|
1. Lohse, S. E..Murphy, C. J. Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy. J Am Chem Soc 2012, 134, 15607-15620. 2. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J..Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem Soc Rev 2011, 40, 3941-3994. 3. Klaine, S. J.; Alvarez, P. J. J.; Batley, G. E.; Fernandes, T. F.; Handy, R. D.; Lyon, D. Y.; Mahendra, S.; McLaughlin, M. J..Lead, J. R. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environ Toxicol Chem 2008, 27, 1825-1851. 4. Link, S..El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J Phys Chem B 1999, 103, 8410-8426. 5. Li, C. Y.; Ma, C.; Wang, F.; Xi, Z. J.; Wang, Z. F.; Deng, Y..He, N. Y. Preparation and Biomedical Applications of Core-Shell Silica/Magnetic Nanoparticle Composites. J Nanosci Nanotechno 2012, 12, 2964-2972. 6. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T..Dawson, K. A. Nanoparticle Size and Surface Properties Determine the Protein Corona with Possible Implications for Biological Impacts. P Natl Acad Sci USA 2008, 105, 14265-14270. 7. Che, G. L.; Lakshmi, B. B.; Martin, C. R..Fisher, E. R. Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production. Langmuir 1999, 15, 750-758. 8. Yetter, R. A.; Risha, G. A..Son, S. F. Metal Particle Combustion and Nanotechnology. P Combust Inst 2009, 32, 1819-1838. 9. Dreizin, E. L. Metal-Based Reactive Nanomaterials. Prog Energ Combust 2009, 35, 141-167. 10. Huczko, A. Template-Based Synthesis of Nanomaterials. Appl Phys a-Mater 2000, 70, 365-376. 11. Dick, K. A.; Deppert, K.; Larsson, M. W.; Martensson, T.; Seifert, W.; Wallenberg, L. R..Samuelson, L. Synthesis of Branched 'Nanotrees' by Controlled Seeding of Multiple Branching Events. Nat Mater 2004, 3, 380-384. 12. Singh, D. P.; Ojha, A. K..Srivastava, O. N. Synthesis of Different Cu(OH)2 and CuO (Nanowires, Rectangles, Seed-, Belt-, and Sheetlike) Nanostructures by Simple Wet Chemical Route. J Phys Chem C 2009, 113, 3409-3418. 13. Okuyama, K..Lenggoro, I. W. Preparation of Nanoparticles Via Spray Route. Chem Eng Sci 2003, 58, 537-547. 14. Firmansyah, D. A.; Kim, S. G.; Lee, K. S.; Zahaf, R.; Kim, Y. H..Lee, D. Microstructure-Controlled Aerosol-Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres. Langmuir 2012, 28, 2890-2896. 15. Jung, D. S.; Bin Park, S..Kang, Y. C. Design of Particles by Spray Pyrolysis and Recent Progress in Its Application. Korean J Chem Eng 2010, 27, 1621-1645. 16. Peterson, A. K.; Morgan, D. G..Skrabalak, S. E. Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template. Langmuir 2010, 26, 8804-8809. 17. Chang, H..Jang, H. D. Controlled Synthesis of Porous Particles Via Aerosol Processing and Their Applications. Adv Powder Technol 2014, 25, 32-42. 18. Nandiyanto, A. B. D..Okuyama, K. Progress in Developing Spray-Drying Methods for the Production of Controlled Morphology Particles: From the Nanometer to Submicrometer Size Ranges. Adv Powder Technol 2011, 22, 1-19. 19. Mattisson, T.; Jardnas, A..Lyngfelt, A. Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen-Application for Chemical-Looping Combustion. Energ Fuel 2003, 17, 643-651. 20. Dennis, J. S..Scott, S. A. In Situ Gasification of a Lignite Coal and CO2 Separation Using Chemical Looping with a Cu-Based Oxygen Carrier. Fuel 2010, 89, 1623-1640. 21. de Diego, L. F.; Gayan, P.; Garcia-Labiano, F.; Celaya, J.; Abad, M..Adanez, J. Impregnated CuO/Al2O3 Oxygen Carriers for Chemical-Looping Combustion: Avoiding Fluidized Bed Agglomeration. Energ Fuel 2005, 19, 1850-1856. 22. Abad, A.; Mattisson, T.; Lyngfelt, A..Ryden, M. Chemical-Looping Combustion in a 300 W Continuously Operating Reactor System Using a Manganese-Based Oxygen Carrier. Fuel 2006, 85, 1174-1185. 23. Cho, P.; Mattisson, T..Lyngfelt, A. Comparison of Iron-, Nickel-, Copper- and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion. Fuel 2004, 83, 1215-1225. 24. Chuang, S. Y.; Dennis, J. S.; Hayhurst, A. N..Scott, S. A. Development and Performance of Cu-Based Oxygen Carriers for Chemical-Looping Combustion. Combust Flame 2008, 154, 109-121. 25. Huang, T. J.; Mao, C. W.; Lee, C. C.; Chiang, D. Y.; Shih, C.; Wang, B. C.; Lee, S. Y..Wong, D. S. H. Sulfur Dioxide Removal from Oxygen-Rich Exhausts by Promoted Decomposition. Chem Eng J 2016, 284, 431-437. 26. Wang, Z. H.; Li, R..Chen, Q. W. Enhanced Activity of CuCeO Catalysts for CO Oxidation: Influence of Cu2O and the Dispersion of Cu2O, CuO, and CeO2. Chemphyschem 2015, 16, 2415-2423. 27. Shi, J. L. On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts. Chem Rev 2013, 113, 2139-2181. 28. Yoshida, H.; Yamashita, N.; Ijichi, S.; Okabe, Y.; Misumi, S.; Hinokuma, S..Machida, M. A Thermally Stable Cr-Cu Nanostructure Embedded in the CeO2 Surface as a Substitute for Platinum-Group Metal Catalysts. Acs Catal 2015, 5, 6738-6747. 29. Wang, W. N.; Wu, F.; Myung, Y.; Niedzwiedzki, D. M.; Im, H. S.; Park, J.; Banerjee, P..Biswas, P. Surface Engineered CuO Nanowires with ZnO Islands for CO2 Photoreduction. Acs Appl Mater Inter 2015, 7, 5685-5692. 30. Goncalves, R. V.; Wojcieszak, R.; Wender, H.; Dias, C. S. B.; Vono, L. L. R.; Eberhardt, D.; Teixeira, S. R..Rossi, L. M. Easy Access to Metallic Copper Nanoparticles with High Activity and Stability for CO Oxidation. Acs Appl Mater Inter 2015, 7, 7987-7994. 31. Song, J.; Rodenbough, P. P.; Xu, W. Q.; Senanayake, S. D..Chana, S. W. Reduction of Nano-Cu2O: Crystallite Size Dependent and the Effect of Nano-Ceria Support. J Phys Chem C 2015, 119, 17667-17672. 32. Chen, G. Z.; Xu, Q. H.; Yang, Y.; Li, C. C.; Huang, T. Z.; Sun, G. X.; Zhang, S. X.; Ma, D. L..Li, X. Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation. Acs Appl Mater Inter 2015, 7, 23538-23544. 33. Binder, A. J.; Toops, T. J.; Unocic, R. R.; Parks, J. E..Dai, S. Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition. Angew Chem Int Edit 2015, 54, 13263-13267. 34. Zeng, S. H.; Wang, Y.; Ding, S. P.; Sattler, J. J. H. B.; Borodina, E.; Zhang, L.; Weckhuysen, B. M..Su, H. Q. Active Sites over CuO/CeO2 and Inverse CeO2/CuO Catalysts for Preferential CO Oxidation. J Power Sources 2014, 256, 301-311. 35. Chiang, C. Y.; Shin, Y.; Aroh, K..Ehrman, S. Copper Oxide Photocathodes Prepared by a Solution Based Process. Int J Hydrogen Energ 2012, 37, 8232-8239. 36. Jian, G.; Piekiel, N. W..Zachariah, M. R. Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study. J Phys Chem C 2012, 116, 26881-26887. 37. Jian, G. Q.; Liu, L..Zachariah, M. R. Facile Aerosol Route to Hollow CuO Spheres and Its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators. Adv Funct Mater 2013, 23, 1341-1346. 38. Jian, G. Q.; Zhou, L.; Piekiel, N. W..Zachariah, M. R. Low Effective Activation Energies for Oxygen Release from Metal Oxides: Evidence for Mass-Transfer Limits at High Heating Rates. Chemphyschem 2014, 15, 1666-1672. 39. Sullivan, K. T.; Kuntz, J. D..Gash, A. E. The Role of Fuel Particle Size on Flame Propagation Velocity in Thermites with a Nanoscale Oxidizer. Propell Explos Pyrot 2014, 39, 407-415. 40. Chen, S. Q.; Li, L. P.; Hu, W. B.; Huang, X. S.; Li, Q.; Xu, Y. S.; Zuo, Y..Li, G. S. Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO2-X/Cu toward Enhanced Activity for Preferential CO Oxidation. Acs Appl Mater Inter 2015, 7, 22999-23007. 41. Ungureanu, A.; Dragoi, B.; Chirieac, A.; Ciotonea, C.; Royer, S.; Duprez, D.; Mamede, A. S..Dumitriu, E. Composition-Dependent Morphostructural Properties of Ni-Cu Oxide Nanoparticles Confined within the Channels of Ordered Mesoporous Sba-15 Silica. Acs Appl Mater Inter 2013, 5, 3010-3025. 42. Lanthony, C.; Guiltat, M.; Ducere, J. M.; Verdier, A.; Hemeryck, A.; Djafari-Rouhani, M.; Rossi, C.; Chabal, Y. J..Esteve, A. Elementary Surface Chemistry During CuO/Al Nanolaminate-Thermite Synthesis: Copper and Oxygen Deposition on Aluminum (111) Surfaces. Acs Appl Mater Inter 2014, 6, 15086-15097. 43. Li, X. Y.; Guerieri, P.; Zhou, W. B.; Huang, C..Zachariah, M. R. Direct Deposit Laminate Nanocomposites with Enhanced Propellent Properties. Acs Appl Mater Inter 2015, 7, 9103-9109. 44. Yao, S. Y.; Xu, W. Q.; Johnston-Peck, A. C.; Zhao, F. Z.; Liu, Z. Y.; Luo, S.; Senanayake, S. D.; Martinez-Arias, A.; Liu, W. J..Rodriguez, J. A. Morphological Effects of the Nanostructured Ceria Support on the Activity and Stability of CuO/CeO2 Catalysts for the Water-Gas Shift Reaction. Phys Chem Chem Phys 2014, 16, 17183-17195. 45. Barrio, L.; Estrella, M.; Zhou, G.; Wen, W.; Hanson, J. C.; Hungria, A. B.; Hornes, A.; Fernandez-Garcia, M.; Martinez-Arias, A..Rodriguez, J. A. Unraveling the Active Site in Copper-Ceria Systems for the Water-Gas Shift Reaction: In Situ Characterization of an Inverse Powder CeO2-X/CuO-Cu Catalyst. J Phys Chem C 2010, 114, 3580-3587. 46. Jiang, X. Y.; Lou, L. P.; Chen, Y. X..Zheng, X. M. Effects of CuO/CeO2 and CuO/Gamma-Al2O3 Catalysts on NO Plus CO Reaction. J Mol Catal a-Chem 2003, 197, 193-205. 47. Huang, T. J..Wu, C. Y. Kinetic Behaviors of High Concentration NOx Removal from Simulated Lean-Burn Engine Exhaust Via Electrochemical-Catalytic Cells. Chem Eng J 2011, 178, 225-231. 48. Huang, T. J.; Wu, C. Y.; Hsu, S. H..Wu, C. C. Electrochemical-Catalytic Conversion for Simultaneous NOx and Hydrocarbons Emissions Control of Lean-Burn Gasoline Engine. Appl Catal B-Environ 2011, 110, 164-170. 49. Huang, T. J.; Chiang, D. Y.; Shih, C.; Lee, C. C.; Mao, C. W..Wang, B. C. Promoted Decomposition of NOx in Automotive Diesel-Like Exhausts by Electro-Catalytic Honeycombs. Environ Sci Technol 2015, 49, 3711-3717. 50. Boissiere, C.; Grosso, D.; Chaumonnot, A.; Nicole, L..Sanchez, C. Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials. Adv Mater 2011, 23, 599-623. 51. Prakash, A.; McCormick, A. V..Zachariah, M. R. Tuning the Reactivity of Energetic Nanoparticles by Creation of a Core-Shell Nanostructure. Nano Lett 2005, 5, 1357-1360. 52. Pati, R. K.; Lee, I. C.; Hou, S. C.; Akhuemonkhan, O.; Gaskell, K. J.; Wang, Q.; Frenkel, A. I.; Chu, D.; Salamanca-Riba, L. G..Ehrman, S. H. Flame Synthesis of Nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O Catalysts for the Water-Gas Shift (WGS) Reaction. Acs Appl Mater Inter 2009, 1, 2624-2635. 53. Avgouropoulos, G..Ioannides, T. Selective CO Oxidation over CuO-CeO2 Catalysts Prepared Via the Urea-Nitrate Combustion Method. Appl Catal a-Gen 2003, 244, 155-167. 54. Guo, M. Y.; Liu, F. Z.; Tsui, J.; Voskanyan, A. A.; Ng, A. M. C.; Djurisic, A. B.; Chan, W. K.; Chan, K. Y.; Liao, C. Z.; Shih, K. M..Surya, C. Hydrothermally Synthesized CuxO as a Catalyst for CO Oxidation. J Mater Chem A 2015, 3, 3627-3632. 55. Dow, W. P.; Wang, Y. P..Huang, T. J. Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst .1. Effect of Oxygen Vacancy of Support on Copper Oxide Reduction. J Catal 1996, 160, 155-170. 56. Tsai, D. H..Huang, T. J. Activity Behavior of Samaria-Doped Ceria-Supported Copper Oxide Catalyst and Effect of Heat Treatments of Support on Carbon Monoxide Oxidation. Appl Catal a-Gen 2002, 223, 1-9. 57. Wang, J. B.; Lin, S. C..Huang, T. J. Selective CO Oxidation in Rich Hydrogen over CuO/Samaria-Doped Ceria. Appl Catal a-Gen 2002, 232, 107-120. 58. Wang, J. B.; Tsai, D. H..Huang, T. J. Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-Doped Ceria. J Catal 2002, 208, 370-380. 59. Huang, T. J..Tsai, D. H. CO Oxidation Behavior of Copper and Copper Oxides. Catal Lett 2003, 87, 173-178. 60. Severino, F.; Brito, J. L.; Laine, J.; Fierro, J. L. G..Agudo, A. L. Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4 and CuCr2O4 Spinel Type Catalysts. J Catal 1998, 177, 82-95. 61. Kaufman, S. L. Electrospray Diagnostics Performed by Using Sucrose and Proteins in the Gas-Phase Electrophoretic Mobility Molecular Analyzer (Gemma). Anal Chim Acta 2000, 406, 3-10. 62. Tai, J. T.; Lai, Y. C.; Yang, J. H.; Ho, H. C.; Wang, H. F.; Ho, R. M..Tsai, D. H. Quantifying Nanosheet Graphene Oxide Using Electrospray-Differential Mobility Analysis. Anal Chem 2015, 87, 3884-3889. 63. Tai, J. T.; Lai, C. S.; Ho, H. C.; Yeh, Y. S.; Wang, H. F.; Ho, R. M..Tsai, D. H. Protein Silver Nanoparticle Interactions to Colloidal Stability in Acidic Environments. Langmuir 2014, 30, 12755-12764. 64. Jian, G. Q.; Chowdhury, S.; Sullivan, K..Zachariah, M. R. Nanothermite Reactions: Is Gas Phase Oxygen Generation from the Oxygen Carrier an Essential Prerequisite to Ignition? Combust Flame 2013, 160, 432-437. 65. Luo, M. F.; Fang, P.; He, M..Xie, Y. L. In Situ XRD, Raman, and TPR Studies of CuO/Al2O3 Catalysts for CO Oxidation. J Mol Catal a-Chem 2005, 239, 243-248. 66. Jorda, J. L..Cohenadad, M. T. S. Phase-Relations and Electrical Conductivities in the Nd-Ce-Cu-O System. J Less-Common Met 1991, 171, 127-147. 67. Susnitzky, D. W..Carter, C. B. The Formation of Copper Aluminate by Solid-State Reaction. J Mater Res 1991, 6, 1958-1963. 68. Jia, A. P.; Jiang, S. Y.; Lu, J. Q..Luo, M. F. Study of Catalytic Activity at the CuO-CeO2 Interface for CO Oxidation. J Phys Chem C 2010, 114, 21605-21610. 69. Patel, A.; Shukla, P.; Chen, J. L.; Rufford, T. E.; Wang, S. B.; Rudolph, V..Zhu, Z. H. Structural Sensitivity of Mesoporous Alumina for Copper Catalyst Loading Used for NO Reduction in Presence of CO. Chem Eng Res Des 2015, 101, 27-43. 70. Dow, W. P.; Wang, Y. P..Huang, T. J. TPR and XRD Studies of Yttria-Doped Ceria/Gamma-Alumina-Supported Copper Oxide Catalyst. Appl Catal a-Gen 2000, 190, 25-34. 71. Desyatykh, I. V.; Vedyagin, A. A.; Mishakov, I. V..Shubin, Y. V. CO Oxidation over Fiberglasses with Doped Cu-Ce-O Catalytic Layer Prepared by Surface Combustion Synthesis. Appl Surf Sci 2015, 349, 21-26. 72. Guo, X. L.; Li, J..Zhou, R. X. Catalytic Performance of Manganese Doped CuO-CeO2 Catalysts for Selective Oxidation of CO in Hydrogen-Rich Gas. Fuel 2016, 163, 56-64.
|