|
1. Choi, S.; Kim, J.; Eom, M.; Meng, X.; Shin, D., Application of a carbon nanotube (CNT) sheet as a current collector for all-solid-state lithium batteries. Journal of Power Sources 2015, 299, 70-75. 2. Lu, Z.; Liu, N.; Lee, H.-W.; Zhao, J.; Li, W.; Li, Y.; Cui, Y., Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes. ACS Nano 2015, 9 (3), 2540-2547. 3. He, C.; Wu, S.; Zhao, N.; Shi, C.; Liu, E.; Li, J., Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material. ACS Nano 2013, 7 (5), 4459-4469. 4. Liu, Y.; Guo, J.; Zhang, J.; Su, Q.; Du, G., Graphene-wrapped sulfur nanospheres with ultra-high sulfur loading for high energy density lithium–sulfur batteries. Applied Surface Science 2015, 324, 399-404. 5. Pacala, S.; Socolow, R., Stabilization Wedges: Solving the Climate Problem for the Next 50 Years with Current Technologies. Science 2004, 305 (5686), 968-972. 6. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries. Energy & Environmental Science 2012, 5 (7), 7854-7863. 7. Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-657. 8. McDowell, M. T.; Lee, S. W.; Ryu, I.; Wu, H.; Nix, W. D.; Choi, J. W.; Cui, Y., Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes. Nano Letters 2011, 11 (9), 4018-4025. 9. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367. 10. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials Today 2015, 18 (5), 252-264. 11. Xin, S.; Guo, Y.-G.; Wan, L.-J., Nanocarbon Networks for Advanced Rechargeable Lithium Batteries. Accounts of Chemical Research 2012, 45 (10), 1759-1769. 12. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat Nano 2008, 3 (1), 31-35. 13. Son, I. H.; Hwan Park, J.; Kwon, S.; Park, S.; Rummeli, M. H.; Bachmatiuk, A.; Song, H. J.; Ku, J.; Choi, J. W.; Choi, J.-m.; Doo, S.-G.; Chang, H., Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat Commun 2015, 6. 14. Peled, E.; Patolsky, F.; Golodnitsky, D.; Freedman, K.; Davidi, G.; Schneier, D., Tissue-like Silicon Nanowires-Based Three-Dimensional Anodes for High-Capacity Lithium Ion Batteries. Nano Letters 2015, 15 (6), 3907-3916. 15. Yuan, F.-W.; Tuan, H.-Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chemistry of Materials 2014, 26 (6), 2172-2179. 16. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W., Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 2005, 4 (5), 366-377. 17. Li, X.; Yang, Z.; Fu, Y.; Qiao, L.; Li, D.; Yue, H.; He, D., Germanium Anode with Excellent Lithium Storage Performance in a Germanium/Lithium–Cobalt Oxide Lithium-Ion Battery. ACS Nano 2015, 9 (2), 1858-1867. 18. Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O’Dwyer, C.; Ryan, K. M., High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Letters 2014, 14 (2), 716-723. 19. Lu, D.; Wong, C. P., Materials for Advanced Packaging. Springer Publishing Company, Incorporated: 2008; p 724. 20. Cui, L.-F.; Hu, L.; Choi, J. W.; Cui, Y., Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries. ACS Nano 2010, 4 (7), 3671-3678. 21. Qu, B.; Hu, L.; Li, Q.; Wang, Y.; Chen, L.; Wang, T., High-Performance Lithium-Ion Battery Anode by Direct Growth of Hierarchical ZnCo2O4 Nanostructures on Current Collectors. ACS Applied Materials & Interfaces 2014, 6 (1), 731-736. 22. Zhao, C.; Li, S.; Luo, X.; Li, B.; Pan, W.; Wu, H., Integration of Si in a metal foam current collector for stable electrochemical cycling in Li-ion batteries. Journal of Materials Chemistry A 2015, 3 (18), 10114-10118. 23. Wang, J.; Zhang, Q.; Li, X.; Xu, D.; Wang, Z.; Guo, H.; Zhang, K., Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 2014, 6, 19-26. 24. Gowda, S. R.; Leela Mohana Reddy, A.; Zhan, X.; Jafry, H. R.; Ajayan, P. M., 3D Nanoporous Nanowire Current Collectors for Thin Film Microbatteries. Nano Letters 2012, 12 (3), 1198-1202. 25. Zhang, S.; Du, Z.; Lin, R.; Jiang, T.; Liu, G.; Wu, X.; Weng, D., Nickel Nanocone-Array Supported Silicon Anode for High-Performance Lithium-Ion Batteries. Advanced Materials 2010, 22 (47), 5378-5382. 26. Chen, Y.; Fu, K.; Zhu, S.; Luo, W.; Wang, Y.; Li, Y.; Hitz, E.; Yao, Y.; Dai, J.; Wan, J.; Danner, V. A.; Li, T.; Hu, L., Reduced Graphene Oxide Films with Ultrahigh Conductivity as Li-Ion Battery Current Collectors. Nano Letters 2016, 16 (6), 3616-3623. 27. Zhou, G.; Pei, S.; Li, L.; Wang, D.-W.; Wang, S.; Huang, K.; Yin, L.-C.; Li, F.; Cheng, H.-M., A Graphene–Pure-Sulfur Sandwich Structure for Ultrafast, Long-Life Lithium–Sulfur Batteries. Advanced Materials 2014, 26 (4), 625-631. 28. Wang, K.; Luo, S.; Wu, Y.; He, X.; Zhao, F.; Wang, J.; Jiang, K.; Fan, S., Super-Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries. Advanced Functional Materials 2013, 23 (7), 846-853. 29. Yehezkel, S.; Auinat, M.; Sezin, N.; Starosvetsky, D.; Ein-Eli, Y., Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors. Journal of Power Sources 2016, 312, 109-115. 30. Choi, K.-H.; Cho, S.-J.; Chun, S.-J.; Yoo, J. T.; Lee, C. K.; Kim, W.; Wu, Q.; Park, S.-B.; Choi, D.-H.; Lee, S.-Y.; Lee, S.-Y., Heterolayered, One-Dimensional Nanobuilding Block Mat Batteries. Nano Letters 2014, 14 (10), 5677-5686. 31. Liu, L.; Choi, B. G.; Tung, S. O.; Hu, T.; Liu, Y.; Li, T.; Zhao, T.; Kotov, N. A., Low-current field-assisted assembly of copper nanoparticles for current collectors. Faraday Discussions 2015, 181 (0), 383-401. 32. Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 2006, 5 (7), 567-573. 33. Kim, G.; Jeong, S.; Shin, J.-H.; Cho, J.; Lee, H., 3D Amorphous Silicon on Nanopillar Copper Electrodes as Anodes for High-Rate Lithium-Ion Batteries. ACS Nano 2014, 8 (2), 1907-1912. 34. Hwang, C.; Kim, T.-H.; Cho, Y.-G.; Kim, J.; Song, H.-K., All-in-one assembly based on 3D-intertangled and cross-jointed architectures of Si/Cu 1D-nanowires for lithium ion batteries. Scientific Reports 2015, 5, 8623. 35. Lee, G.-H.; Shim, H.-W.; Kim, D.-W., Superior long-life and high-rate Ge nanoarrays anchored on Cu/C nanowire frameworks for Li-ion battery electrodes. Nano Energy 2015, 13, 218-225. 36. Lin, R.; Zhang, S.; Du, Z.; Fang, H.; Ren, Y.; Wu, X., Copper nanowires based current collector for light-weight and flexible composite silicon anode with high stability and specific capacity. RSC Advances 2015, 5 (106), 87090-87097. 37. Lin, R.; Zhang, S.; Ren, Y.; Wu, X.; Fang, H.; Wei, X., Cu@Sn nanostructures based on light-weight current collectors for superior reversible lithium ion storage. RSC Advances 2016, 6 (24), 20042-20050. 38. Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H.-B.; Zhou, F.; Yu, S.-H., Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Letters 2016, 16 (7), 4431-4437. 39. Ye, E.; Zhang, S.-Y.; Liu, S.; Han, M.-Y., Disproportionation for Growing Copper Nanowires and their Controlled Self-Assembly Facilitated by Ligand Exchange. Chemistry – A European Journal 2011, 17 (11), 3074-3077. 40. Yang, H.-J.; He, S.-Y.; Tuan, H.-Y., Self-Seeded Growth of Five-Fold Twinned Copper Nanowires: Mechanistic Study, Characterization, and SERS Applications. Langmuir 2014, 30 (2), 602-610. 41. Chu, H.-C.; Chang, Y.-C.; Lin, Y.; Chang, S.-H.; Chang, W.-C.; Li, G.-A.; Tuan, H.-Y., Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications. ACS Applied Materials & Interfaces 2016, 8 (20), 13009-13017. 42. Chockla, A. M.; Harris, J. T.; Akhavan, V. A.; Bogart, T. D.; Holmberg, V. C.; Steinhagen, C.; Mullins, C. B.; Stevenson, K. J.; Korgel, B. A., Silicon Nanowire Fabric as a Lithium Ion Battery Electrode Material. Journal of the American Chemical Society 2011, 133 (51), 20914-20921. 43. Cui, F.; Yu, Y.; Dou, L.; Sun, J.; Yang, Q.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P., Synthesis of Ultrathin Copper Nanowires Using Tris(trimethylsilyl)silane for High-Performance and Low-Haze Transparent Conductors. Nano Letters 2015, 15 (11), 7610-7615. 44. Zheng, Z.; Wang, Z.; Song, X.; Xun, S.; Battaglia, V.; Liu, G., Biomimetic Nanostructuring of Copper Thin Films Enhances Adhesion to the Negative Electrode Laminate in Lithium-Ion Batteries. ChemSusChem 2014, 7 (10), 2853-2858. 45. Miao, L.; Lu, L.; Fu, T.; Tang, Y.; Tang, B., Experimental investigation on wetting process of water droplets on micro-/nanoporous copper films. Applied Physics A 2015, 120 (1), 255-263. 46. June Zhang, B.; Kim, K. J., Effect of liquid uptake on critical heat flux utilizing a three dimensional, interconnected alumina nano porous surfaces. Applied Physics Letters 2012, 101 (5), 054104. 47. Su, W.; Iroh, J. O., Electrodeposition mechanism, adhesion and corrosion performance of polypyrrole and poly(N-methylpyrrole) coatings on steel substrates. Synthetic Metals 2000, 114 (3), 225-234. 48. Zheng, H.; Jiang, K.; Abe, T.; Ogumi, Z., Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes. Carbon 2006, 44 (2), 203-210. 49. Guo, P.; Song, H.; Chen, X., Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications 2009, 11 (6), 1320-1324. 50. Yazici, M. S.; Krassowski, D.; Prakash, J., Flexible graphite as battery anode and current collector. Journal of Power Sources 2005, 141 (1), 171-176. 51. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novák, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials 1998, 10 (10), 725-763. 52. Sun, Y.-K.; Lee, M.-J.; Yoon, C. S.; Hassoun, J.; Amine, K.; Scrosati, B., The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries. Advanced Materials 2012, 24 (9), 1192-1196.
1. Lin, Y.-G.; Hsu, Y.-K.; Chen, S.-Y.; Lin, Y.-K.; Chen, L.-C.; Chen, K.-H., Nanostructured Zinc Oxide Nanorods with Copper Nanoparticles as a Microreformation Catalyst. Angewandte Chemie International Edition 2009, 48 (41), 7586-7590. 2. Marimuthu, A.; Zhang, J.; Linic, S., Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State. Science 2013, 339 (6127), 1590-1593. 3. Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M., Unsupported Copper Nanoparticles in the 1,3-Dipolar Cycloaddition of Terminal Alkynes and Azides. European Journal of Organic Chemistry 2010, 2010 (10), 1875-1884. 4. Miao, Y.-E.; Lee, H. K.; Chew, W. S.; Phang, I. Y.; Liu, T.; Ling, X. Y., Catalytic liquid marbles: Ag nanowire-based miniature reactors for highly efficient degradation of methylene blue. Chemical Communications 2014, 50 (44), 5923-5926. 5. Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J., Hydrophilic Cu9S5 Nanocrystals: A Photothermal Agent with a 25.7% Heat Conversion Efficiency for Photothermal Ablation of Cancer Cells in Vivo. ACS Nano 2011, 5 (12), 9761-9771. 6. Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A., Design of Light Scattering in Nanowire Materials for Photovoltaic Applications. Nano Letters 2008, 8 (9), 2638-2642. 7. Huisgen, R., Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angewandte Chemie International Edition in English 1963, 2 (11), 633-645. 8. Huisgen, R., 1,3-Dipolar Cycloadditions. Past and Future. Angewandte Chemie International Edition in English 1963, 2 (10), 565-598. 9. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition 2002, 41 (14), 2596-2599. 10. Willner, D.; Jelenevsky, A. M.; Cheney, L. C., Cycloaddition of acetylenes to 7-acylamino-3-azidomethyl-3-cephem-4-carboxylic acids. Journal of Medicinal Chemistry 1972, 15 (9), 948-951. 11. Li, P.; Wang, L.; Zhang, Y., SiO2–NHC–Cu(I): an efficient and reusable catalyst for [3+2] cycloaddition of organic azides and terminal alkynes under solvent-free reaction conditions at room temperature. Tetrahedron 2008, 64 (48), 10825-10830. 12. Alvarez, R.; Velazquez, S.; San-Felix, A.; Aquaro, S.; Clercq, E. D.; Perno, C.-F.; Karlsson, A.; Balzarini, J.; Camarasa, M. J., 1,2,3-Triazole-[2,5-Bis-O-(tert-butyldimethylsilyl)-.beta.-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole 2'',2''-dioxide) (TSAO) Analogs: Synthesis and Anti-HIV-1 Activity. Journal of Medicinal Chemistry 1994, 37 (24), 4185-4194. 13. Haldon, E.; Nicasio, M. C.; Perez, P. J., Copper-catalysed azide-alkyne cycloadditions (CuAAC): an update. Organic & Biomolecular Chemistry 2015, 13 (37), 9528-9550. 14. Tornøe, C. W.; Christensen, C.; Meldal, M., Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry 2002, 67 (9), 3057-3064. 15. Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.; Wong, C.-H., Synthesis of Sugar Arrays in Microtiter Plate. Journal of the American Chemical Society 2002, 124 (48), 14397-14402. 16. Meldal, M., Polymer “Clicking” by CuAAC Reactions. Macromolecular Rapid Communications 2008, 29 (12-13), 1016-1051. 17. Zhou, F.; Tan, C.; Tang, J.; Zhang, Y.-Y.; Gao, W.-M.; Wu, H.-H.; Yu, Y.-H.; Zhou, J., Asymmetric Copper(I)-Catalyzed Azide–Alkyne Cycloaddition to Quaternary Oxindoles. Journal of the American Chemical Society 2013, 135 (30), 10994-10997. 18. Pérez-Balderas, F.; Ortega-Muñoz, M.; Morales-Sanfrutos, J.; Hernández-Mateo, F.; Calvo-Flores, F. G.; Calvo-Asín, J. A.; Isac-García, J.; Santoyo-González, F., Multivalent Neoglycoconjugates by Regiospecific Cycloaddition of Alkynes and Azides Using Organic-Soluble Copper Catalysts. Organic Letters 2003, 5 (11), 1951-1954. 19. Dervaux, B.; Du Prez, F. E., Heterogeneous azide-alkyne click chemistry: towards metal-free end products. Chemical Science 2012, 3 (4), 959-966. 20. Megia-Fernandez, A.; Ortega-Muñoz, M.; Lopez-Jaramillo, J.; Hernandez-Mateo, F.; Santoyo-Gonzalez, F., Non-Magnetic and Magnetic Supported Copper(I) Chelating Adsorbents as Efficient Heterogeneous Catalysts and Copper Scavengers for Click Chemistry. Advanced Synthesis & Catalysis 2010, 352 (18), 3306-3320. 21. Ranu, B. C.; Dey, R.; Chatterjee, T.; Ahammed, S., Copper Nanoparticle-Catalyzed CarbonCarbon and CarbonHeteroatom Bond Formation with a Greener Perspective. ChemSusChem 2012, 5 (1), 22-44. 22. Pachón, L. D.; van Maarseveen, J. H.; Rothenberg, G., Click Chemistry: Copper Clusters Catalyse the Cycloaddition of Azides with Terminal Alkynes. Advanced Synthesis & Catalysis 2005, 347 (6), 811-815. 23. Kantam, M. L.; Jaya, V. S.; Sreedhar, B.; Rao, M. M.; Choudary, B. M., Preparation of alumina supported copper nanoparticles and their application in the synthesis of 1,2,3-triazoles. Journal of Molecular Catalysis A: Chemical 2006, 256 (1–2), 273-277. 24. Shaygan Nia, A.; Rana, S.; Döhler, D.; Jirsa, F.; Meister, A.; Guadagno, L.; Koslowski, E.; Bron, M.; Binder, W. H., Carbon-Supported Copper Nanomaterials: Recyclable Catalysts for Huisgen [3+2] Cycloaddition Reactions. Chemistry – A European Journal 2015, 21 (30), 10763-10770. 25. Jin, T.; Yan, M.; Menggenbateer; Minato, T.; Bao, M.; Yamamoto, Y., Nanoporous Copper Metal Catalyst in Click Chemistry: Nanoporosity-Dependent Activity without Supports and Bases. Advanced Synthesis & Catalysis 2011, 353 (17), 3095-3100. 26. Ye, E.; Zhang, S.-Y.; Liu, S.; Han, M.-Y., Disproportionation for Growing Copper Nanowires and their Controlled Self-Assembly Facilitated by Ligand Exchange. Chemistry – A European Journal 2011, 17 (11), 3074-3077. 27. Ahlquist, M.; Fokin, V. V., Enhanced Reactivity of Dinuclear Copper(I) Acetylides in Dipolar Cycloadditions. Organometallics 2007, 26 (18), 4389-4391. 28. Straub, B. F., [small micro]-Acetylide and [small micro]-alkenylidene ligands in "click" triazole syntheses. Chemical Communications 2007, (37), 3868-3870. 29. J. F. Moulder, W. F. S., P. E. Sobol, K. D. Bomben, Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics, Minnesota 1995.
|