiaxially Stretched EVOH Nanocomposite Film. International Journal of Applied Engineering Research 11, 5758-5761 (2016).
30 Kim, S. W. & Cha, S.-H. Thermal, mechanical, and gas barrier properties of ethylene–vinyl alcohol copolymer-based nanocomposites for food packaging films: Effects of nanoclay loading. Journal of Applied Polymer Science 131, n/a-n/a, doi:10.1002/app.40289 (2014).
31 Vannini, M. et al. Synergistic effect of dipentaerythritol and montmorillonite in EVOH-based nanocomposites. Journal of Applied Polymer Science 132, n/a-n/a, doi:10.1002/app.42265 (2015).
32 Aleperstein, D., Artzi, N., Siegmann, A. & Narkis, M. Experimental and computational investigation of EVOH/clay nanocomposites. Journal of Applied Polymer Science 97, 2060-2066, doi:10.1002/app.21937 (2005).
33 Kim, J. S. et al. Morphological, thermal, rheological, and mechanical properties of PP/EVOH blends compatibilized with PP-g-IA. Polymer Engineering & Science, n/a-n/a, doi:10.1002/pen.24357 (2016).
34 Lee, S.-S., Hur, M. H., Yang, H., Lim, S. & Kim, J. Effect of interfacial attraction on intercalation in polymer/clay nanocomposites. Journal of Applied Polymer Science 101, 2749-2753, doi:10.1002/app.23027 (2006).
35 Durmus, A., Kasgoz, A. & Macosko, C. W. Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer 48, 4492-4502, doi:http://dx.doi.org/10.1016/j.polymer.2007.05.074 (2007).


36 Artzi, N., Narkis, M. & Siegmann, A. Review of melt-processed nanocomposites based on EVOH/organoclay. Journal of Polymer Science Part B: Polymer Physics 43, 1931-1943, doi:10.1002/polb.20481 (2005).
37 Rybnikář, F. Efficiency of nucleating additives in polypropylene. Journal of Applied Polymer Science 13, 827-833, doi:10.1002/app.1969.070130502 (1969).
38 Binsbergen, F. L. & de Lange, B. G. M. Heterogeneous nucleation in the crystallization of polyolefins: Part 2. Kinetics of crystallization of nucleated polypropylene. Polymer 11, 309-332, doi:http://dx.doi.org/10.1016/0032-3861(70)90071-6 (1970).
39 Feng, Y., Jin, X. & Hay, J. Effect of nucleating agent addition on crystallization of isotactic polypropylene. Journal of applied polymer science 69, 2089-2095 (1998).
40 Bai, H., Huang, C., Xiu, H., Zhang, Q. & Fu, Q. Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent. Polymer 55, 6924-6934, doi:http://dx.doi.org/10.1016/j.polymer.2014.10.059 (2014).
41 Qin, J. et al. Sonochemical activation calcium sulfate whisker with enhanced beta-nucleating ability for isotactic polypropylene. Colloid and Polymer Science 291, 2579-2587 (2013).
42 Ma, J., Zhang, S., Qi, Z., Li, G. & Hu, Y. Crystallization behaviors of polypropylene/montmorillonite nanocomposites. Journal of Applied Polymer Science 83, 1978-1985, doi:10.1002/app.10127 (2002).
43 Jeong, H., Kim, B. & Kim, E. Structure and properties of EVOH/organoclay nanocomposites. J Mater Sci 40, 3783-3787, doi:10.1007/s10853-005-3719-4 (2005).
44 Van der Velden, G. & Beulen, J. 300-MHz Proton NMR and 25-MHz carbon-13 NMR investigations of sequence distributions in vinyl alcohol-vinyl acetate copolymers. Macromolecules 15, 1071-1075, doi:10.1021/ma00232a022 (1982).
45 Isasi, J. R., Cesteros, L. C. & Katime, I. Hydrogen bonding and sequence distribution in poly (vinyl acetate-co-vinyl alcohol) copolymers. Macromolecules 27, 2200-2205 (1994).
46 Garnaik, B. & Thombre, S. M. Self‐association through hydrogen bonding and sequence distribution in poly (vinyl acetate‐co‐vinyl alcohol) copolymers. Journal of applied polymer science 72, 123-133 (1999).


47 Moritani, T. & Fujiwara, Y. 13C-and 1H-NMR investigations of sequence distribution in vinyl alcohol-vinyl acetate copolymers. Macromolecules 10, 532-535 (1977).
48 Hagen, H., Boersma, J. & van Koten, G. Homogeneous vanadium-based catalysts for the Ziegler–Natta polymerization of α-olefins. Chemical Society Reviews 31, 357-364 (2002).
49 Nakamae, K., Nishino, T., Ohkubo, H., Matsuzawa, S. & Yamaura, K. Studies on the temperature dependence of the elastic modulus of crystalline regions of polymers: 14. Poly(vinyl alcohol) with different tacticities. Polymer 33, 2581-2586, doi:http://dx.doi.org/10.1016/0032-3861(92)91141-N (1992).
50 Yamada, K., Nakano, T. & Okamoto, Y. Synthesis of Syndiotactic Poly(vinyl alcohol) from Fluorine-Containing Vinyl Esters. Polym J 30, 641-645, doi:10.1295/polymj.30.641 (1998).
51 Morishima, Y., Irie, Y., Iimuro, H. & Nozakura, S.-i. Short Branching in Poly(vinyl alcohol). I. Syntheses of the Model Polymers. Polym J 7, 481-489, doi:10.1295/polymj.7.481 (1975).
52 Nozakura, S. I., Morishima, Y., Iimuro, H. & Irie, Y. Short branching in poly (vinyl alcohol). II. NMR spectroscopy of model polymers of short‐branched poly (vinyl alcohol). Journal of Polymer Science: Polymer Chemistry Edition 14, 759-766 (1976).
53 Congdon, T., Shaw, P. & Gibson, M. I. Thermoresponsive, well-defined, poly (vinyl alcohol) co-polymers. Polym. Chem. 6, 4749-4757 (2015).
54 Moritani, T. & Fujiwara, Y. 13C- and 1H-NMR Investigations of Sequence Distribution in Vinyl Alcohol-Vinyl Acetate Copolymers. Macromolecules 10, 532-535, doi:10.1021/ma60057a007 (1977).
55 Guerrouani, N., Mas, A. & Schué, F. Synthesis of poly(vinyl alcohol)-graft-poly(ε-caprolactone) and poly(vinyl alcohol)-graft-poly(lactide) in melt with magnesium hydride as catalyst. Journal of Applied Polymer Science 113, 1188-1197, doi:10.1002/app.30039 (2009).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *