帳號:guest(18.117.73.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃宣華
作者(外文):Huang, Shiuan Hua
論文名稱(中文):藉由乾式及雙重組反應合成甲醇來減碳的可行性
論文名稱(外文):Carbon reduction potential of methanol synthesis by dry and bi-reforming
指導教授(中文):汪上曉
指導教授(外文):Wong, Shan Hill
口試委員(中文):陳榮輝
鄭西顯
吳煒
錢義隆
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032557
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:甲醇合成二氧化碳減少重組反應綠能氫氣
外文關鍵詞:Methanol systhesisCarbon reductionReformingGreen hydrogen
相關次數:
  • 推薦推薦:0
  • 點閱點閱:731
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
長久以來不論全球或臺灣,二氧化碳捕獲和儲存(CCS)一直被視為減緩全球暖化的重要因素。雖然在捕獲方面一直有很大的進展,但是儲存技術方面卻停滯不前。因此,二氧化碳的利用反而逐漸受到重視,在化學工業中,甲醇被視為是主要的化工原料且可以製造出許多高附加價值的化學品,所以本文希望藉由將二氧化碳轉換成甲醇來增加二氧化碳的使用,但此製程減少二氧化碳的能力和二氧化碳轉換成甲醇的經濟可行性受到很大的質疑。在本研究中,探討了一般傳統甲醇製程以及二氧化碳製造甲醇的兩種製程: (1) 乾式重組反應 + 綠色氫能,(2) 雙重組反應(水蒸氣+乾式),其氫氣是由水蒸氣重組反應產生。本研究利用GH-Space分析及Aspen Plus V8.4模擬三種製程程序。三種製程中,原物料成本和二氧化碳排放量為評估的重點。分析及模擬結果顯示,乾式重組製程雖然具有減少二氧化碳排放的效果,但是因為使用綠色氫氣反而需要較高的原物料成本。雙重組製程本身沒有減少二氧化碳的效果,但是比起一般傳統的甲醇製程,二氧化碳的排放量較少,而在原物料成本方面,相較於一般傳統的甲醇製程能以較低的成本製造甲醇。因此,雙重組製程可以視為有利可圖的減少碳排放的新途徑並取代現有的甲醇製程。
Carbon capture and storage (CCS) has long been regarded as an integral element of slowing global warming; both globally and locally in Taiwan. Although there have been much progress in capture, demonstration of successful storage is only found where there is opportunity in enhanced oil recovery. Therefore utilization has gradually received attention as an alternative to sequestration. Methanol has been demonstrated as a feasible primary feedstock to the chemical industry and offer enough scale as an option of utilization. However, the carbon reduction potential and the economic feasibility of CO2 to methanol transformation has been questioned. In this study, three options of producing methanol with CO2 were studied: (1) conventional methanol plants (2) dry reforming of liquid natural gas (LNG) + green hydrogen, (3) Bi-reforming which uses steam reforming of LNG for hydrogen generation. The three processes were analyzed by GH-Space and simulated by Aspen Plus software V8.4. The material cost and carbon emission were evaluated. The results show that while dry reforming offers a net carbon reduction, it has a high material cost due to the use of green hydrogen. Bi-reforming process offers no net carbon reduction by itself. However, it offers a cheaper alternative to produce methanol than the traditional steam reforming process, and produces much less carbon. Hence the bi-reforming process can considered as a profitable carbon reduction pathway by replacing existing methanol plants. Furthermore, critical elements of the process that can be modified to increase carbon reduction are identified.
致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 IX
第一章、緒論 1
1.1 研究背景 1
1.2研究動機 2
第二章、文獻回顧 3
2.1甲醇介紹 3
2.2水蒸氣重組反應 4
2.3乾式重組反應 5
2.4雙重組介紹 7
2.5水蒸氣重組產生合成氣製程 9
第三章:研究方法 13
3.1熱力學模型 13
3.2動力學模型 13
3.3反應器設計 22
3.4製程流程圖模型 23
3.4.1水蒸氣重組製程 23
3.4.2乾式重組製程 24
3.4.3雙重組製程 24
3.5熱整合 25
3.6經濟分析 25
3.7二氧化碳排放 26
第四章:模擬結果 30
4.1水蒸氣重組製程模擬 30
4.2乾式重組製程模擬 33
4.3 雙重組製程模擬 36
4.4原物料成本 39
4.5能耗成本 42
4.6操作成本 43
4.7二氧化碳消耗 46
4.8 二氧化碳直接排放 46
4.9 非直接二氧化碳排放 47
4.10 整體二氧化碳排放 48
第五章:GH-SPACE 50
8.1 GH-space 50
8.2 理想自動熱重組製程 51
8.3 理想乾式重組製程 57
8.4 理想雙重組製程 62
第六章:結論與未來工作 67
參考文獻 68
附錄A 74
附錄B 89
1 劉俞青. 改變世界的能源革命-頁岩器大解讀. 今周刊 (2013).
2 劉致忠. 低價乙烯現身震撼東亞市場. 工研院電子報 (2013).
3 周莹. 合成甲醇所需要的合成氣的制備方法. CN patent 103031160 (2013).
4 陈五平. 无机化工工艺学. 化学工业出版社 (2001).
5 Luyben, W. L. Design and Control of the Dry Methane Reforming Process. Ind Eng Chem Res 53, 14423-14439 (2014).
6 Noureiden, M. M. B., Elbashir, N. O. & El-Hawlwagi, M. M. Optimization and Selection of Reforming Approaches for Syngas Generation from Natural/Shale Gas. Ind Eng Chem Res (2014).
7 Canete, B., Gigola, C. E. & Brignole, N. B. Synthesis Gas Processes for Methanol Production via CH4 Reforming with CO2, H2O, and O-2. Ind Eng Chem Res 53, 7103-7112 (2014).
8 Fong, W.-C. F. & Wilson, R. F. Gasification process combined with steam methane reforming to produce syngas suitable for methanol production. US patent 5496859 (1996).
9 Holm-Larsen, H. CO2 reforming for large methanol plants-an actual case. Surface Science and Catalyst (2001).
10 Baltrusaitis, J. & Luyben, W. L. Methane Conversion to Syngas for Gas-to-Liquids (GTL): Is Sustainable CO2 Reuse via Dry Methane Reforming (DRM) Cost Competitive with SMR and ATR Processes? Chem. Eng. J. (2015).
11 Lim, Y. et al. Optimal Design and Decision for Combined Steam Reforming Process with Dry Methane Reforming to Reuse CO2 as a Raw Material. Ind Eng Chem Res 51, 4982-4989 (2012).
12 Kim, A. P., Nielsen, C. S., Dybkjaer, I. & Perregaard, J. Large Scale Methanol Production from Natural Gas. Haldor Topsoe. Retrieved October 28, 2015, http://www.topsoe.com/sites/default/files/topsoe_large_scale_methanol_prod_paper.ashx_.pdf
13 Dahl, P. J.; Christensen, T. S.; Sandra, W. M.; Stephanie, M. K., Proven autothermal reforming technology for modern large-scale methanol plants. In Nitrogen+Syngas. Denmark.( 2014)
14 Yagi, F., Nagumo, A., Wada, Y., Shimura, M. & Wakamatsu, S. Process For Preparing Synthesis Gas By Autothermal Reforming. US Patent 6340437 (2002).
15 Hook, J. P. V. Methane-Steam Reforming. Catalysis Reviews: Science and Engineering 21 (1980).
16 李绍芬, 高文新 & 廖晖. 甲烷水蒸汽催化转化的动力学模型. 化工学报 (1981).
17 Xu, J. G. & Froment, G. F. Methane Steam Reforming, Methanation and Water-Gas Shift .1. Intrinsic Kinetics. Aiche J 35, 88-96 (1989).
18 Hou, K. H. & Hughes, R. The kinetics of methane steam reforming over a Ni/alpha-Al2O catalyst. Chem. Eng. J. 82, 311-328 (2001).
19 Hoang, D. L., Chan, S. H. & Ding, O. L. Kinetic and modelling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support. Chem. Eng. J. 112, 1-11(2005).
20 Keith, J. Simulation of a Methane Steam Reforming Reactor. (2009).
21 Liu, J. A. Kinetics, catalysis and mechanism of methane steam reforming. Worcester Polytechnic Institute.(2006).
22 邱英銓, 陳信安 & 吳煒. 消耗溫室氣體的混合式發電系統. 化工期刊 65 (2015).
23 Olsbye, U., Wurzel, T. & Mleczko, L. Kinetics and reaction engineering studies of dry reforming of methane over a Ni/La/Al2O3 catalyst. Ind Eng Chem Res 36, 5180-5188 (1997).
24 Quiroga, M. M. B. & Luna, A. E. C. Kinetic analysis of rate data for dry reforming of methane. Ind Eng Chem Res 46, 5265-5270(2007).
25 Gallego, G. S., Batiot-Dupeyrat, C., Barrault, J. & Mondragon, F. Dual Active-Site Mechanism for Dry Methane Reforming over Ni/La(2)O(3) Produced from LaNiO(3) Perovskite. Ind Eng Chem Res 47, 9272-9278 (2008).
26 G., N. Kinetics of methanol synthesis. 3 (1955).
27 Donati, G. & Ferraris, G. B. Experience with an Algorithm for Model Fitting and Discrimination. Quad Ing Chim Ital 8, 183- (1972).
28 Ferraris, G. B. & Donati, G. Parameter Estimation for Hougen-Watson Kinetic Models. Quad Ing Chim Ital 6, 139-(1970).
29 Uchida, H. & Ogino, Y. Rate of Methanol Synthesis. B Chem Soc Jpn 31, 45-50, (1958).
30 Graaf, G. H., Winkelman, J. G. M., Stamhuis, E. J. & Beenackers, A. A. C. M. Kinetics of the 3 Phase Methanol Synthesis. Chem Eng Sci 43, 2161-2168, (1988).
31 VandenBussche, K. M. & Froment, G. F. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J Catal 161, 1-10 (1996).
32 Klier, K., Chatikavanij, V., Herman, R. G. & Simmons, G. W. Catalytic Synthesis of Methanol from Co/H2 .4. The Effects of Carbon-Dioxide. J Catal 74, 343-360, (1982).
33 Aboosadi, Z. A., Jahanmiri, A. H. & Rahimpour, M. R. Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method. Appl Energ 88, 2691-2701, (2011).
34 Aboosadi, Z. A., Rahimpour, M. R. & Jahanmiri, A. A novel integrated thermally coupled configuration for methane-steam reforming and hydrogenation of nitrobenzene to aniline. Int J Hydrogen Energ 36, 2960-2968, (2011).
35 Rahimpour, M. R., Aboosadi, Z. A. & Jahanmiri, A. H. Synthesis gas production in a novel hydrogen and oxygen perm-selective membranes tri-reformer for methanol production. J Nat Gas Sci Eng 9, 149-159, (2012).
36 Souza, A., Maciel, L. J. L., Cavalcanti, V. O., Lima, N. M. & Abreu, C. A. M. Kinetic-Operational Mechanism to Autothermal Reforming of Methane. Ind Eng Chem Res 50, 2585-2599, (2011).
37 Luyben, W. L. Design and Control of a Methanol Reactor/Column Process. Ind Eng Chem Res 49, 6150-6163, (2010).
38 Pinto, A. Methanol.US Patent 4065483 (1975).
39 Scott, R. H. Process For Purifying Methanol By Distillation. US Patent 4013521 (1977).
40 S.Tamhankar, S. Hydrogen Production Process. US Patent 20140311917 A1 (2014).
41 Katell, S. & Wellman, P. An Evaluation Of Tonnnage Oxygen Plants(1970). Retrieved October 28, 2015, from https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/14_3_CHICAGO_09-70_0099.pdf.
42 Finkenrath, M. Carbon Dioxide Capture from Power Generation - Status of Cost and Performance. Chem Eng Technol 35, 482-488, (2012).
43 Ramsden, T. & Saur, G. Wind Electrolysis: Hydrogen Cost Optimization. (2011). Retrieved October 28, 2015, from http://www.nrel.gov/hydrogen/pdfs/50408.pdf.
44 HH/NBP/日本LNG到岸價格/布蘭特原油價格趨勢圖.台灣電力公司(2014). Retrieved October 28, 2015, from http://www.taipower.com.tw/content/new_info/new_info-a26.aspx?LinkID=2.
45 Methanex posts regional contract methanol prices for North America, Europe and Asia (2015). Retrieved October 28, 2015, from https://www.methanex.com/our-business/pricing.
46 How much carbon dioxide is produced per kilowatthour when generating electricity with fossil fuels?(2015). Retrieved October 28, 2015, from http://www.eia.gov/tools/faqs/faq.cfm?id=74&t=11.
47 Lower and Higher Heating Values of Gas, Liquid and Solid Fuels. (2011) Retrieved October 28, 2015, from http://cta.ornl.gov/bedb/appendix_a/Lower_and_Higher_Heating_Values_of_Gas_Liquid_and_Solid_Fuels.pdf.
48 Sempuga, B. C., Hausberger, B., Patel, B., Hildebrandt, D. & Glasser, D. Classification of Chemical Processes: A Graphical Approach to Process Synthesis To Improve Reactive Process Work Efficiency. Ind Eng Chem Res 49, 8227-8237, (2010).
49 Fox, J. A., Hildebrandt, D., Glasser, D. & Patel, B. A Graphical Approach to Process Synthesis and its Application to Steam Reforming. Aiche J 59, 3714-3729, (2013).
50 Fox, J. A., Hildebrandt, D., Glasser, D., Batel, B. & Hausberger, B. Process Flow Sheet Synthesis: Reaching Targets for Idealized Coal Gasification. Aiche J 60, 3258-3266, (2014).
51 Patel, B.; Hildebrandt, D.; Glasser, D. Overcoming the Overall Positive Free Energy of a Process: Using the Second Law to Understand How This is Achieved. Presented at the AIChE Annual Meeting, Austin, TX, November (2004).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *