帳號:guest(3.133.108.48)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李富正
作者(外文):Lee, Fu Cheng
論文名稱(中文):氧化銅-複合奈米粒子之氣相合成機制探討於催化一氧化碳氧化反應之應用
論文名稱(外文):Mechanistic Study of Gas-Phase Controlled Synthesis of Copper Oxide-Based Hybrid Nanoparticle for CO Oxidation
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De Hao
口試委員(中文):何榮銘
呂世源
汪上曉
口試委員(外文):Ho, Rong Ming
Lu, Shih Yuan
Wong, Shan Hill
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032551
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:63
中文關鍵詞:氧化銅一氧化碳催化複合式奈米粒子
外文關鍵詞:Copper oxidecatalysthybrid nanoparticleaerosol
相關次數:
  • 推薦推薦:0
  • 點閱點閱:306
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
近年來奈米材料在能源領域方面的應用是一個具有潛力的主題,例如應用在改善觸媒效能或是作為燃料的添加物等等。本實驗主要研究為建立一套氣溶膠式鍛燒合成系統,利用此系統於氣相中製備出以氧化銅為基底的複合式奈米粒子,並應用於催化一氧化碳之氧化反應。此合成方法無須受限於溶劑的使用,可搭配即時粒徑分析技術DMA以及後端分析方法鑑定其物理性質,並可進一步推論出粒子在系統中生成與反應的機制。結果顯示,合成之粒子含有高反應性與高穩定度,且可以藉由挑選適合的組成或溫度來控制粒徑大小、晶徑大小和化學組成等性質。氧化銅的晶徑大小對CO還原性及後續的催化能力具有顯著的影響。添加CeO2擔體後,在Cu-Ce-O界面間會誘發形成新的活性部位,進而增強氧化銅的還原能力與催化效果;反之,混摻Al2O3則會因形成尖晶石結構而導致催化能力下降。本實驗所建立之合成系統可以被應用於製造其他類型的功能性奈米觸媒(例如能源和環境奈米觸媒),且可良好調控其物質性質,進而達到改善觸媒之品質。
We report a systematic study of gas-phase controlled synthesis of copper oxides-based hybrid nanoparticles for catalytic CO oxidation. The complementary physical, spectroscopic and microscopic analyses were conducted to obtain a better understanding of the material properties, including particle size, crystallinity, elemental composition, and oxidation state. Results showed that the synthesized nanoparticles exhibited highly durable catalytic activity and stability, also the particle size, crystallite size, and chemical composition were tunable by choosing suitable chemical compositions of precursors and temperatures. The crystallite size of CuO influenced the reducibility of CuO by CO and the subsequent catalytic activity of CO oxidation. The hybridization process of CeO2 and CuO induces the formation of new active sites at the Cu-Ce-O interface, which enhances reproducibility of CuO and the catalytic activity. However, the reproducibility of CuO and catalytic activity were considerably decreased when CeO2 was replaced with the inert Al2O3. This work describes a prototype method to form highly pure and well-controlled hybrid nanocatalysts, which can be used to establish the correlation of material properties versus reducibility and subsequent catalytic activity for energy and environmental applications.
摘要…………………………………………………………………………………I
目錄…………………………………………………………………………………III
圖目錄………………………………………………………………………………V
表目錄……………………………………………………………………………VII
第一章 緒論………………………………………………………………………1
1.1 功能性奈米材料…………………………………………………………1
1.2 奈米粒子合成方法………………………………………………………6
1.3 氣溶膠合成法…………………………………………………………10
1.4 化學迴圈燃燒技術……………………………………………………15
1.5 氧化銅材料……………………………………………………………17
1.6 研究目的………………………………………………………………19
第二章 實驗方法………………………………………………………………21
2.1 實驗藥品………………………………………………………………21
2.2 氣霧化奈米粒子之合成………………………………………………21
2.3 氣相奈米粒子流動分析儀(DMA)……………………………………26
2.4 熱重量分析儀(TGA)…………………………………………………26
2.5 X光繞射儀(XRD)……………………………………………………27
2.6 X射線光電子能譜儀(XPS)……………………………………………27
2.7 掃描式電子顯微鏡(SEM)……………………………………………27
2.8 穿透式電子顯微鏡(TEM & HRTEM)…………………………………29
2.9 程溫還原(CO-TPR)……………………………………………………29
2.10 催化效果測定……………………………………………………… 30
第三章 結果與討論……………………………………………………………31
3.1 CuxO奈米粒子的物質性質……………………………………………31
3.1.1 操作溫度對CuxO粒子的影響……………………………32
3.1.2 前驅物濃度對CuxO粒子之影響…………………………36
3.2 CuCeOx-NP與CuAlOx-NP的物質性質…………………………… 40
3.3 觸媒性質測試…………………………………………………………49
3.3.1 CO程溫還原與活性測試…………………………………50
3.3.2 觸媒於催化反應之穩定性測試…………………………54
3.3.3 觸媒反應機構……………………………………………55
第四章 結論與未來發展………………………………………………………57
參考文獻……………………………………………………………………………59

1. Lohse, S. E..Murphy, C. J. Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy. J Am Chem Soc 2012, 134, 15607-15620.
2. Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J..Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem Soc Rev 2011, 40, 3941-3994.
3. Klaine, S. J.; Alvarez, P. J. J.; Batley, G. E.; Fernandes, T. F.; Handy, R. D.; Lyon, D. Y.; Mahendra, S.; McLaughlin, M. J..Lead, J. R. Nanomaterials in the Environment: Behavior, Fate, Bioavailability, and Effects. Environ Toxicol Chem 2008, 27, 1825-1851.
4. Link, S..El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J Phys Chem B 1999, 103, 8410-8426.
5. Li, C. Y.; Ma, C.; Wang, F.; Xi, Z. J.; Wang, Z. F.; Deng, Y..He, N. Y. Preparation and Biomedical Applications of Core-Shell Silica/Magnetic Nanoparticle Composites. J Nanosci Nanotechno 2012, 12, 2964-2972.
6. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T..Dawson, K. A. Nanoparticle Size and Surface Properties Determine the Protein Corona with Possible Implications for Biological Impacts. P Natl Acad Sci USA 2008, 105, 14265-14270.
7. Che, G. L.; Lakshmi, B. B.; Martin, C. R..Fisher, E. R. Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production. Langmuir 1999, 15, 750-758.
8. Yetter, R. A.; Risha, G. A..Son, S. F. Metal Particle Combustion and Nanotechnology. P Combust Inst 2009, 32, 1819-1838.
9. Dreizin, E. L. Metal-Based Reactive Nanomaterials. Prog Energ Combust 2009, 35, 141-167.
10. Huczko, A. Template-Based Synthesis of Nanomaterials. Appl Phys a-Mater 2000, 70, 365-376.
11. Dick, K. A.; Deppert, K.; Larsson, M. W.; Martensson, T.; Seifert, W.; Wallenberg, L. R..Samuelson, L. Synthesis of Branched 'Nanotrees' by Controlled Seeding of Multiple Branching Events. Nat Mater 2004, 3, 380-384.
12. Singh, D. P.; Ojha, A. K..Srivastava, O. N. Synthesis of Different Cu(OH)2 and CuO (Nanowires, Rectangles, Seed-, Belt-, and Sheetlike) Nanostructures by Simple Wet Chemical Route. J Phys Chem C 2009, 113, 3409-3418.
13. Okuyama, K..Lenggoro, I. W. Preparation of Nanoparticles Via Spray Route. Chem Eng Sci 2003, 58, 537-547.
14. Firmansyah, D. A.; Kim, S. G.; Lee, K. S.; Zahaf, R.; Kim, Y. H..Lee, D. Microstructure-Controlled Aerosol-Gel Synthesis of ZnO Quantum Dots Dispersed in SiO2 Nanospheres. Langmuir 2012, 28, 2890-2896.
15. Jung, D. S.; Bin Park, S..Kang, Y. C. Design of Particles by Spray Pyrolysis and Recent Progress in Its Application. Korean J Chem Eng 2010, 27, 1621-1645.
16. Peterson, A. K.; Morgan, D. G..Skrabalak, S. E. Aerosol Synthesis of Porous Particles Using Simple Salts as a Pore Template. Langmuir 2010, 26, 8804-8809.
17. Chang, H..Jang, H. D. Controlled Synthesis of Porous Particles Via Aerosol Processing and Their Applications. Adv Powder Technol 2014, 25, 32-42.
18. Nandiyanto, A. B. D..Okuyama, K. Progress in Developing Spray-Drying Methods for the Production of Controlled Morphology Particles: From the Nanometer to Submicrometer Size Ranges. Adv Powder Technol 2011, 22, 1-19.
19. Mattisson, T.; Jardnas, A..Lyngfelt, A. Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen-Application for Chemical-Looping Combustion. Energ Fuel 2003, 17, 643-651.
20. Dennis, J. S..Scott, S. A. In Situ Gasification of a Lignite Coal and CO2 Separation Using Chemical Looping with a Cu-Based Oxygen Carrier. Fuel 2010, 89, 1623-1640.
21. de Diego, L. F.; Gayan, P.; Garcia-Labiano, F.; Celaya, J.; Abad, M..Adanez, J. Impregnated CuO/Al2O3 Oxygen Carriers for Chemical-Looping Combustion: Avoiding Fluidized Bed Agglomeration. Energ Fuel 2005, 19, 1850-1856.
22. Abad, A.; Mattisson, T.; Lyngfelt, A..Ryden, M. Chemical-Looping Combustion in a 300 W Continuously Operating Reactor System Using a Manganese-Based Oxygen Carrier. Fuel 2006, 85, 1174-1185.
23. Cho, P.; Mattisson, T..Lyngfelt, A. Comparison of Iron-, Nickel-, Copper- and Manganese-Based Oxygen Carriers for Chemical-Looping Combustion. Fuel 2004, 83, 1215-1225.
24. Chuang, S. Y.; Dennis, J. S.; Hayhurst, A. N..Scott, S. A. Development and Performance of Cu-Based Oxygen Carriers for Chemical-Looping Combustion. Combust Flame 2008, 154, 109-121.
25. Huang, T. J.; Mao, C. W.; Lee, C. C.; Chiang, D. Y.; Shih, C.; Wang, B. C.; Lee, S. Y..Wong, D. S. H. Sulfur Dioxide Removal from Oxygen-Rich Exhausts by Promoted Decomposition. Chem Eng J 2016, 284, 431-437.
26. Wang, Z. H.; Li, R..Chen, Q. W. Enhanced Activity of CuCeO Catalysts for CO Oxidation: Influence of Cu2O and the Dispersion of Cu2O, CuO, and CeO2. Chemphyschem 2015, 16, 2415-2423.
27. Shi, J. L. On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts. Chem Rev 2013, 113, 2139-2181.
28. Yoshida, H.; Yamashita, N.; Ijichi, S.; Okabe, Y.; Misumi, S.; Hinokuma, S..Machida, M. A Thermally Stable Cr-Cu Nanostructure Embedded in the CeO2 Surface as a Substitute for Platinum-Group Metal Catalysts. Acs Catal 2015, 5, 6738-6747.
29. Wang, W. N.; Wu, F.; Myung, Y.; Niedzwiedzki, D. M.; Im, H. S.; Park, J.; Banerjee, P..Biswas, P. Surface Engineered CuO Nanowires with ZnO Islands for CO2 Photoreduction. Acs Appl Mater Inter 2015, 7, 5685-5692.
30. Goncalves, R. V.; Wojcieszak, R.; Wender, H.; Dias, C. S. B.; Vono, L. L. R.; Eberhardt, D.; Teixeira, S. R..Rossi, L. M. Easy Access to Metallic Copper Nanoparticles with High Activity and Stability for CO Oxidation. Acs Appl Mater Inter 2015, 7, 7987-7994.
31. Song, J.; Rodenbough, P. P.; Xu, W. Q.; Senanayake, S. D..Chana, S. W. Reduction of Nano-Cu2O: Crystallite Size Dependent and the Effect of Nano-Ceria Support. J Phys Chem C 2015, 119, 17667-17672.
32. Chen, G. Z.; Xu, Q. H.; Yang, Y.; Li, C. C.; Huang, T. Z.; Sun, G. X.; Zhang, S. X.; Ma, D. L..Li, X. Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation. Acs Appl Mater Inter 2015, 7, 23538-23544.
33. Binder, A. J.; Toops, T. J.; Unocic, R. R.; Parks, J. E..Dai, S. Low-Temperature CO Oxidation over a Ternary Oxide Catalyst with High Resistance to Hydrocarbon Inhibition. Angew Chem Int Edit 2015, 54, 13263-13267.
34. Zeng, S. H.; Wang, Y.; Ding, S. P.; Sattler, J. J. H. B.; Borodina, E.; Zhang, L.; Weckhuysen, B. M..Su, H. Q. Active Sites over CuO/CeO2 and Inverse CeO2/CuO Catalysts for Preferential CO Oxidation. J Power Sources 2014, 256, 301-311.
35. Chiang, C. Y.; Shin, Y.; Aroh, K..Ehrman, S. Copper Oxide Photocathodes Prepared by a Solution Based Process. Int J Hydrogen Energ 2012, 37, 8232-8239.
36. Jian, G.; Piekiel, N. W..Zachariah, M. R. Time-Resolved Mass Spectrometry of Nano-Al and Nano-Al/CuO Thermite under Rapid Heating: A Mechanistic Study. J Phys Chem C 2012, 116, 26881-26887.
37. Jian, G. Q.; Liu, L..Zachariah, M. R. Facile Aerosol Route to Hollow CuO Spheres and Its Superior Performance as an Oxidizer in Nanoenergetic Gas Generators. Adv Funct Mater 2013, 23, 1341-1346.
38. Jian, G. Q.; Zhou, L.; Piekiel, N. W..Zachariah, M. R. Low Effective Activation Energies for Oxygen Release from Metal Oxides: Evidence for Mass-Transfer Limits at High Heating Rates. Chemphyschem 2014, 15, 1666-1672.
39. Sullivan, K. T.; Kuntz, J. D..Gash, A. E. The Role of Fuel Particle Size on Flame Propagation Velocity in Thermites with a Nanoscale Oxidizer. Propell Explos Pyrot 2014, 39, 407-415.
40. Chen, S. Q.; Li, L. P.; Hu, W. B.; Huang, X. S.; Li, Q.; Xu, Y. S.; Zuo, Y..Li, G. S. Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO2-X/Cu toward Enhanced Activity for Preferential CO Oxidation. Acs Appl Mater Inter 2015, 7, 22999-23007.
41. Ungureanu, A.; Dragoi, B.; Chirieac, A.; Ciotonea, C.; Royer, S.; Duprez, D.; Mamede, A. S..Dumitriu, E. Composition-Dependent Morphostructural Properties of Ni-Cu Oxide Nanoparticles Confined within the Channels of Ordered Mesoporous Sba-15 Silica. Acs Appl Mater Inter 2013, 5, 3010-3025.
42. Lanthony, C.; Guiltat, M.; Ducere, J. M.; Verdier, A.; Hemeryck, A.; Djafari-Rouhani, M.; Rossi, C.; Chabal, Y. J..Esteve, A. Elementary Surface Chemistry During CuO/Al Nanolaminate-Thermite Synthesis: Copper and Oxygen Deposition on Aluminum (111) Surfaces. Acs Appl Mater Inter 2014, 6, 15086-15097.
43. Li, X. Y.; Guerieri, P.; Zhou, W. B.; Huang, C..Zachariah, M. R. Direct Deposit Laminate Nanocomposites with Enhanced Propellent Properties. Acs Appl Mater Inter 2015, 7, 9103-9109.
44. Yao, S. Y.; Xu, W. Q.; Johnston-Peck, A. C.; Zhao, F. Z.; Liu, Z. Y.; Luo, S.; Senanayake, S. D.; Martinez-Arias, A.; Liu, W. J..Rodriguez, J. A. Morphological Effects of the Nanostructured Ceria Support on the Activity and Stability of CuO/CeO2 Catalysts for the Water-Gas Shift Reaction. Phys Chem Chem Phys 2014, 16, 17183-17195.
45. Barrio, L.; Estrella, M.; Zhou, G.; Wen, W.; Hanson, J. C.; Hungria, A. B.; Hornes, A.; Fernandez-Garcia, M.; Martinez-Arias, A..Rodriguez, J. A. Unraveling the Active Site in Copper-Ceria Systems for the Water-Gas Shift Reaction: In Situ Characterization of an Inverse Powder CeO2-X/CuO-Cu Catalyst. J Phys Chem C 2010, 114, 3580-3587.
46. Jiang, X. Y.; Lou, L. P.; Chen, Y. X..Zheng, X. M. Effects of CuO/CeO2 and CuO/Gamma-Al2O3 Catalysts on NO Plus CO Reaction. J Mol Catal a-Chem 2003, 197, 193-205.
47. Huang, T. J..Wu, C. Y. Kinetic Behaviors of High Concentration NOx Removal from Simulated Lean-Burn Engine Exhaust Via Electrochemical-Catalytic Cells. Chem Eng J 2011, 178, 225-231.
48. Huang, T. J.; Wu, C. Y.; Hsu, S. H..Wu, C. C. Electrochemical-Catalytic Conversion for Simultaneous NOx and Hydrocarbons Emissions Control of Lean-Burn Gasoline Engine. Appl Catal B-Environ 2011, 110, 164-170.
49. Huang, T. J.; Chiang, D. Y.; Shih, C.; Lee, C. C.; Mao, C. W..Wang, B. C. Promoted Decomposition of NOx in Automotive Diesel-Like Exhausts by Electro-Catalytic Honeycombs. Environ Sci Technol 2015, 49, 3711-3717.
50. Boissiere, C.; Grosso, D.; Chaumonnot, A.; Nicole, L..Sanchez, C. Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials. Adv Mater 2011, 23, 599-623.
51. Prakash, A.; McCormick, A. V..Zachariah, M. R. Tuning the Reactivity of Energetic Nanoparticles by Creation of a Core-Shell Nanostructure. Nano Lett 2005, 5, 1357-1360.
52. Pati, R. K.; Lee, I. C.; Hou, S. C.; Akhuemonkhan, O.; Gaskell, K. J.; Wang, Q.; Frenkel, A. I.; Chu, D.; Salamanca-Riba, L. G..Ehrman, S. H. Flame Synthesis of Nanosized Cu-Ce-O, Ni-Ce-O, and Fe-Ce-O Catalysts for the Water-Gas Shift (WGS) Reaction. Acs Appl Mater Inter 2009, 1, 2624-2635.
53. Avgouropoulos, G..Ioannides, T. Selective CO Oxidation over CuO-CeO2 Catalysts Prepared Via the Urea-Nitrate Combustion Method. Appl Catal a-Gen 2003, 244, 155-167.
54. Guo, M. Y.; Liu, F. Z.; Tsui, J.; Voskanyan, A. A.; Ng, A. M. C.; Djurisic, A. B.; Chan, W. K.; Chan, K. Y.; Liao, C. Z.; Shih, K. M..Surya, C. Hydrothermally Synthesized CuxO as a Catalyst for CO Oxidation. J Mater Chem A 2015, 3, 3627-3632.
55. Dow, W. P.; Wang, Y. P..Huang, T. J. Yttria-Stabilized Zirconia Supported Copper Oxide Catalyst .1. Effect of Oxygen Vacancy of Support on Copper Oxide Reduction. J Catal 1996, 160, 155-170.
56. Tsai, D. H..Huang, T. J. Activity Behavior of Samaria-Doped Ceria-Supported Copper Oxide Catalyst and Effect of Heat Treatments of Support on Carbon Monoxide Oxidation. Appl Catal a-Gen 2002, 223, 1-9.
57. Wang, J. B.; Lin, S. C..Huang, T. J. Selective CO Oxidation in Rich Hydrogen over CuO/Samaria-Doped Ceria. Appl Catal a-Gen 2002, 232, 107-120.
58. Wang, J. B.; Tsai, D. H..Huang, T. J. Synergistic Catalysis of Carbon Monoxide Oxidation over Copper Oxide Supported on Samaria-Doped Ceria. J Catal 2002, 208, 370-380.
59. Huang, T. J..Tsai, D. H. CO Oxidation Behavior of Copper and Copper Oxides. Catal Lett 2003, 87, 173-178.
60. Severino, F.; Brito, J. L.; Laine, J.; Fierro, J. L. G..Agudo, A. L. Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl2O4 and CuCr2O4 Spinel Type Catalysts. J Catal 1998, 177, 82-95.
61. Kaufman, S. L. Electrospray Diagnostics Performed by Using Sucrose and Proteins in the Gas-Phase Electrophoretic Mobility Molecular Analyzer (Gemma). Anal Chim Acta 2000, 406, 3-10.
62. Tai, J. T.; Lai, Y. C.; Yang, J. H.; Ho, H. C.; Wang, H. F.; Ho, R. M..Tsai, D. H. Quantifying Nanosheet Graphene Oxide Using Electrospray-Differential Mobility Analysis. Anal Chem 2015, 87, 3884-3889.
63. Tai, J. T.; Lai, C. S.; Ho, H. C.; Yeh, Y. S.; Wang, H. F.; Ho, R. M..Tsai, D. H. Protein Silver Nanoparticle Interactions to Colloidal Stability in Acidic Environments. Langmuir 2014, 30, 12755-12764.
64. Jian, G. Q.; Chowdhury, S.; Sullivan, K..Zachariah, M. R. Nanothermite Reactions: Is Gas Phase Oxygen Generation from the Oxygen Carrier an Essential Prerequisite to Ignition? Combust Flame 2013, 160, 432-437.
65. Luo, M. F.; Fang, P.; He, M..Xie, Y. L. In Situ XRD, Raman, and TPR Studies of CuO/Al2O3 Catalysts for CO Oxidation. J Mol Catal a-Chem 2005, 239, 243-248.
66. Jorda, J. L..Cohenadad, M. T. S. Phase-Relations and Electrical Conductivities in the Nd-Ce-Cu-O System. J Less-Common Met 1991, 171, 127-147.
67. Susnitzky, D. W..Carter, C. B. The Formation of Copper Aluminate by Solid-State Reaction. J Mater Res 1991, 6, 1958-1963.
68. Jia, A. P.; Jiang, S. Y.; Lu, J. Q..Luo, M. F. Study of Catalytic Activity at the CuO-CeO2 Interface for CO Oxidation. J Phys Chem C 2010, 114, 21605-21610.
69. Patel, A.; Shukla, P.; Chen, J. L.; Rufford, T. E.; Wang, S. B.; Rudolph, V..Zhu, Z. H. Structural Sensitivity of Mesoporous Alumina for Copper Catalyst Loading Used for NO Reduction in Presence of CO. Chem Eng Res Des 2015, 101, 27-43.
70. Dow, W. P.; Wang, Y. P..Huang, T. J. TPR and XRD Studies of Yttria-Doped Ceria/Gamma-Alumina-Supported Copper Oxide Catalyst. Appl Catal a-Gen 2000, 190, 25-34.
71. Desyatykh, I. V.; Vedyagin, A. A.; Mishakov, I. V..Shubin, Y. V. CO Oxidation over Fiberglasses with Doped Cu-Ce-O Catalytic Layer Prepared by Surface Combustion Synthesis. Appl Surf Sci 2015, 349, 21-26.
72. Guo, X. L.; Li, J..Zhou, R. X. Catalytic Performance of Manganese Doped CuO-CeO2 Catalysts for Selective Oxidation of CO in Hydrogen-Rich Gas. Fuel 2016, 163, 56-64.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *