帳號:guest(3.144.172.200)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴彥志
作者(外文):Lai, Yen Chih
論文名稱(中文):氣相電場分析與探討膠體非球型奈米材料與其表面化學之影響
論文名稱(外文):Understanding Surface Chemistry of Nonspherical Nanomaterials using Gas-phase Ion-mobility Analysis
指導教授(中文):蔡德豪
指導教授(外文):Tsai, De Hao
口試委員(中文):張高碩
何榮銘
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032543
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:非球型奈米材料粒徑尺寸穩定性膠體材料
外文關鍵詞:nonsphericalnanomaterialsizestabilitycolloid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:197
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
我們提出了一套氣相電場分離方法,來鑑定奈米氧化石墨烯(Graphene oxide)、孔性金屬-有機配位聚合物(Metal-organic frameworks)和陶瓷奈米材料(Ceramic nanoparticle)膠體懸浮液。在我們的研究中,電噴灑式氣相奈米粒徑分析儀(electrospray-differential mobility analysis,ES-DMA)除了能用來取得膠體奈米材料的數量濃度與物理尺寸的資訊外,其亦能用於分析粒子的解體(de-aggregation)與解聚(dis-assembly)現象之可逆過程、及配體-奈米粒子間交互作用對其膠體穩定性的影響。同時,TEM與SEM亦被我們用於觀察這些非球型奈米粒子的影像資訊,並對ES-DMA的結果予以佐證。結果顯示解聚、解體與聚集(aggregation)現象的發生與奈米材料的表面電位(zeta potential)和等電點(isoelectric point)、所使用配體的酸解離常數(pKa)和環境的酸鹼值有強烈的關聯性。透過調整這些影響因素,我們就能控制其粒徑大小與分佈區間。因此,這個方法能成功地對這些非球型奈米粒子進行定量分析,並期許它能提供液相配方化學合成和氣溶膠科學的研究一個前進未來的方向與動力。
We report a state-of-the-art gas-phase electrophoresis method for the characterization of nanosheet graphene oxide, metal-organic frameworks (MOF), and ceramic nanoparticle aggregates in the form of nanomaterial suspension. In this study, electrospray-differential mobility analysis (ES-DMA) is used to quantify number concentration and dimensional properties, analyze the reversibly dis-assembly and de-aggregation processes and ligand-nanoparticle interactions to colloidal stability of nanomaterial. Transmission electron microscopy and scanning electron microscopy are employed orthogonally to provide complementary data and imagery of nanomaterial. Results show that the equivalent mobility sizes, size distributions, and number concentrations of these functional nanomaterials are able to be successfully measured by ES-DMA. Aggregation, de-aggregation, and dis-assembly processes of nanomaterial colloids are strongly correlated to the zeta potential and isoelectric point of nanomaterials, dissociation constant of the functional ligands, and the pH in the environment, providing an effective route to control the primary size as well as the size homogeneity. This prototype study demonstrates a proof of concept of using ES-DMA to quantitatively characterize nonspherical functional nanomaterials. The results provide beneficial guidelines for the aqueous formulation chemistry of nanomaterial-based platforms (e.g., metalation in MOF) and the subsequent electrospray-assisted device integration.
誌謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 IX
第 1 章 緒論 1
1-1 分散式非球型奈米材料之簡介 1
1-2 非球型奈米材料之簡介 2
1-2.1 氧化石墨烯(Graphene Oxide,GO) 2
1-2.2 孔性金屬-有機配位聚合物(Metal-organic framework,MOF) 3
1-2.3 奈米陶瓷材料-二氧化矽(SiO2)、二氧化鈦(TiO2)與二氧化鈰(CeO2)與配體(ligands) 4
1-3 非球型奈米材料在當今所遇到之困難與挑戰 5
1-3.1 奈米級氧化石墨烯(N-GOs)之物理性質與其應用性之關聯 5
1-3.2 孔性金屬-有機配位聚合物(MOF)之鑑定方法與穩定性之影響 7
1-3.3 奈米陶瓷材料與配體之交互作用與其對環境健康安全之影響 9
1-4 研究方法與目的 10
第 2 章 實驗方法 12
2-1 實驗藥品 12
2-2 樣品準備方式 13
2-2.1 N-GOs膠體溶液樣品製備方式 13
2-2.2 MOF-525膠體溶液樣品製備方式 14
2-2.3 TiO2、SiO2和CeO2膠體樣品與配體參雜樣品之製備方式 15
2-3 實驗儀器 16
2-4 實驗儀器原理及方法 17
2-4.1 電噴灑式氣相奈米粒子流動分析儀 17
2-4.2 穿透式電子顯微鏡(TEM)與掃描式電子顯微鏡(SEM) 20
第 3 章 結果與討論 22
3-1 N-GOs在ES-DMA系統下之表現 22
3-1.1 N-GOs的流動粒徑分布圖 22
3-1.2 數量濃度、過濾對N-GOs的穩定性影響 24
3-1.3 N-GOs的平面長度 27
3-1.4 資料分析的優勢和限制 31
3-1.5 N-GOs研究之總結 32
3-2 MOF-525之粒子與晶體結構於酸鹼環境下之變化與探討 33
3-2.1 MOF-525之氣動粒徑分佈 33
3-2.2 MOF-525膠體溶液在不同酸鹼環境下所受到之影響 35
3-2.3 MOF-525晶體結構變化之機制與可逆性探討 38
3-2.4 MOF-525研究之總結 42
3-3 SiO2-NP、TiO2-NP和CeO2-NP與配體間之相互作用與影響 43
3-3.1 未擔載配體之奈米粒子(unconjugated nanoparticle)的各項性質探討 43
3-3.2 配體與奈米粒子於表面之相互作用與影響 47
3-3.3 配體-奈米粒子之交互作用與穩定性探討 50
3-3.4 配體-奈米粒子之結果統整與分析 60
3-3.5 Ligands與TiO2-NPs、SiO2-NPs和CeO2-NPs研究之總結 65
第 4 章 結論 66
第 5 章 未來展望 67
第 6 章 參考文獻 68
1. Mathaes, R., G. Winter, et al., Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. Expert Opin Drug Deliv, 2015. 12(3): p. 481-92.
2. Thanh, T.T., H. Ba, et al., A few-layer graphene–graphene oxide composite containing nanodiamonds as metal-free catalysts. Journal of Materials Chemistry A, 2014. 2(29): p. 11349.
3. Hung, A.H., R.J. Holbrook, et al., Graphene oxide enhances cellular delivery of hydrophilic small molecules by co-incubation. ACS Nano, 2014. 8(10): p. 10168-77.
4. Compton, O.C. and S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small, 2010. 6(6): p. 711-23.
5. Chen, J., H. Peng, et al., Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale, 2014. 6(3): p. 1879-89.
6. Liu, S., T.H. Zeng, et al., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano, 2011. 5(9): p. 6971-80.
7. Wang, S., F. Tristan, et al., Activation routes for high surface area graphene monoliths from graphene oxide colloids. Carbon, 2014. 76: p. 220-231.
8. Zhao, X., Z. Xu, et al., Polyelectrolyte-stabilized graphene oxide liquid crystals against salt, pH, and serum. Langmuir, 2014. 30(13): p. 3715-22.
9. Hasan, S.A., J.L. Rigueur, et al., Transferable graphene oxide films with tunable microstructures. ACS Nano, 2010. 4(12): p. 7367-72.
10. Yang, J.-H. and Y.-D. Lee, Highly electrically conductive rGO/PVA composites with a network dispersive nanostructure. Journal of Materials Chemistry, 2012. 22(17): p. 8512.
11. Yang, J.-H., S.-H. Lin, et al., Preparation and characterization of poly(l-lactide)–graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. Journal of Materials Chemistry, 2012. 22(21): p. 10805.
12. Tai, J.T., C.S. Lai, et al., Protein-silver nanoparticle interactions to colloidal stability in acidic environments. Langmuir, 2014. 30(43): p. 12755-64.
13. Tsai, D.H., T.J. Cho, et al., Controlled formation and characterization of dithiothreitol-conjugated gold nanoparticle clusters. Langmuir, 2014. 30(12): p. 3397-405.
14. Furukawa, H., U. Muller, et al., "Heterogeneity within order" in metal-organic frameworks. Angew Chem Int Ed Engl, 2015. 54(11): p. 3417-30.
15. Yuan, S., W. Lu, et al., Sequential linker installation: precise placement of functional groups in multivariate metal-organic frameworks. J Am Chem Soc, 2015. 137(9): p. 3177-80.
16. Mondloch, J.E., M.J. Katz, et al., Destruction of chemical warfare agents using metal-organic frameworks. Nat Mater, 2015. 14(5): p. 512-6.
17. Furukawa, H., K.E. Cordova, et al., The chemistry and applications of metal-organic frameworks. Science, 2013. 341(6149): p. 1230444.
18. Li, J.R., J. Sculley, et al., Metal-organic frameworks for separations. Chem Rev, 2012. 112(2): p. 869-932.
19. Kreno, L.E., K. Leong, et al., Metal-organic framework materials as chemical sensors. Chem Rev, 2012. 112(2): p. 1105-25.
20. Murray, L.J., M. Dinca, et al., Hydrogen storage in metal-organic frameworks. Chem Soc Rev, 2009. 38(5): p. 1294-314.
21. Taylor-Pashow, K.M.L., J.D. Rocca, et al., Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal−Organic Frameworks for Imaging and Drug Delivery. Journal of the American Chemical Society, 2009. 131(40): p. 14261-14263.
22. Kuo, C.H., Y. Tang, et al., Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. J Am Chem Soc, 2012. 134(35): p. 14345-8.
23. Chaikittisilp, W., K. Ariga, et al., A new family of carbon materials: synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A, 2013. 1(1): p. 14-19.
24. Dang, G.H., Y.T.H. Vu, et al., Quinoxaline synthesis via oxidative cyclization reaction using metal–organic framework Cu(BDC) as an efficient heterogeneous catalyst. Applied Catalysis A: General, 2015. 491: p. 189-195.
25. Vargas, E.L. and R.Q. Snurr, Heterogeneous Diffusion of Alkanes in the Hierarchical Metal-Organic Framework NU-1000. Langmuir, 2015. 31(36): p. 10056-65.
26. Vargas L, E. and R.Q. Snurr, Heterogeneous Diffusion of Alkanes in the Hierarchical Metal–Organic Framework NU-1000. Langmuir, 2015. 31(36): p. 10056-10065.
27. Lim, W.X., A.W. Thornton, et al., High performance hydrogen storage from Be-BTB metal-organic framework at room temperature. Langmuir, 2013. 29(27): p. 8524-33.
28. Forrest, K.A., T. Pham, et al., Investigating H(2) Sorption in a Fluorinated Metal-Organic Framework with Small Pores Through Molecular Simulation and Inelastic Neutron Scattering. Langmuir, 2015. 31(26): p. 7328-36.
29. McKinlay, A.C., R.E. Morris, et al., BioMOFs: metal-organic frameworks for biological and medical applications. Angew Chem Int Ed Engl, 2010. 49(36): p. 6260-6.
30. Feng, D., Z.Y. Gu, et al., Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed Engl, 2012. 51(41): p. 10307-10.
31. Hanke, M., H.K. Arslan, et al., The biocompatibility of metal-organic framework coatings: an investigation on the stability of SURMOFs with regard to water and selected cell culture media. Langmuir, 2012. 28(17): p. 6877-84.
32. Horcajada, P., R. Gref, et al., Metal-organic frameworks in biomedicine. Chem Rev, 2012. 112(2): p. 1232-68.
33. Sindoro, M., N. Yanai, et al., Colloidal-Sized Metal–Organic Frameworks: Synthesis and Applications. Accounts of Chemical Research, 2014. 47(2): p. 459-469.
34. Mouchaham, G., L. Cooper, et al., A Robust Infinite Zirconium Phenolate Building Unit to Enhance the Chemical Stability of Zr MOFs. Angew Chem Int Ed Engl, 2015. 54(45): p. 13297-301.
35. Kung, C.-W., T.-H. Chang, et al., Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochemistry Communications, 2015. 58: p. 51-56.
36. Yang, Q., S. Vaesen, et al., A Water Stable Metal–Organic Framework with Optimal Features for CO2 Capture. Angewandte Chemie International Edition, 2013. 52(39): p. 10316-10320.
37. Jiang, H.L., D. Feng, et al., An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. J Am Chem Soc, 2013. 135(37): p. 13934-8.
38. Guillerm, V., F. Ragon, et al., A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew Chem Int Ed Engl, 2012. 51(37): p. 9267-71.
39. Seo, J., J.W. Lee, et al., Role of the surface chemistry of ceria surfaces on silicate adsorption. ACS Appl Mater Interfaces, 2014. 6(10): p. 7388-94.
40. Thomas, E.L.H., G.W. Nelson, et al., Chemical mechanical polishing of thin film diamond. Carbon, 2014. 68: p. 473-479.
41. Zazzera, L., B. Mader, et al., Comparison of ceria nanoparticle concentrations in effluent from chemical mechanical polishing of silicon dioxide. Environ Sci Technol, 2014. 48(22): p. 13427-33.
42. Khalafi-Nezhad, A., S. Mowlazadeh Haghighi, et al., Nano-TiO2on Dodecyl-Sulfated Silica: As an Efficient Heterogeneous Lewis Acid–Surfactant-Combined Catalyst (HLASC) for Reaction in Aqueous Media. ACS Sustainable Chemistry & Engineering, 2013. 1(8): p. 1015-1023.
43. Ahmed, S., A. Du Pasquier, et al., Self-assembled TiO(2) with increased photoelectron production, and improved conduction and transfer: enhancing photovoltaic performance of dye-sensitized solar cells. ACS Appl Mater Interfaces, 2011. 3(8): p. 3002-10.
44. Buzea, C., I.I. Pacheco, et al., Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007. 2(4): p. MR17.
45. Dobrovolskaia, M.A., P. Aggarwal, et al., Preclinical Studies To Understand Nanoparticle Interaction with the Immune System and Its Potential Effects on Nanoparticle Biodistribution. Molecular Pharmaceutics, 2008. 5(4): p. 487-495.
46. Dobrovolskaia, M.A., A.K. Patri, et al., Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine, 2009. 5(2): p. 106-17.
47. Petros, R.A. and J.M. DeSimone, Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov, 2010. 9(8): p. 615-27.
48. Blasco, C. and Y. Picó, Determining nanomaterials in food. TrAC Trends in Analytical Chemistry, 2011. 30(1): p. 84-99.
49. Cho, E.-B., S. Yim, et al., Surfactant-assisted synthesis of mesoporous silica/ceria–silica composites with high cerium content under basic conditions. Journal of Materials Chemistry A, 2013. 1(40): p. 12595.
50. Nabih, N., R. Schiller, et al., Mesoporous CeO(2) nanoparticles synthesized by an inverse miniemulsion technique and their catalytic properties in methane oxidation. Nanotechnology, 2011. 22(13): p. 135606.
51. Wang, T., O. Sel, et al., Preparation of a large Mesoporous CeO2 with crystalline walls using PMMA colloidal crystal templates. Colloid and Polymer Science, 2006. 285(1): p. 1-9.
52. Wang, J., W. Xiao, et al., Hollow mesoporous silica spheres synthesized with cationic and anionic mixed surfactant as templates. Materials Letters, 2015. 142: p. 269-272.
53. Liu, Y., M. Tourbin, et al., Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB). Chemosphere, 2013. 92(6): p. 681-7.
54. Carter, D.C. and J.X. Ho, Structure of Serum Albumin, in Advances in Protein Chemistry, J.T.E.F.M.R. C.B. Anfinsen and S.E. David, Editors. 1994, Academic Press. p. 153-203.
55. Kim, J., L.J. Cote, et al., Graphene oxide sheets at interfaces. J Am Chem Soc, 2010. 132(23): p. 8180-6.
56. Li, S., F. Zhu, et al., Separation of graphene oxide by density gradient centrifugation and study on their morphology-dependent electrochemical properties. Journal of Electroanalytical Chemistry, 2013. 703: p. 135-145.
57. Akhavan, O. and E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano, 2010. 4(10): p. 5731-6.
58. Cote, L.J., F. Kim, et al., Langmuir-Blodgett assembly of graphite oxide single layers. J Am Chem Soc, 2009. 131(3): p. 1043-9.
59. Horcajada, P., T. Chalati, et al., Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater, 2010. 9(2): p. 172-8.
60. Cai, W., C.C. Chu, et al., Metal-Organic Framework-Based Nanomedicine Platforms for Drug Delivery and Molecular Imaging. Small, 2015. 11(37): p. 4806-22.
61. Zhuang, J., C.-H. Kuo, et al., Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano, 2014. 8(3): p. 2812-2819.
62. Wang, X.G., Z.Y. Dong, et al., A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale, 2015. 7(38): p. 16061-70.
63. Kung, C.W., T.H. Chang, et al., Post metalation of solvothermally grown electroactive porphyrin metal-organic framework thin films. Chem Commun (Camb), 2015. 51(12): p. 2414-7.
64. Lin, H.-Y., C.-Y. Chin, et al., Crystalline Inorganic Frameworks with 56-Ring, 64-Ring, and 72-Ring Channels. Science, 2013. 339(6121): p. 811-813.
65. Morris, W., B. Volosskiy, et al., Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg Chem, 2012. 51(12): p. 6443-5.
66. Carne-Sanchez, A., I. Imaz, et al., A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat Chem, 2013. 5(3): p. 203-11.
67. Hu, M., A.A. Belik, et al., Tailored design of multiple nanoarchitectures in metal-cyanide hybrid coordination polymers. J Am Chem Soc, 2013. 135(1): p. 384-91.
68. Chou, L.Y., P. Hu, et al., Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal-organic frameworks via double-solvent mediated overgrowth. Nanoscale, 2015. 7(46): p. 19408-12.
69. Liu, L., Y. Song, et al., Size-confined growth of atom-precise nanoclusters in metal-organic frameworks and their catalytic applications. Nanoscale, 2016. 8(3): p. 1407-12.
70. Shah, M.N., M.A. Gonzalez, et al., An unconventional rapid synthesis of high performance metal-organic framework membranes. Langmuir, 2013. 29(25): p. 7896-902.
71. Pham, M.H., G.T. Vuong, et al., Novel route to size-controlled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir, 2011. 27(24): p. 15261-7.
72. Zhao, N., F. Sun, et al., Deprotonation-triggered Stokes shift fluorescence of an unexpected basic-stable metal-organic framework. Inorg Chem, 2015. 54(1): p. 65-8.
73. Fernandez, C.A., S.K. Nune, et al., Synthesis, characterization, and application of metal organic framework nanostructures. Langmuir, 2010. 26(24): p. 18591-4.
74. Gabor, F., “Characterization of Nanoparticles Intended for Drug Delivery”. Scientia Pharmaceutica, 2011. 79(3): p. 701-702.
75. Tsai, D.H., L.F. Pease, 3rd, et al., Aggregation kinetics of colloidal particles measured by gas-phase differential mobility analysis. Langmuir, 2009. 25(1): p. 140-6.
76. Tsai, D.H., T.J. Cho, et al., Quantitative analysis of dendron-conjugated cisplatin-complexed gold nanoparticles using scanning particle mobility mass spectrometry. Nanoscale, 2013. 5(12): p. 5390-5.
77. Tsai, D.H., T.J. Cho, et al., Hydrodynamic fractionation of finite size gold nanoparticle clusters. J Am Chem Soc, 2011. 133(23): p. 8884-7.
78. Pease, L.F., 3rd, D.H. Tsai, et al., Length distribution of single-walled carbon nanotubes in aqueous suspension measured by electrospray differential mobility analysis. Small, 2009. 5(24): p. 2894-901.
79. Li, M., S. Guha, et al., Method for determining the absolute number concentration of nanoparticles from electrospray sources. Langmuir, 2011. 27(24): p. 14732-9.
80. Elzey, S., D.H. Tsai, et al., Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Anal Bioanal Chem, 2013. 405(7): p. 2279-88.
81. Li, M., R. You, et al., Development of a Pulsed-Field Differential Mobility Analyzer: A Method for Measuring Shape Parameters for Nonspherical Particles. Aerosol Science and Technology, 2013. 48(1): p. 22-30.
82. Pease, L.F., 3rd, J.T. Elliott, et al., Determination of protein aggregation with differential mobility analysis: application to IgG antibody. Biotechnol Bioeng, 2008. 101(6): p. 1214-22.
83. Tsai, D.H., S. Elzey, et al., Tumor necrosis factor interaction with gold nanoparticles. Nanoscale, 2012. 4(10): p. 3208-17.
84. Tai, J.T., Y.C. Lai, et al., Quantifying nanosheet graphene oxide using electrospray-differential mobility analysis. Anal Chem, 2015. 87(7): p. 3884-9.
85. Tsai, D.H., F.W. DelRio, et al., Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir, 2011. 27(6): p. 2464-77.
86. Tsai, D.-H. and T.-J. Huang, Activity behavior of samaria-doped ceria-supported copper oxide catalyst and effect of heat treatments of support on carbon monoxide oxidation. Applied Catalysis A: General, 2002. 223(1–2): p. 1-9.
87. Li, M.D., S. Guha, et al., Quantification and Compensation of Nonspecific Analyte Aggregation in Electrospray Sampling. Aerosol Science and Technology, 2011. 45(7): p. 849-860.
88. Suvajyoti Guha, M.L., Michael J. Tarlov and Michael R. Zachariah, Electrospray–differential mobility analysis of bionanoparticles. Cell press, 2012.
89. Tsai, D.H., T.J. Cho, et al., Hydrodynamic Fractionation of Finite Size Gold Nanoparticle Clusters. Journal of the American Chemical Society, 2011. 133(23): p. 8884-8887.
90. Tsai, D.H., F.W. DelRio, et al., Temperature-programmed electrospray-differential mobility analysis for characterization of ligated nanoparticles in complex media. Langmuir, 2013. 29(36): p. 11267-74.
91. Tsai, D.H., R.A. Zangmeister, et al., Gas-phase ion-mobility characterization of SAM-functionalized Au nanoparticles. Langmuir, 2008. 24(16): p. 8483-90.
92. Schniepp, H.C., J.L. Li, et al., Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B, 2006. 110(17): p. 8535-9.
93. Huang, L., C. Li, et al., High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. J. Mater. Chem. A, 2014. 2(4): p. 968-974.
94. Wang, H., G. Wang, et al., High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Nanoscale, 2013. 5(21): p. 10283-90.
95. Niu, Z., J. Chen, et al., A leavening strategy to prepare reduced graphene oxide foams. Adv Mater, 2012. 24(30): p. 4144-50.
96. Dikin, D.A., S. Stankovich, et al., Preparation and characterization of graphene oxide paper. Nature, 2007. 448(7152): p. 457-60.
97. Gao, W.Y., M. Chrzanowski, et al., Metal-metalloporphyrin frameworks: a resurging class of functional materials. Chem Soc Rev, 2014. 43(16): p. 5841-66.
98. DeCoste, J.B., G.W. Peterson, et al., Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 2013. 1(18): p. 5642.
99. Mohan, R., J. Drbohlavova, et al., Water-dispersible TiO2 nanoparticles via a biphasic solvothermal reaction method. Nanoscale Research Letters, 2013. 8(1): p. 1-4.
100. Veranitisagul, C., A. Kaewvilai, et al., Novel recovery of nano-structured ceria (CeO(2)) from Ce(III)-benzoxazine dimer complexes via thermal decomposition. Int J Mol Sci, 2011. 12(7): p. 4365-77.
101. Petersen, E.J., T.B. Henry, et al., Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol, 2014. 48(8): p. 4226-46.
102. Tsai, D.H., L.F. Pease Iii, et al., Aggregation Kinetics of Colloidal Particles Measured by Gas-Phase Differential Mobility Analysis. Langmuir, 2009. 25(1): p. 140-146.
103. Tsai, D.H., F.W. DelRio, et al., Competitive adsorption of thiolated polyethylene glycol and mercaptopropionic acid on gold nanoparticles measured by physical characterization methods. Langmuir, 2010. 26(12): p. 10325-33.
104. Tsai, D.H., M. Davila-Morris, et al., Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir, 2011. 27(15): p. 9302-13.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *