帳號:guest(3.139.233.73)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王凱弘
作者(外文):Wang, Kai Hong
論文名稱(中文):自調式控制應用於樹脂轉注成型
論文名稱(外文):Application of Self-Tuning Control to Resin Transfer Molding
指導教授(中文):姚遠
指導教授(外文):Yao, Yuan
口試委員(中文):陳榮輝
鄭西顯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032539
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:77
中文關鍵詞:樹脂轉注成型流動控制最小平方遞迴自適應遺忘因子法模型預測控制策略自調式PI控制器最佳化控制器
外文關鍵詞:resin transfer moldingflow controlrecursive least squares method with an adaptive directional forgetting factormodel predictive control strategyself-tuning control PI controlleroptimizing controller
相關次數:
  • 推薦推薦:0
  • 點閱點閱:100
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
樹脂轉注成型(Resin Transfer Molding, RTM)是一種廣泛利用於製造高機械強度與輕質量的高分子複合材料製造技術。其製程是將熱固性樹脂與硬化劑注入封閉模具浸潤預置的纖維補強材,隨後固化成型為成品。
在樹脂轉注程製程中,樹脂流動於纖維補強材中會因為纖維預置物的不規則性排列使樹脂往低滲透係數的區域流動,導致跑道現象(race-tracking)發生與乾班(dry spot)的生成,最終造成產品缺陷。為了提高產品的品質與降低樹脂填充過程中所產生的缺陷,解決的方法之一是透過流動控制使樹脂於填充模具的過程達到預期流動的方式,以此降低產品缺陷的產生。先前文獻指出恆速流動控制可以獲得較好的產品品質。然而,現有樹脂轉注成型流動控制策略通常基於一個不實際的假設,纖維補強材的滲透率是已知的,而且樹脂轉注成型製程系統具有非線性與時變的特性,這對於傳統PID控制器是不適用的。故本文提出應用於樹脂轉注成型之在線流動控制的自調式控制架構,利用最小平方遞迴自適應遺忘因子法(recursive least squares method with an adaptive directional forgetting factor)建立樹脂在線流動控制的數學模型,並基於此系統辨識模型,分別建立藉由Ziegler-Nichols連續圈環法進行控制器參數調整的自調式PI控制器與藉由模具預測控制策略控制流動波前形狀與流動波前速度找出最佳灌注壓力的最佳化控制器。
為了應用本文提出的控制架構對於樹脂轉注成型在線流動控制,實驗模具會分別使用單一灌注口與三個灌注口之模具,且於填充模具的過程中,使樹脂流經低滲透率區域,最終比較傳統PI控制器與本文提出之自調式PI控制器與最佳化控制器於樹脂轉注成型製程中之控制性能。
Resin Transfer Molding (RTM) is a manufacturing technology of polymer composites with high mechanical strength and light weight. Its manufacturing procedure includes injecting liquid thermoset resin and hardener into a closed mold to impregnate fiber reinforced metal placed in advance, together with a curing process.
In RTM, the race-tracking phenomenon often occur during mold filling, which may cause the formation of dry spot and air entrapment. Because of the irregularity in fiber arrangement, the resin flows toward the path with least resistance during the manufacturing process, leading to insufficiently impregnated defects in low permeability zones. One way to improve quality of product and reduce the possibility of generating defects during mold filling is flow control. Previous research indicates that a constant flow velocity is beneficial to good product quality. However, the existing flow control strategies for RTM are often based on an impractical assumption that the permeability of the fiber reinforcement is uniform within the mold and known in advance. The traditional proportional-integral-differential (PID) controller is unsuitable either, because of the time-varying characteristics of the process. To solve these problems, the recursive least squares method with an adaptive directional forgetting factor is adopted in this study to identify the time-varying process model in real time. Then, a self-tuning PI controller is built based on the identified model for constant flow velocity control, whose parameters are adjusted online according to the Ziegler-Nichols continuous cycling method. In addition, a model predictive control (MPC) strategy is also proposed which controls both the shape and velocity of the resin flow front simultaneously.
In order to apply the control structure to on line flow control of RTM, this study adopts mold with single injection gate and three injection gates, let resin flow through low permeability region in model filling, and compares the control performance of tradition PI controller, self-tuning control PI controller and optimizing controller in RTM.
一. 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機與目的 5
1.4 文章架構 6
二. 研究方法 7
2.1樹脂轉注成型 7
2.1.1實驗原理 7
2.1.2理論模式 7
2.2實驗材料與設備 8
2.2.1實驗材料 8
2.2.2實驗設備 8
2.3樹脂轉注成型之實驗流程 13
2.4 恆定流動波前速度之在線流動控制 16
2.4.1 樹脂轉注成型的傳統PI控制器 16
2.4.2 樹脂轉注成型的系統辨識 17
2.4.3自調式PI控制器的控制器參數計算 20
2.4.4樹脂轉注成型的自調式PI控制器架構 27
2.4.5樹脂轉注成型的最佳化控制器 28
三. 實驗結果 31
3.1 單孔灌注口模具的流動控制實驗 31
3.1.1恆壓灌注於單孔灌注口模具的流動結果 31
3.1.2 傳統PI控制器應用於單孔灌注口模具的恆速控制結果 32
3.1.3自調式PI控制器應用於單孔灌注口模具的恆速控制結果 36
3.1.4基於改變滲透率的自調式PI控制於單孔模具恆速控制結果41
3.2 三孔灌注口模具的流動控制實驗 46
3.2.1恆壓灌注於三孔灌注口模具流動結果 46
3.2.2自調式PI控制器應用於三孔灌注口模具的恆速控制結果 47
3.2.3最佳化控制器應用於三孔灌注口模具的流動波前控制結果52
3.2.4基於變化滲透率恆壓灌注於三孔灌注口模具的流動結果 57
3.2.5基於改變滲透率的自調式PI控制於三孔模具恆速控制結果58
3.2.6基於改變滲透率的最佳化控制器流動控制結果 65
四. 結論 72
五. 參考文獻 73
[1] Advani, S. G., & Hsiao, K. T. (Eds.). (2012). Manufacturing techniques for polymer matrix composites (PMCs). Elsevier.
[2] Advani, S. G., & Sozer, E. M. (Eds.). (2010). Process modeling in composites manufacturing (Vol. 59). CRC Press.
[3] Blanchard, P. J., & Rudd, C. D. (1996). Cycle time reduction in resin transfer moulding by phased catalyst injection. Composites science and technology, 56(2), 123-133.
[4] Yang, Y., & Gao, F. (2000). Adaptive control of the filling velocity of thermoplastics injection molding. Control Engineering Practice, 8(11), 1285-1296.
[5] Hsiao, K. T., & Advani, S. G. (2004). Flow sensing and control strategies to address race-tracking disturbances in resin transfer molding. Part I: design and algorithm development. Composites Part A: applied science and manufacturing, 35(10), 1149-1159.
[6] Lin, M. Y., Murphy, M. J., & Hahn, H. T. (2000). Resin transfer molding process optimization. Composites Part A: applied science and manufacturing, 31(4), 361-371.
[7] Gokce, A., Hsiao, K. T., & Advani, S. G. (2002). Branch and bound search to optimize injection gate locations in liquid composite molding processes. Composites Part A: Applied Science and Manufacturing, 33(9), 1263-1272.
[8] Gokce, A., & Advani, S. G. (2004). Simultaneous gate and vent location optimization in liquid composite molding processes. Composites Part A: Applied Science and Manufacturing, 35(12), 1419-1432.
[9] Luo, J., Liang, Z., Zhang, C., & Wang, B. (2001). Optimum tooling design for resin transfer molding with virtual manufacturing and artificial intelligence. Composites Part A: applied science and manufacturing, 32(6), 877-888.
[10] Devillard, M., Hsiao, K. T., & Advani, S. G. (2005). Flow sensing and control strategies to address race-tracking disturbances in resin transfer molding—part II: automation and validation. Composites Part A: applied science and manufacturing, 36(11), 1581-1589.
[11] Bickerton, S., Stadtfeld, H. C., Steiner, K. V., & Advani, S. G. (2001). Design and application of actively controlled injection schemes for resin-transfer molding. Composites Science and Technology, 61(11), 1625-1637.
[12] Sozer, E. M., Bickerton, S., & Advani, S. G. (2000). On-line strategic control of liquid composite mould filling process. Composites Part A: Applied Science and Manufacturing, 31(12), 1383-1394.
[13] Lawrence, J. M., Hsiao, K. T., Don, R. C., Simacek, P., Estrada, G., Sozer, E. M., ... & Advani, S. G. (2002). An approach to couple mold design and on-line control to manufacture complex composite parts by resin transfer molding. Composites Part A: applied science and manufacturing, 33(7), 981-990.
[14] Modi, D., Correia, N., Johnson, M., Long, A., Rudd, C., & Robitaille, F. (2007). Active control of the vacuum infusion process. Composites part A: Applied science and manufacturing, 38(5), 1271-1287.
[15] Lawrence, J. M., & Advani, S. G. (2003). Use of sensors and actuators to address flow disturbances during the resin transfer molding process. Polymer composites, 24(2), 237-248.
[16] Nalla, A. R., Fuqua, M., Glancey, J., & Lelievre, B. (2007). A multi-segment injection line and real-time adaptive, model-based controller for vacuum assisted resin transfer molding. Composites Part A: Applied Science and Manufacturing, 38(3), 1058-1069.
[17] Johnson, R. J., & Pitchumani, R. (2003). Enhancement of flow in VARTM using localized induction heating. Composites science and technology, 63(15), 2201-2215.
[18] Johnson, R. J., & Pitchumani, R. (2006). Simulation of active flow control based on localized preform heating in a VARTM process. Composites Part A: Applied Science and Manufacturing, 37(10), 1815-1830.
[19] Johnson, R. J., & Pitchumani, R. (2007). Flow control using localized induction heating in a VARTM process. Composites science and technology, 67(3), 669-684.
[20] Matsuzaki, R., Kobayashi, S., Todoroki, A., & Mizutani, Y. (2011). Full-field monitoring of resin flow using an area-sensor array in a VaRTM process.Composites Part A: Applied Science and Manufacturing, 42(5), 550-559.
[21] Matsuzaki, R., Kobayashi, S., Todoroki, A., & Mizutani, Y. (2011). Control of resin flow/temperature using multifunctional interdigital electrode array film during a VaRTM process. Composites Part A: Applied Science and Manufacturing, 42(7), 782-793.
[22] Matsuzaki, R., Kobayashi, S., Todoroki, A., & Mizutani, Y. (2012). Cross-sectional monitoring of resin impregnation using an area-sensor array in an RTM process. Composites Part A: Applied Science and Manufacturing, 43(4), 695-702.
[23] Matsuzaki, R., Kobayashi, S., Todoroki, A., & Mizutani, Y. (2013). Flow control by progressive forecasting using numerical simulation during vacuum-assisted resin transfer molding. Composites Part A: Applied Science and Manufacturing, 45, 79-87.
[24] Bender, D., Schuster, J., & Heider, D. (2006). Flow rate control during vacuum-assisted resin transfer molding (VARTM) processing. Composites Science and Technology, 66(13), 2265-2271.
[25] Mogavero, J., Sun, J. Q., & Advani, S. G. (1997). A nonlinear control method for resin transfer molding. Polymer composites, 18(3), 412-417.
[26] Minaie, B., Li, W., Gou, J., Chen, Y., Mamishev, A., & Mescher, A. (2003). Direct adaptive control of resin transfer molding. International SAMPE Symposium and Exhibition, SAMPE.
[27] Nielsen, D., & Pitchumani, R. (2001). Intelligent model-based control of preform permeation in liquid composite molding processes, with online optimization. Composites Part A: Applied Science and Manufacturing, 32(12), 1789-1803.
[28] Nielsen, D. R., & Pitchumani, R. (2002). Closed-loop flow control in resin transfer molding using real-time numerical process simulations. Composites Science and Technology, 62(2), 283-298.
[29] Nielsen, D. R., & Pitchumani, R. (2002). Control of flow in resin transfer molding with real‐time preform permeability estimation. Polymer composites, 23(6), 1087-1110.
[30] Wei, B. J., Chang, Y. S., Yao, Y., & Fang, J. (2014). Online estimation and monitoring of local permeability in resin transfer molding. Polymer Composites.
[31] 魏百鍵. (2014). 基於局部滲透係數線上估計之樹脂轉注成型監控與流動控制. 清華大學化學工程學系學位論文, 1-67.
[32] Alms, J. B., Advani, S. G., & Glancey, J. L. (2011). Liquid composite molding control methodologies using vacuum induced preform relaxation. Composites Part A: Applied Science and Manufacturing, 42(1), 57-65.
[33] Smith, C. A., & Corripio, A. B. (1985). Principles and practice of automatic process control. Wiley.
[34] Seborg, D. E., Mellichamp, D. A., Edgar, T. F., & Doyle III, F. J. (2010). Process dynamics and control. John Wiley & Sons.
[35] Bobál, V., Böhm, J., Fessl, J., & Machácek, J. (2006). Digital Self-tuning Controllers: Algorithms, Implementation and Applications. Springer Science & Business Media.
[36] Ljung, L. (1998). System identification. Birkhäuser Boston.
[37] Åström, K. J., & Wittenmark, B. (2013). Adaptive control. Courier Corporation.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *