|
1. Mark, J., E., Allcock, H., R., West, R., Inorganic polymers. 1992, Prentice Hall. 2. Clarson, S.J., Silicones and silicone-modified materials. 2000: American Chemical Society; Distributed by Oxford University Press. 3. Cifková, I., et al., Silicone rubber-hydrogel composites as polymeric biomaterials. Biomaterials, 1990. 11(6): p. 393-396. 4. Molberg, M., et al., Frequency dependent dielectric and mechanical behavior of elastomers for actuator applications. Journal of Applied Physics, 2009. 106(5): p. 054112. 5. Kussmaul, B., et al., Enhancement of dielectric permittivity and electromechanical response in silicone elastomers: molecular grafting of organic dipoles to the macromolecular network. Advanced Functional Materials, 2011. 21(23): p. 4589-4594. 6. Circu, M.V., et al., Soft polydimethylsiloxane thin elastomeric films by in situ polymerization to be used as dielectricum in actuators. Macromolecular Materials and Engineering, 2014. 299(9): p. 1126-1133. 7. James, E.M., Overview of siloxane polymers, in Silicones and Silicone-Modified Materials. 2000, American Chemical Society. p. 1-10. 8. Stern, S.A. and J.R. Fried, Permeability of Polymers to Gases and Vapors, in Physical Properties of Polymers Handbook, J.E. Mark, Editor. 2007, Springer New York: New York, NY. p. 1033-1047. 9. McGarry, F.J. and A.M. Willner, Toughening of an epoxy resin by an elastomeric second phase. 1968: MIT Department of Civil Engineering, Materials Research Laboratory. 10. Montarnal, S., J.-P. Pascault, and H. Sautereau, Controlling Factors in the Rubber-Toughening of Unfilled Epoxy Networks, in Rubber-Toughened Plastics. 1989, American Chemical Society. p. 193-223. 11. Ratna, D. and A. Banthia, Rubber toughened epoxy. Macromolecular Research, 2004. 12(1): p. 11-21. 12. Okamoto, Y., Thermal aging study of carboxyl-terminated polybutadiene and poly(butadiene-acrylonitrile)-reactive liquid polymers. Polymer Engineering & Science, 1983. 23(4): p. 222-225. 13. Jin, S., J. Huang, and A. Yee, Effects of Mechanical Properties of the Toughener Phase on Toughening Efficiency--a Mechanistic Study Using a Microgel Toughened Epoxy. Polymeric Materials Science and Engineering., 1990. 63: p. 107-111. 14. Shen, J., Z. Shao, and S. Li, Physical ageing studies of polysiloxane-modified epoxy resin. Polymer, 1995. 36(18): p. 3479-3483. 15. Riffle, J.S., et al., Elastomeric Polysiloxane Modifiers for Epoxy Networks, in Epoxy Resin Chemistry II. 1983, AMERICAN CHEMICAL SOCIETY. p. 21-54. 16. Zhu, B., et al., Toughening of a Polysilsesquioxane Network by Simultaneous Incorporation of Short and Long PDMS Chain Segments. Macromolecules, 2004. 37(4): p. 1455-1462. 17. Mark, J.E., Molecular aspects of rubberlike elasticity. Accounts of Chemical Research, 1985. 18(7): p. 202-206. 18. Rochow, E.G., The Direct Synthesis of Organosilicon Compounds. Journal of the American Chemical Society, 1945. 67(6): p. 963-965. 19. Troegel, D. and J. Stohrer, Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coordination Chemistry Reviews, 2011. 255(13–14): p. 1440-1459. 20. Sommer, L.H., E.W. Pietrusza, and F.C. Whitmore, Peroxide-catalyzed addition of trichlorosilane to 1-octene. Journal of the American Chemical Society, 1947. 69(1): p. 188-188. 21. Speier, J.L., J.A. Webster, and G.H. Barnes, The addition of silicon hydrides to olefinic double bonds. Part ii. The use of group viii metal catalysts. Journal of the American Chemical Society, 1957. 79(4): p. 974-979. 22. Karstedt, B.D., Platinum complexes of unsaturated siloxanes and platinum containing organopolysiloxanes. 1973, Google Patents. 23. Chalk, A.J. and J.F. Harrod, Homogeneous Catalysis. II. The Mechanism of the Hydrosilation of Olefins Catalyzed by Group VIII Metal Complexes1. Journal of the American Chemical Society, 1965. 87(1): p. 16-21. 24. Suzuki, T. and T. Okawa, Poly(dimethylsiloxane) macromonomers having both alkenyl and polymerizable groups. Application to crosslinkable copolymers. Polymer, 1988. 29(11): p. 2095-2099. 25. Bai, C., et al., Synthesis of uv crosslinkable waterborne siloxane–polyurethane dispersion pdms-peda-pu and the properties of the films. Journal of Coatings Technology and Research, 2008. 5(2): p. 251-257. 26. Madsen, F.B., et al., Novel cross-linkers for pdms networks for controlled and well distributed grafting of functionalities by click chemistry. Polymer Chemistry, 2013. 4(5): p. 1700-1707. 27. Kolb, H.C., M. Finn, and K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Angewandte Chemie International Edition, 2001. 40(11): p. 2004-2021. 28. Pissetti, F.L., et al., Synthesis of poly(dimethylsiloxane) networks functionalized with imidazole or benzimidazole for copper(ii) removal from water. Journal of the Brazilian Chemical Society, 2015. 26: p. 266-272. 29. Meldrum, A.N., Liv.—A β-lactonic acid from acetone and malonic acid. Journal of the Chemical Society, Transactions, 1908. 93: p. 598-601. 30. Davidson, D. and S.A. Bernhard, The structure of meldrum's supposed β-lactonic acid. Journal of the American Chemical Society, 1948. 70(10): p. 3426-3428. 31. Leibfarth, F.A., et al., A facile route to ketene-functionalized polymers for general materials applications. Nat Chem, 2010. 2(3): p. 207-212. 32. Leibfarth, F.A., et al., Low-temperature ketene formation in materials chemistry through molecular engineering. Chemical Science, 2012. 3(3): p. 766-771. 33. Kwon, T.-w., et al., Systematic molecular-level design of binders incorporating meldrum's acid for silicon anodes in lithium rechargeable batteries. Advanced Materials, 2014. 26(47): p. 7979-7985. 34. Wolffs, M., M.J. Kade, and C.J. Hawker, An energy efficient and facile synthesis of high molecular weight polyesters using ketenes. Chemical Communications, 2011. 47(38): p. 10572-10574. 35. Spruell, J.M., et al., Reactive, multifunctional polymer films through thermal cross-linking of orthogonal click groups. Journal of the American Chemical Society, 2011. 133(41): p. 16698-16706. 36. Miyamura, Y., et al., Shape-Directed Assembly of a “Macromolecular Barb” into Nanofibers: Stereospecific Cyclopolymerization of Isopropylidene Diallylmalonate. Journal of the American Chemical Society, 2010. 132(10): p. 3292-3294. 37. Miyamura, Y., et al., Controlling Volume Shrinkage in Soft Lithography through Heat-Induced Cross-Linking of Patterned Nanofibers. Journal of the American Chemical Society, 2011. 133(9): p. 2840-2843. 38. Wu, J., et al., Utilization of a Meldrum's acid towards functionalized fluoropolymers possessing dual reactivity for thermal crosslinking and post-polymerization modification. Chemical Communications, 2015. 51(44): p. 9220-9222. 39. Lin, L.-K., et al., Thermosetting resins with high fractions of free volume and inherently low dielectric constants. Chemical Communications, 2015. 51(64): p. 12760-12763. 40. Lestel, L., H. Cheradame, and S. Boileau, Crosslinking of polyether networks by hydrosilylation and related side reactions. Polymer, 1990. 31(6): p. 1154-1158. 41. Camino, G., S.M. Lomakin, and M. Lazzari, Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer, 2001. 42(6): p. 2395-2402. 42. Camino, G., S.M. Lomakin, and M. Lageard, Thermal polydimethylsiloxane degradation. Part 2. The degradation mechanisms. Polymer, 2002. 43(7): p. 2011-2015. 43. Salmeia, K.A. and S. Gaan, An overview of some recent advances in DOPO-derivatives: Chemistry and flame retardant applications. Polymer Degradation and Stability, 2015. 113: p. 119-134.
|