帳號:guest(3.22.181.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱訓箴
作者(外文):Chu, Hsun Chen
論文名稱(中文):銅奈米線織布與箔於鋰離子電池與催化劑的應用
論文名稱(外文):Applications of Copper Nanowire Fabric and Foil for Lithium Batteries and Catalysts
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing Yu
口試委員(中文):周更生
曾院介
口試委員(外文):Chou, Kan Sen
Tseng, Yuan Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032556
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:81
中文關鍵詞:鋰離子電池催化劑奈米線光熱轉換集流板
外文關鍵詞:coppernanwirelithium-ion batterycatalystcurrent collector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:239
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗開發出由經輾壓過後的銅奈米線所組成的極輕薄新式銅箔並且將之應用於鋰電池的集流板以取代傳統銅箔。能利用簡單的沉積先製作出銅奈米線織布再經過輾壓方式來製備,其厚度約為1.5 m,面積密度約為 1.2 mg cm-2,此結果為一般商業上鋰電池用的銅箔所無法達到(一般厚度約為10m與9 mg cm-2)。結合石墨與奈米銅線箔所製成的鋰電池負極表現出優異的電化學特性,在連續充放電60個循環後仍然保有363 mA h g-1之克電量,趨近於石墨理論電量372 mA h g-1,甚至在大量的活性材料負荷下,也有300 mA h g-1的表現(15.7 mg cm-2 以及 5 mA h),在高速率充放電下也保有81%的效能。在全電池的測試上,石墨-奈米銅線箔電極在經過600次快速連續充放電循環後(0.6C),能維持83.6%電容量。銅奈米線箔也是一種具有商業化潛力的材料,在大量化製造測試方面,面積分別為47與235 cm2之銅奈米線箔被製備成軟包式電池,其電容量分別為140 以及 700 mA h,這些電池也應用在各種不同需求的電子產品的應用測試上,諸如LED燈陣列(高電流),智慧型手機充電(高電量),驅動電動螺絲起子(高電流與高電量)以及驅動空拍機(高電流、高電量及輕量化)。而將傳統銅箔集流板以銅奈米線箔替換後,其單位重量電容量,體積電容量與能量密度也可達到62%、13.7%及21.1%的顯著提升。

近年來,銅奈米材料在一價銅催化疊氮-炔烴環加成反應(Copper(I)-Catalyzed Azide − Alkyne Cycloaddition, CuAAC)應用上的研究相當普遍,不過大多為銅奈米粒子催化劑,附載銅奈米粒子催化劑與奈米孔洞銅金屬催化劑,而利用銅奈米線進行催化則實為少見。我們首先利用溶液法合成出大小均一的奈米銅線,在將之組合成多孔狀的銅奈米線織布進行非均相催化合成1,2,3-三唑(1,2,3-triazole)反應,並結合雷射光在多孔奈米結構中引發的多重散射效應增進光能的吸收轉化為熱能的特性,利用波長808奈米雷射光源照射銅奈米線織布,使銅奈米線織布同時成為催化劑與加熱裝置來增進反應速率。經過測試,銅奈米織布將光能轉換為熱能之升溫效果明顯優於金屬銅箔。在催化性的測試上,銅奈米線織布在合成1-Benzyl-4-phenyl-1H-1,2,3-triazole可達到97%的轉化率,此結果顯示出銅奈米線織布在催化的應用上也具有優異的表現。
A new-type of Cu foil, which is composed of free-standing rolled copper nanowires (CuNWs) is developed as current collector in lithium-ion battery. Ultrathin (1.5 m) and ultralight (1.2 mg cm-2) CuNW foil is fabricated by rolling CuNW fabric prepared by drop-casting, while Cu foil made by traditional ways of rolling-annealing and electrodepositing cannot be made (the most common one is around ~ 10 m and 9 mg cm-2 for lithium battery). The graphite-CuNW foil anode exhibit excellent electrochemical performances while assembled onto lithium batteries. The anodes has a high capacity of 363 mA h g-1 after cycled 60 times, close to the theoretical value (372 mA h g-1), and maintain a capacity of 300 mA h g-1 even at high weight graphite loaded (15.7 mg cm-2 and 5 mA h) on CuNW foil and 81% of capacity retention at 3 C shows good rate capability. In full cell examination, high cycling stability is proved by an 83.6 % of capacity retention of after 600 cycles of charge/discharge at 0.6 C. All these performance is comparable to commercial lithium battery. The commercialized potential has been proved by a fabrication of large-area CuNW foil and application in pouch-type full batteries with various large capacity output. For example, The pouch batteries with 47 and 235 cm2 of CuNW foils, which can output 140 and 700 mA h of capacity (~3 mA h cm-2 of areal capacity) respectively, and successfully powered various electronic devices needing different requirement, such as 120 light-emitting-diode (LED) array (high power), smart phone (high energy), cordless, screwdriver (both high power and energy) and drone (light, high power and energy). Batteries with CuNW foil as current collector have significant improvement in terms of mass, areal capacity and energy density, which are 62%, 13.7% and 21.1% respectively, compared to 10 m Cu foil, making them a promising current collector in high energy density and low weight lithium-ion battery.
Recently, copper nanomaterials were wildly applied in the research of Copper(I)-Catalyzed Azide − Alkyne Cycloaddition (CuAAC). However, most of catalysts were Cu nanoparticles, supported Cu nanoparticles and nanoporous metallic Cu, Cu nanowires is still unusual. Firstly, we synthesized the uniform Cu nanowires by colloidal route. The Cu nanowires were fabricated to a porous Cu nanowires fabric and applied as a heterogeneous catalyst in the synthesis of 1,2,3-triazole. The light-to-heat conversion efficiency can be increased by enhanced absorption of nanowires with a multiple scattering of laser beam in the internal structure of the porous Cu nanowires fabric. Combined the two characteristics, the Cu nanowire fabric can simultaneously be a catalyst and a heating device under an 808 nm laser irradiation. According to the experiment, the effect of temperature elevation is obviously higher the Cu foil. In the catalytic test, approximately 97% conversion in synthesizing the 1-Benzyl-4-phenyl-1H-1,2,3-triazole by using the Cu nanowires fabric as a catalyst. This result shows the excellent catalytic performance of Cu nanowires fabric.
Table of Contents
中文摘要…………………………………………..…………………………...…… I
Abstract……………………………………...………………………..…....……… III
Tableof Contents ……………………………………………..………….………….V
List of Figures…………………………………………………………..……...… VIII
List of Tables…………………………………………………………………….. XIII

Chapter 1. Copper Nanowire Foil as an Ultra-thin and Light-weight Current Collector for Lithium-ion Batteries…………………………………………………1
1-1. Introduction 1
1-2. Experimental Section 8
1-2-1. Materials. 8
1-2-2. Synthesis of oleylamine-coated copper nanowires. 8
1-2-3. Fabrication of CuNW fabric and CuNW foil. 9
1-2-4. Fabrication of electrodes with CuNW foil and Cu foil current collectors. 10
1-2-5. Lithium-ion battery assembly and electrochemical characterization. 10
1-2-6. Characterization. 11
1-3. Result and Discussion 13
1-3-1. Synthesis and characterization of oleylamine-coated copper nanowires. 13
1-3-2. Fabrication and characterization of CuNW foil as current collector. 15
1-3-3. Microstructure, wetting and adhesion properties of graphite-CuNW foil and graphite-Cu foil electrodes. 19
1-3-4. Electrochemical performance of graphite-CuNW foil anodes. 23
1-3-5. Assembly and demonstration of pouch type full cell. 36
1-4. Conclusion 38
1-5. Appendix 39
1-6. Reference 42

Chapter 2. Copper Nanowire Fabric as a Self-heated and Support-free Catalyst via Laser-assisted Multiple Light Scattering 49
2-1. Introduction 49
2-2. Experimental Section 59
2-2-1. Materials 59
2-2-2. Synthesis of OLA-capped copper nanowires 59
2-2-3. Fabrication of CuNWs fabric 60
2-2-4. Measurement of light-to-heat conversion efficiency of CuNWs fabric 61
2-2-5. Synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole via Huisgen 1,3-dipolar cycloaddition catalyzed by CuNWs fabric 62
2-2-6. Characterization 64
2-3. Result and Discussion 65
2-3-1. Synthesis and Characterization of Copper Nanowires 65
2-3-2. Characterization of CuNWs fabric and light-to-heat performance 67
2-3-3. Synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole via Huisgen 1,3-dipolar cycloaddition catalyzed by CuNWs fabric 73
2-3-4. Product Data 74
2-4. Conclusion 76
2-5. Appendix 77
2-6. Reference 78

List of Figures
Figure 1-1-1. Schematic of the process of industrial RA and ED Cu foil manufacturing. 2
Figure 1-1-2. (a) Schematic of the procedure for fabricating flexible electrodes with SACNT networks functioning as thin and lightweight current collectors. (b) Photographs and cross-sectional SEM images of graphite coated on CNT network and Cu foil current collector. (c) The improvement of anode energy density with different graphite loading after replacing the Cu foil with CNT network. 4
Figure 1-1-3. (a) SEM images of graphene films before and after 2750 K and 1 min of Joule heating at in vacuum can. (b) Cross-sectional SEM image of LiFePO4-RGO electrode. (c) The contact angle between slurry and RGO film, which was measured to be 15o. (d) Cycling performance of LiFePO4-RGO cathode at a rate of 5C. 5
Figure 1-1-4. (a) Schematic of the Si-CuNW electrode fabrication. (b) Cycling performance of Si-CuNW electrode in long cycle and step charge/discharge. 6
Figure 1-2-1. Schematic illustration of Cu nanowire synthesis procedures. 9
Figure 1-2-2. Schematic illustration of CuNW foil fabricating procedures. 10
Figure 1-3-1. (a) SEM micrographs of CuNWs. (b) TEM micrographs of CuNWs. (c) XRD pattern of the CuNWs on glass substrate. (d,e) HR-TEM micrographs of CuNWs growth along <110> direction, and a thin OLA layer was covered on the surface of nanowire. (f) FFT pattern of CuNWs along the [1 1 0] zone axis. 14
Figure 1-3-2. (a) SEM image of numerous of tangled CuNWs. (b) Photograph and SEM image of the CuNW fabric (c) cross-sectional SEM images of CuNW fabrics with different weight loading (~1, 2, 3, 4 and 5 mg cm-2 from left to right). 17
Figure 1-3-3. (a) The photographs and top view SEM images of CuNW foil. (b) The top view SEM images of CuNW foil in higher resolution. (c) The cross sectional SEM images of CuNW foil with different weight loading (~1, 2, 3, 4 and 5 mg cm-2 from the left to right). 17
Figure 1-3-4. (a) Thickness (mm) vs mass per unit area (mg/cm2) and (b) Thickness (mm) vs volume density (g/cm3) of CuNW foil made with different materials loading and rolling pressure. 18
Figure 1-3-5. (a) Cross sectional SEM image of graphite electrode using CuNW foil as current collector. (b) Photograph of a curved 2 cm × 2 cm graphite-CuNW foil electrode material. (c) Both sides of 1 cm × 1 cm graphite-CuNW foil electrode. (d) SEM image of the current collector side of electrode. (e,f) Photographs of the graphite slurry droplet on the CuNW foil and Cu foil, the contact angle of both droplets were measured. 21
Figure 1-3-6. (a) The results of interfacial shear tests of the graphite-CuNW foil and graphite-Cu foil electrodes and their experimental setup. (b) Photographs of the graphite-CuNW foil and graphite-Cu foil electrodes after testing. 22
Figure 1-3-7. (a) Cycling performance of graphite-CuNW foil and graphite-Cu foil anodes with EC/DMC electrolyte at a rate of 0.1 C. (b) Cyclic voltammograms of graphite-CuNW foil anode at 0.1 C of charge-discharge cycling test. (c) Cycling performance of high loading graphite-CuNW foil anode at a rate of 0.1 C. (d) Discharging performance of graphite-CuNW foil and graphite-Cu foil anodes at various rates of 0.05 C, 0.1 C, 0.5 C, 1.0 C, 1.5 C, 2.0 C, 2.5 C and 3.0 C for total 50 cycles. 25
Figure 1-3-8. (a) Cycling performance of graphite-CuNW foil anode in the full cell with EC/DMC electrolyte at a rate of 0.1 C, the Li(NiCoMn)O2 was used as cathode. (b) Cyclic voltammograms of graphite-CuNW foil anode in the full cell at 0.1C of charge-discharge cycling test. (c) Long-term cycling performance and (d) Cyclic voltammograms of graphite-CuNW foil anode in the full cell at a rate of 0.6 C. 27
Figure 1-3-9. The comparison of commercial graphite-Cu foil anode and graphite-CuNW foil anode with (a) mass specific capacity, (b) volume specific capacity and (c) energy density comparison at whole electrodes level. 30
Figure 1-3-10. Schematic of 18650 type lithium ion battery and the structure of electrodes layer. 33
Figure 1-3-11. The comparison of commercial graphite-Cu foil anode and graphite-CuNW foil anode with energy density comparison at 18650 type lithium battery. 33
Figure 1-3-12. (a) Photograph of the 5 cm × 12 cm large-area CuNW foil and the graphite-CuNW foil electrode. (b) Photograph of the 4.7 cm × 10 cm pouch type full cell. (c) Cycling performance of the pouch type full cell at a rate of 0.6 C. (d) The pouch type cell was applied to light up over 120 LEDs with different color. The high-capacity pouch cell was demonstrated to (e) charge the smart phone, (f) power the cordless screwdriver and (g) power the drone. 37
Appendix 1-5-1. (a) The photographs and top view SEM images of commercial Cu foil. (b) The top view SEM images of commercial Cu foil in higher resolution. (c) The cross sectional SEM images of commercial Cu foil. 39
Appendix 1-5-2. Coulombic efficiency of half-cell by using CuNW foil as anode current collector at a rate of 0.1C. 40
Appendix 1-5-3. Coulombic efficiency of full cell by using CuNW foil as anode current collector at a rate of 0.1C. 40
Appendix 1-5-4. The fabricating process of the 5 cm × 12 cm large-area CuNW foil and the 4.7 cm × 10 cm pouch type full cell. The CuNW solution was dropped into the mold, after drying, the large-area CuNW fabric were peeled from the mold. After annealing and rolling, the CuNW foil was obtained. The large-area CuNW can conduct electron and light the LED. The graphite side and the current collector side of 4.7 cm × 10 cm electrode were shown in figure. Finally, the pouch battery was assembled by pilling the anode, separator and cathode, injecting the electrolyte into the bag made with laminated aluminum films. 41
Figure 2-1-1. Photographic image of the InP, GaP, and Si nanowire materials under study (bottom row), together with their native substrates (top row). 51
Figure 2-1-2. Cross-sectional SEM images of (a) InP, (b) GaP, and (c) Si nanowires layer and their diameter distribution. Experimental reflectance spectra for (d) InP, (e) GaP, and (f) Si. Lines denote the diffuse reflectance of the nanowires (thin line), the corresponding substrates (dashed line), and the coherent-beam specular reflectance (thick line). 52
Figure 2-1-3. (a) Schematics of mesomeric structures of azides, nitril oxides, diazoalkanes and ozone. (b) Reaction formula of Huisgen 1,3-dipolar cycloaddition. 53
Figure 2-1-4. (a) Reaction formula of CuAAC. (b) Schematics of the mechanism of CuAAC. 54
Figure 2-1-5. SEM images of CuNPores with different de-alloying conditions. (a) 0°C, 6 days (cat-1), (b) 10°C (6 days, cat-2), (c) 25°C (6 days, cat-3), (d) 40°C (4 days, cat-4), (e) 60°C (4 days, cat-5); (f) SEM image of nanostructured copper acetylide. 57
Figure 2-2-1. Schematic illustration of CuNWs fabric fabrication procedures. 60
Figure 2-2-2. Apparatus for measuring Light-to-heat conversion efficiency. 62
Figure 2-2-3. (a) The structure formulas of phenyl acetylene, benzyl azide and 1-benzyl-4-phenyl-1H-1,2,3-triazole, the reaction formula and the reaction conditions. (b) Apparatus for the reaction. (c) Before starting the reaction, the color of solution was light yellow. (d) After cooling the room temperature, the solution became white solid. (e) The white powder was afforded after purified, which was identified to be 1-benzyl-4-phenyl-1H-1,2,3-triazole by NMR. 63
Figure 2-3-1. (a) SEM image of CuNWs (b) TEM image of CuNWs and (c) XRD pattern of CuNWs on glass substrate and the reference (JCPDS 85-1326). 66
Figure 2-3-2. (a) HR-TEM image of the single CuNWs (b) FFT image of the CuNWs from (a) and (c) the simulated diffraction pattern of [1, 1, 0] zone axis for CuNWs. 66
Figure 2-3-3. Photographs of CuNW fabric (a), pressed CuNW fabric (b) and Cu foil (c), the top view SEM images of CuNW fabric (d), pressed CuNW fabric (e) and Cu foil (f) and the cross-section SEM images of CuNW fabric (g), pressed CuNW fabric (h) and Cu foil (i). 68
Figure 2-3-4. The reflectance of Cu foil, pressed CuNW fabric and CuNW fabric in different wavelength of light (from 400 to 1200). 69
Figure 2-3-5. Temperature elevation traces of CuNWs fabric (red line), pressed CuNWs fabric (blue line) and Cu foil (black line) in 20 s. 70
Figure 2-3-6. Schematics of light scattering in the CuNW fabric, pressed CuNW fabric and Cu foil. 71
Figure 2-3-7. (a) Temperature elevation traces of CuNW fabrics, which were 7.28 m, 12.0 m, 22.0 m, 35.6 m and 44.2 m in thickness respectively. (b) Distributions of temperature versus different thickness of CuNW fabrics. 72
Figure 2-3-8. The SEM images of (a) surface of CuNW fabric before reaction. (b) copper acetylide. (c) and (d) surface of CuNW fabric after reaction. 75
Figure 2-3-9. XPS spectrums of the CuNW fabric (red line), the CuNW fabric covered with silk-like structure (green line) and the CuNW fabric after reaction (blue line) in (a) the Cu 2p region and (b) the Cu LMM region. 75


List of Tables
Table 1-3-1. The mass and thickness of 1 cm × 1 cm commercial graphite-Cu foil anode and the graphite-CuNW foil anode. 31
Table 1-3-2. The area density and thickness of components in 18650 type battery by using commercial graphite-Cu foil anode and graphite-CuNW foil anode. 34
Table 1-3-3. Mass of components, total capacity and energy density of 18650 type battery by using commercial graphite-Cu foil anode and graphite-CuNW foil anode. 35
Table 2-1-1. Screening of CuNPores catalysts. 57
Table 2-1-2. CuNPore (cat-3)-catalyzed synthesis of various substituted triazoles. 58

1. Choi, S.; Kim, J.; Eom, M.; Meng, X.; Shin, D., Application of a carbon nanotube (CNT) sheet as a current collector for all-solid-state lithium batteries. Journal of Power Sources 2015, 299, 70-75.
2. Lu, Z.; Liu, N.; Lee, H.-W.; Zhao, J.; Li, W.; Li, Y.; Cui, Y., Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes. ACS Nano 2015, 9 (3), 2540-2547.
3. He, C.; Wu, S.; Zhao, N.; Shi, C.; Liu, E.; Li, J., Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material. ACS Nano 2013, 7 (5), 4459-4469.
4. Liu, Y.; Guo, J.; Zhang, J.; Su, Q.; Du, G., Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries. Applied Surface Science 2015, 324, 399-404.
5. Pacala, S.; Socolow, R., Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 2004, 305 (5686), 968-972.
6. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5 (7), 7854-7863.
7. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-657.
8. McDowell, M. T.; Lee, S. W.; Ryu, I.; Wu, H.; Nix, W. D.; Choi, J. W.; Cui, Y., Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes. Nano Letters 2011, 11 (9), 4018-4025.
9. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
10. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264.
11. Xin, S.; Guo, Y.-G.; Wan, L.-J., Nanocarbon Networks for Advanced Rechargeable Lithium Batteries. Accounts of Chemical Research 2012, 45 (10), 1759-1769.
12. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat Nano 2008, 3 (1), 31-35.
13. Son, I. H.; Hwan Park, J.; Kwon, S.; Park, S.; Rummeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J.-m.; Doo, S.-G.; Chang, H., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat Commun 2015, 6.
14. Peled, E.; Patolsky, F.; Golodnitsky, D.; Freedman, K.; Davidi, G.; Schneier, D., Tissue-like Silicon Nanowires-Based Three-Dimensional Anodes for High-Capacity Lithium Ion Batteries. Nano Letters 2015, 15 (6), 3907-3916.
15. Yuan, F.-W.; Tuan, H.-Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chemistry of Materials 2014, 26 (6), 2172-2179.
16. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 2005, 4 (5), 366-377.
17. Li, X.; Yang, Z.; Fu, Y.; Qiao, L.; Li, D.; Yue, H.; He, D., Germanium Anode with Excellent Lithium Storage Performance in a Germanium/Lithium–Cobalt Oxide Lithium-Ion Battery. ACS Nano 2015, 9 (2), 1858-1867.
18. Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O’Dwyer, C.; Ryan, K. M., High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Letters 2014, 14 (2), 716-723.
19. Lu, D.; Wong, C. P., Materials for Advanced Packaging. Springer Publishing Company, Incorporated: 2008; p 724.
20. Cui, L.-F.; Hu, L.; Choi, J. W.; Cui, Y., Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano 2010, 4 (7), 3671-3678.
21. Qu, B.; Hu, L.; Li, Q.; Wang, Y.; Chen, L.; Wang, T., High-Performance Lithium-Ion Battery Anode by Direct Growth of Hierarchical ZnCo2O4 Nanostructures on Current Collectors. ACS Applied Materials & Interfaces 2014, 6 (1), 731-736.
22. Zhao, C.; Li, S.; Luo, X.; Li, B.; Pan, W.; Wu, H., Integration of Si in a metal foam current collector for stable electrochemical cycling in Li-ion batteries. Journal of Materials Chemistry A 2015, 3 (18), 10114-10118.
23. Wang, J.; Zhang, Q.; Li, X.; Xu, D.; Wang, Z.; Guo, H.; Zhang, K., Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 2014, 6, 19-26.
24. Gowda, S. R.; Leela Mohana Reddy, A.; Zhan, X.; Jafry, H. R.; Ajayan, P. M., 3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries. Nano Letters 2012, 12 (3), 1198-1202.
25. Zhang, S.; Du, Z.; Lin, R.; Jiang, T.; Liu, G.; Wu, X.; Weng, D., Nickel Nanocone-Array Supported Silicon Anode for High-Performance Lithium-Ion Batteries. Advanced Materials 2010, 22 (47), 5378-5382.
26. Chen, Y.; Fu, K.; Zhu, S.; Luo, W.; Wang, Y.; Li, Y.; Hitz, E.; Yao, Y.; Dai, J.; Wan, J.; Danner, V. A.; Li, T.; Hu, L., Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors. Nano Letters 2016, 16 (6), 3616-3623.
27. Zhou, G.; Pei, S.; Li, L.; Wang, D.-W.; Wang, S.; Huang, K.; Yin, L.-C.; Li, F.; Cheng, H.-M., A Graphene–Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium–Sulfur Batteries. Advanced Materials 2014, 26 (4), 625-631.
28. Wang, K.; Luo, S.; Wu, Y.; He, X.; Zhao, F.; Wang, J.; Jiang, K.; Fan, S., Super-Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries. Advanced Functional Materials 2013, 23 (7), 846-853.
29. Yehezkel, S.; Auinat, M.; Sezin, N.; Starosvetsky, D.; Ein-Eli, Y., Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors. Journal of Power Sources 2016, 312, 109-115.
30. Choi, K.-H.; Cho, S.-J.; Chun, S.-J.; Yoo, J. T.; Lee, C. K.; Kim, W.; Wu, Q.; Park, S.-B.; Choi, D.-H.; Lee, S.-Y.; Lee, S.-Y., Heterolayered, One-Dimensional Nanobuilding Block Mat Batteries. Nano Letters 2014, 14 (10), 5677-5686.
31. Liu, L.; Choi, B. G.; Tung, S. O.; Hu, T.; Liu, Y.; Li, T.; Zhao, T.; Kotov, N. A., Low-current field-assisted assembly of copper nanoparticles for current collectors. Faraday Discussions 2015, 181 (0), 383-401.
32. Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 2006, 5 (7), 567-573.
33. Kim, G.; Jeong, S.; Shin, J.-H.; Cho, J.; Lee, H., 3D Amorphous Silicon on Nanopillar Copper Electrodes as Anodes for High-Rate Lithium-Ion Batteries. ACS Nano 2014, 8 (2), 1907-1912.
34. Hwang, C.; Kim, T.-H.; Cho, Y.-G.; Kim, J.; Song, H.-K., All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries. Scientific Reports 2015, 5, 8623.
35. Lee, G.-H.; Shim, H.-W.; Kim, D.-W., Superior long-life and high-rate Ge nanoarrays anchored on Cu/C nanowire frameworks for Li-ion battery electrodes. Nano Energy 2015, 13, 218-225.
36. Lin, R.; Zhang, S.; Du, Z.; Fang, H.; Ren, Y.; Wu, X., Copper nanowires based current collector for light-weight and flexible composite silicon anode with high stability and specific capacity. RSC Advances 2015, 5 (106), 87090-87097.
37. Lin, R.; Zhang, S.; Ren, Y.; Wu, X.; Fang, H.; Wei, X., Cu@Sn nanostructures based on light-weight current collectors for superior reversible lithium ion storage. RSC Advances 2016, 6 (24), 20042-20050.
38. Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H.-B.; Zhou, F.; Yu, S.-H., Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Letters 2016, 16 (7), 4431-4437.
39. Ye, E.; Zhang, S.-Y.; Liu, S.; Han, M.-Y., Disproportionation for Growing Copper Nanowires and their Controlled Self-Assembly Facilitated by Ligand Exchange. Chemistry – A European Journal 2011, 17 (11), 3074-3077.
40. Yang, H.-J.; He, S.-Y.; Tuan, H.-Y., Self-Seeded Growth of Five-Fold Twinned Copper Nanowires: Mechanistic Study, Characterization, and SERS Applications. Langmuir 2014, 30 (2), 602-610.
41. Chu, H.-C.; Chang, Y.-C.; Lin, Y.; Chang, S.-H.; Chang, W.-C.; Li, G.-A.; Tuan, H.-Y., Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications. ACS Applied Materials & Interfaces 2016, 8 (20), 13009-13017.
42. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A., Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material. Journal of the American Chemical Society 2011, 133 (51), 20914-20921.
43. Cui, F.; Yu, Y.; Dou, L.; Sun, J.; Yang, Q.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P., Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors. Nano Letters 2015, 15 (11), 7610-7615.
44. Zheng, Z.; Wang, Z.; Song, X.; Xun, S.; Battaglia, V.; Liu, G., Biomimetic Nanostructuring of Copper Thin Films Enhances Adhesion to the Negative Electrode Laminate in Lithium-Ion Batteries. ChemSusChem 2014, 7 (10), 2853-2858.
45. Miao, L.; Lu, L.; Fu, T.; Tang, Y.; Tang, B., Experimental investigation on wetting process of water droplets on micro-/nanoporous copper films. Applied Physics A 2015, 120 (1), 255-263.
46. June Zhang, B.; Kim, K. J., Effect of liquid uptake on critical heat flux utilizing a three dimensional, interconnected alumina nano porous surfaces. Applied Physics Letters 2012, 101 (5), 054104.
47. Su, W.; Iroh, J. O., Electrodeposition mechanism, adhesion and corrosion performance of polypyrrole and poly(N-methylpyrrole) coatings on steel substrates. Synthetic Metals 2000, 114 (3), 225-234.
48. Zheng, H.; Jiang, K.; Abe, T.; Ogumi, Z., Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon 2006, 44 (2), 203-210.
49. Guo, P.; Song, H.; Chen, X., Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications 2009, 11 (6), 1320-1324.
50. Yazici, M. S.; Krassowski, D.; Prakash, J., Flexible graphite as battery anode and current collector. Journal of Power Sources 2005, 141 (1), 171-176.
51. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials 1998, 10 (10), 725-763.
52. Sun, Y.-K.; Lee, M.-J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B., The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries. Advanced Materials 2012, 24 (9), 1192-1196.

1. Lin, Y.-G.; Hsu, Y.-K.; Chen, S.-Y.; Lin, Y.-K.; Chen, L.-C.; Chen, K.-H., Nanostructured Zinc Oxide Nanorods with Copper Nanoparticles as a Microreformation Catalyst. Angewandte Chemie International Edition 2009, 48 (41), 7586-7590.
2. Marimuthu, A.; Zhang, J.; Linic, S., Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State. Science 2013, 339 (6127), 1590-1593.
3. Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M., Unsupported Copper Nanoparticles in the 1,3-Dipolar Cycloaddition of Terminal Alkynes and Azides. European Journal of Organic Chemistry 2010, 2010 (10), 1875-1884.
4. Miao, Y.-E.; Lee, H. K.; Chew, W. S.; Phang, I. Y.; Liu, T.; Ling, X. Y., Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. Chemical Communications 2014, 50 (44), 5923-5926.
5. Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J., Hydrophilic Cu9S5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo. ACS Nano 2011, 5 (12), 9761-9771.
6. Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A., Design of Light Scattering in Nanowire Materials for Photovoltaic Applications. Nano Letters 2008, 8 (9), 2638-2642.
7. Huisgen, R., Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angewandte Chemie International Edition in English 1963, 2 (11), 633-645.
8. Huisgen, R., 1,3-Dipolar Cycloadditions. Past and Future. Angewandte Chemie International Edition in English 1963, 2 (10), 565-598.
9. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition 2002, 41 (14), 2596-2599.
10. Willner, D.; Jelenevsky, A. M.; Cheney, L. C., Cycloaddition of acetylenes to 7-acylamino-3-azidomethyl-3-cephem-4-carboxylic acids. Journal of Medicinal Chemistry 1972, 15 (9), 948-951.
11. Li, P.; Wang, L.; Zhang, Y., SiO2–NHC–Cu(I): an efficient and reusable catalyst for [3+2] cycloaddition of organic azides and terminal alkynes under solvent-free reaction conditions at room temperature. Tetrahedron 2008, 64 (48), 10825-10830.
12. Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; Clercq, E. D.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J., 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole 2'',2''-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. Journal of Medicinal Chemistry 1994, 37 (24), 4185-4194.
13. Haldon, E.; Nicasio, M. C.; Perez, P. J., Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Organic & Biomolecular Chemistry 2015, 13 (37), 9528-9550.
14. Tornøe, C. W.; Christensen, C.; Meldal, M., Peptidotriazoles on Solid Phase:  [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry 2002, 67 (9), 3057-3064.
15. Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.; Wong, C.-H., Synthesis of Sugar Arrays in Microtiter Plate. Journal of the American Chemical Society 2002, 124 (48), 14397-14402.
16. Meldal, M., Polymer “Clicking” by CuAAC Reactions. Macromolecular Rapid Communications 2008, 29 (12-13), 1016-1051.
17. Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.; Yu, Y.-H.; Zhou, J., Asymmetric Copper(I)-Catalyzed Azide–Alkyne Cycloaddition to Quaternary Oxindoles. Journal of the American Chemical Society 2013, 135 (30), 10994-10997.
18. Pérez-Balderas, F.; Ortega-Muñoz, M.; Morales-Sanfrutos, J.; Hernández-Mateo, F.; Calvo-Flores, F. G.; Calvo-Asín, J. A.; Isac-García, J.; Santoyo-González, F., Multivalent Neoglycoconjugates by Regiospecific Cycloaddition of Alkynes and Azides Using Organic-Soluble Copper Catalysts. Organic Letters 2003, 5 (11), 1951-1954.
19. Dervaux, B.; Du Prez, F. E., Heterogeneous azide-alkyne click chemistry: towards metal-free end products. Chemical Science 2012, 3 (4), 959-966.
20. Megia-Fernandez, A.; Ortega-Muñoz, M.; Lopez-Jaramillo, J.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F., Non-Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Advanced Synthesis & Catalysis 2010, 352 (18), 3306-3320.
21. Ranu, B. C.; Dey, R.; Chatterjee, T.; Ahammed, S., Copper Nanoparticle-Catalyzed CarbonCarbon and CarbonHeteroatom Bond Formation with a Greener Perspective. ChemSusChem 2012, 5 (1), 22-44.
22. Pachón, L. D.; van Maarseveen, J. H.; Rothenberg, G., Click Chemistry: Copper Clusters Catalyse the Cycloaddition of Azides with Terminal Alkynes. Advanced Synthesis & Catalysis 2005, 347 (6), 811-815.
23. Kantam, M. L.; Jaya, V. S.; Sreedhar, B.; Rao, M. M.; Choudary, B. M., Preparation of alumina supported copper nanoparticles and their application in the synthesis of 1,2,3-triazoles. Journal of Molecular Catalysis A: Chemical 2006, 256 (1–2), 273-277.
24. Shaygan Nia, A.; Rana, S.; Döhler, D.; Jirsa, F.; Meister, A.; Guadagno, L.; Koslowski, E.; Bron, M.; Binder, W. H., Carbon-Supported Copper Nanomaterials: Recyclable Catalysts for Huisgen [3+2] Cycloaddition Reactions. Chemistry – A European Journal 2015, 21 (30), 10763-10770.
25. Jin, T.; Yan, M.; Menggenbateer; Minato, T.; Bao, M.; Yamamoto, Y., Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosity-Dependent Activity without Supports and Bases. Advanced Synthesis & Catalysis 2011, 353 (17), 3095-3100.
26. Ye, E.; Zhang, S.-Y.; Liu, S.; Han, M.-Y., Disproportionation for Growing Copper Nanowires and their Controlled Self-Assembly Facilitated by Ligand Exchange. Chemistry – A European Journal 2011, 17 (11), 3074-3077.
27. Ahlquist, M.; Fokin, V. V., Enhanced Reactivity of Dinuclear Copper(I) Acetylides in Dipolar Cycloadditions. Organometallics 2007, 26 (18), 4389-4391.
28. Straub, B. F., [small micro]-Acetylide and [small micro]-alkenylidene ligands in "click" triazole syntheses. Chemical Communications 2007, (37), 3868-3870.
29. J. F. Moulder, W. F. S., P. E. Sobol, K. D. Bomben, Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification
and Interpretation of XPS Data. Physical Electronics, Minnesota 1995.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *