帳號:guest(18.190.153.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許愷玶
作者(外文):Hsu, Kai Ping
論文名稱(中文):Application of Laser Ablation on Biodegradable Polymers for Cell Contact Guidance in Tissue Regeneration
論文名稱(外文):運用雷射剝蝕生物可降解高分子誘導細胞分化以促進組織再生
指導教授(中文):王潔
指導教授(外文):Wang, Jane
口試委員(中文):朱一民
劉大佼
鄭兆珉
口試委員(外文):Chu, I Ming
Liu, Ta Jo
Cheng, Chao Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032537
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:97
中文關鍵詞:組織工程雷射剝蝕細胞誘導效應
外文關鍵詞:tissue engineeringlaser ablationcontact guidance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:218
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在組織工程領域中,細胞接觸誘導效應有益於促進血管新生和預防疤痕組織的生成,而細胞接觸誘導效應是利用材料的地勢形貌使細胞在其表面呈規律地方向性排列,本研究係利用雷射剝蝕於具生物相容性/生物可降解性的材料,製作出各式具不同地勢寬度和深度的式樣來探討材料地勢形貌對於細胞增生與排列的影響。

此篇研究使用的高分子材料為聚酯類的poly(glycerol sebacate) PGS 和 poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s APS,此兩種材料因具備生物可降解性且其機械性質介於與體內軟組織相似的範圍,因此適用於軟組織工程領域。

在生物相容性的測試中,對於纖維母細胞而言,APS與PGS均具備良好的生物相容性,其中又以PGS擁有較快的生長速率,整體來說,此兩種材料均適用於皮膚組織的再生。對於內皮細胞而言,APS 和 PGS 依然具備良好的生物相容性,其中又以APS勝出PGS,整體而言,此兩種材料也適用於血管組織的組織工程。

在細胞接觸誘導效應的測試中,我們測試了各式具不同地勢式樣的APS和PGS,且控制其雷射剝蝕的溝寬間距介於5-15μm。經由研究結果發現當APS和PGS表面具7μm寬和1.5μm深的剝蝕式樣時能夠使纖維母細胞擁呈現最佳的接觸誘導效應;而當APS和PGS表面具5μm寬和1.1μm深的剝蝕式樣時則夠使內皮細胞擁呈現最佳的接觸誘導效應。

同時,此研究亦利用雷射剝蝕技術製作出微流道系統來模擬人體微血管運作,研究結果發現人體血管內皮細胞能夠貼附於系統中,顯示出此系統應用於心血管組織再生工程的可能性。

我們相信利用雷射剝蝕生物可降解高分子,同時結合本研究所得到最佳的細胞接觸誘導效應於微流道系統將能夠促進血管組織的再生,並藉此更加進一步地朝器官再生的目標前進。
Up until June of 2016, there are roughly 120,000 people waiting for organ transplant in the United States. On average, less than 15% of patients on the organ transplant waiting list successfully receives a transplant surgery, indicating the serious shortage of organs for transplantation.[1] For patients that did receive a transplant, immunologic rejections remains a large challenge. Therefore, organ regeneration via tissue engineering is considered one promising alternative for patients in need.

Contact guidance refers to cell alignment on the surface of biomaterials, and is induced by the topographic patterns and difference choices of materials. In soft tissue regeneration, the alignment of cells is critical toward preventing scar formation and promoting angiogenesis. In this work, laser patterned scaffolds are created on several biodegradable/biocompatible materials with precise width and depth to illicit cell responses.

Two biodegradable polymers, poly(glycerol sebacate) (PGS), and poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s (APS) with analogous mechanical properties to the soft tissues are synthesized and used in this work, along with polydimethylsiloxane (PDMS).

In this study, fibroblasts were observed with good cell responses toward APS and PGS, with slight preference toward PGS, including cell morphology and proliferation rate, indicating its applicability in skin regeneration. For endothelial cells, good cell-material interactions were observed on both APS and PGS, with slight higher preference toward APS, indicating their potential applicability in vascular tissue engineering.
Studies of cell responses toward laser ablated APS and PGS with 5-15μm gratings were conducted, and directional growth of fibroblasts were observed. The best patterns among tested of contact guidance of fibroblasts on microgrooved APS and PGS were observed with 7μm gratings, and 1.5 μm deep. Meanwhile, the high contact guidance of endothelial cells was observed on laser ablated APS and PGS with 5μm gratings and at 1.1μm depth.

To achieve the ultimate goal of full organs regeneration through tissue engineering, biodegradable artificial microvascular tissues for transporting oxygen and nutrients play one of the most critical roles during regeneration.

This study combined laser ablation technique with endothelial cell culture to create microfluidic devices of APS to mimic the in vitro microvasculature. Endothelial cell attachments were observed under flow-induced shear stress in physiological level in this microfluidic system.

Through studies of contact guidance and cell seeding in microfluidic systems fabricated from laser ablation, it is believed that the combination of the two is the key to vasculature regeneration. Though there are much to be done still, this work has brought the idea of full organ regeneration one step closer to realization.
Chapter 1: Introduction 9
1.1 Introduction to Tissue Engineering 9
1.2 Introduction to Biocompatible and Biodegradable Polymeric Materials 12
1.2.1 Introduction to Poly(dimethylsiloxane)(PDMS)12
1.2.2 Introduction to Poly(Glecyrol Sebacate)s (PGS)13
1.2.3 Introduction to Poly(1,3-diamino-2-hydroxypropane-co-polyol sebacates (APS) 14
1.3 Introduction to Different Cell Line and Its Use in Biomedical Devices 17
1.3.2 Introduction to Fibroblasts and its biomedical devices 17
1.3.2.1 Introduction to Fibroblasts 17
1.3.2.2 Introduction to Skin Graft 20
1.3.3 Introduction to Endothelial Cells and Its Biomedical Applications 25
1.3.3.1 Introduction to Endothelial Cells 25
1.3.3.2 Introduction to Vascular Grafts 26
1.4 Introduction to Cell Contact Guidance 28
1.4.1 Fibroblasts (HIG82) Contact Guidance 33
1.4.2 Endothelial Cell (HUVEC) Contact Guidance 35
1.5 Introduction to Surface Wettability 37
1.6 Introduction to Laser Ablation 39
1.7 Introduction to Microfluidic Developments in Vascular Research 41
Chapter 2: Experimental Design and Fabrication 43
2.1 Material Synthesis 43
2.1.1 Poly(dimethylsiloxane) (PDMS) 43
2.1.2 Poly(glycerol sebacate) (PGS) 44
2.1.3 Poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s(APS) 44
2.1.4 Fabrication of PGS and APS film 44
2.2 Fabrication of Microgrooved and Microfluidic Devices by Laser Ablation 45
2.2.1 Fabrication of Microgrooved Device 45
2.2.2 Fabrication of Microfluidic Device 46
2.3 Alamar Blue Cell Proliferation Assay 48
2.4 Cell Contact Guidance Test 50
2.5 Microfluidic devices with endothelial cell seeding 50
2.6Cell Analysis of Fluorescent Microscopy and Scanning Electron Microscopy 51
2.6.1 Fluorescent Microscopy 51
2.6.2 Scanning Electron Microscopy of Cells on Various Topography 51
2.6.3 Scanning Electron Microscopy of Cells in Microfluidic Devices 51
2.7 Contact Angle Test 52
2.7.1 Surface Modification through Oxygen Plasma Treatments 52
Chapter 3: Result and Discussion 53
3.1 Laser Ablated Surface 53
3.2 Water Contact Angle Assays of Various Biomaterials 53
3.2.1 Biomaterials Surfaces (APS, PGS and PDMS) 54
3.2.2 Surface Modification through oxygen plasma treatment 55
3.3 Cell Proliferation and Attachment Assays between Different Biomaterials and Cell Line 57
3.3.1 Fibroblast Cell Culture (APS, PGS and PDMS) 57
3.3.2 Endothelial Cell Culture (APS, PGS and PDMS) 61
3.4 Cell Contact Guidance (with Different Width of Microgratings) 65
3.4.1 Fibroblast Cell Contact Guidance on APS 65
3.4.2 Endothelial Cell Contact Guidance on APS 69
3.5 The Characterizations of Depths in Microgrooves through Atomic Force Microscope 73
3.5.1 The Characterizations of Depths in APS Microgrooves 73
3.5.2 The Characterizations of Depths in PGS Microgrooves 75
3.6 Cell Contact Guidance on PGS 76
3.6.1 Fibroblast Cell Contact Guidance on PGS 77
3.6.2 Endothelial Cell Contact Guidance on PGS 77
3.7 Endothelial Cell Seeding in APS Microfluidic Device 79
Chapter 4: Conclusion 82
Chapter 5: Future Work 85
Chapter 6: Reference 85
1. The United States Renal Data System, UNOS, and the U.S. Department of Health & Human Services Organ Procurement and Transplantation Network (OPTN) and Scientific Registry of Transplant Recipients (SRTR) Annual Report. 2014.
2. OECD, Health at a Glance 2011. OECD Publishing.
3. den Braber, E.T., et al., Orientation of ECM protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone microgrooved surfaces. J Biomed Mater Res, 1998. 40(2): p. 291-300.
4. Steven I Rabin, M., Immune Response to Implants Medscape, 2013.
5. Bell, E., et al., Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. 211.
6. Puelacher, W.C., et al., Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Biomaterials, 1994. 15(10): p. 774-8.
7. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-6.
8. Ijima, H., et al., Development of a hybrid artificial liver using a polyurethane foam/hepatocyte-spheroid packed-bed module. Int J Artif Organs, 2000. 23(6): p. 389-97.
9. Atala, A., et al., Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006. 367(9518): p. 1241-6.
10. LeBaron, R.G. and K.A. Athanasiou, Ex vivo synthesis of articular cartilage. Biomaterials, 2000. 21(24): p. 2575-87.
11. Zakhem, E., et al., Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. 33(19).
12. Heath, C.A. and G.E. Rutkowski, The development of bioartificial nerve grafts for peripheral-nerve regeneration. Trends Biotechnol, 1998. 16(4): p. 163-8.
13. Su, C.H., et al., Development of fungal mycelia as skin substitutes: effects on wound healing and fibroblast. Biomaterials, 1999. 20(1): p. 61-8.
14. Dvir, T., et al., Nanotechnological strategies for engineering complex tissues. Nat Nano, 2011. 6(1): p. 13-22.
15. Badylak, S.F., The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol, 2002. 13(5): p. 377-83.
16. Brownlee, C., Role of the extracellular matrix in cell-cell signalling: paracrine paradigms. Curr Opin Plant Biol, 2002. 5(5): p. 396-401.
17. Wang, J., et al., The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials, 2011. 32(31): p. 7822-30.
18. Hollister, S.J., Porous scaffold design for tissue engineering. Nat Mater, 2005. 4(7): p. 518-24.
19. Kuncová Kallio, J., P. Kuncova Kallio, and Kallio, PDMS and its Suitability for Analytical Microfluidic Devices. 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006: p. 2486-2489.
20. Fiddes, L.K., et al., A circular cross-section PDMS microfluidics system for replication of cardiovascular flow conditions. Biomaterials, 2010. 31(13): p. 3459-3464.
21. McKee, C.T., et al., Indentation Versus Tensile Measurements of Young's Modulus for Soft Biological Tissues. Tissue Engineering. Part B, Reviews, 2011. 17(3): p. 155-164.
22. Wang, Y., et al., A tough biodegradable elastomer. Nature biotechnology, 2002. 20(6): p. 602-606.
23. Wang, Y., R. Kim, and Langer, In vivo degradation characteristics of poly(glycerol sebacate). Journal of biomedical materials research, 2003. 66(1): p. 192-197.
24. Pomerantseva, I., et al., Degradation behavior of poly(glycerol sebacate). Journal of biomedical materials research. Part A, 2009. 91(4): p. 1038-1047.
25. Bettinger, C.J., et al., Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials, 2008. 29(15): p. 2315-2325.
26. Wang, J., et al., Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers. Organogenesis, 2010. 6(4): p. 212-216.
27. Rodriguez Galan, A., et al., Degradable Poly(ester amide)s for Biomedical Applications. Polymers, 2011. 3(1): p. 65-99.
28. Bettinger, C., et al., Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials, 2008. 29(15): p. 2315-2325.
29. I D Johnston, D.K.M., C K L Tan and M C Tracey, Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. Journal of Micromechanics and Microengineering, 2014. 24.
30. Wang, J., et al., Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers. Organogenesis, 2010. 6(4): p. 212-216.
31. Alberts B, Johnson A, Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Fibroblasts and Their Transformations: The Connective-Tissue Cell Family. Available from: http://www.ncbi.nlm.nih.gov/books/NBK26889/.
32. Pharmacology of the Skin I. Fibroblasts, Collagen, Elastin, Proteoglycans and Glycoproteins, ed. B.V.N. C. M. Lapière. 1989.
33. Rodemann, H.P. and H.-O. Rennekampff, Functional Diversity of Fibroblasts, in Tumor-Associated Fibroblasts and their Matrix, M.M. Mueller and N.E. Fusenig, Editors. 2011, Springer Netherlands. p. 23-36.
34. McDougall, S., et al., Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2006. 364(1843): p. 1385-1405.
35. Werner, S., T. Krieg, and H. Smola, Keratinocyte-Fibroblast Interactions in Wound Healing. J Invest Dermatol, 0000. 127(5): p. 998-1008.
36. Georgescu, H.I., D. Mendelow, and C.H. Evans, HIG-82: an established cell line from rabbit periarticular soft tissue, which retains the "activatable" phenotype. In Vitro Cell Dev Biol, 1988. 24(10): p. 1015-22.
37. Darby, I.A. and T.D. Hewitson, Fibroblast Differentiation in Wound Healing and Fibrosis, in International Review of Cytology. 2007, Academic Press. p. 143-179.
38. Darby, I.A. and T.D. Hewitson, Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol, 2007. 257: p. 143-79.
39. Sarrazy, V., et al., Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen, 2011. 19 Suppl 1: p. s10-5.
40. Moore, L. and Y.W. Chien, Transdermal drug delivery: a review of pharmaceutics, pharmacokinetics, and pharmacodynamics. Crit Rev Ther Drug Carrier Syst, 1988. 4(4): p. 285-349.
41. Huss, F.R.M., et al., Characterization of a new degradable polymer scaffold for regeneration of the dermis: In vitro and in vivo human studies. Organogenesis, 2008. 4(3): p. 195-200.
42. Varkey, M., J. Ding, and E.E. Tredget, Advances in Skin Substitutes—Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing. Journal of functional biomaterials, 2015. 6(3): p. 547-563.
43. Sherwood L (2004) Human physiology: from cells to systems. 6th
Edition, Thomson Brooks, Stamford.
44. Clark, R.F., Overview and General Considerations of Wound Repair, in The Molecular and Cellular Biology of Wound Repair, R.A.F. Clark and P.M. Henson, Editors. 1988, Springer US. p. 3-33.
45. Balasubramani, M., T.R. Kumar, and M. Babu, Skin substitutes: a review. Burns, 2001. 27(5): p. 534-544.
46. Gilmore, M.A., Phases of wound healing. Dimens Oncol Nurs, 1991. 5(3): p. 32-4.
47. Bainbridge, P., Wound healing and the role of fibroblasts. J Wound Care, 2013. 22(8): p. 407-8, 410-12.
48. Kirsner, R.S. and W.H. Eaglstein, The wound healing process. Dermatol Clin, 1993. 11(4): p. 629-40.
49. R.A.F. Clark, P.M. Henson
The molecular and cellular biology of wound repair.Plenum Press, New York (1988).
50. Burke, J.F., et al., Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Annals of Surgery, 1981. 194(4): p. 413-428.
51. Stanton, R.A. and D.A. Billmire, Skin resurfacing for the burned patient. Clin Plast Surg, 2002. 29(1): p. 29-51.
52. Andreassi, A., et al., Classification and pathophysiology of skin grafts. Clin Dermatol, 2005. 23(4): p. 332-7.
53. Shevchenko, R.V., S.L. James, and S.E. James, A review of tissue-engineered skin bioconstructs available for skin reconstruction. Journal of The Royal Society Interface, 2010. 7(43): p. 229-258.
54. Yannas, I.V. and J.F. Burke, Design of an artificial skin. I. Basic design principles. J Biomed Mater Res, 1980. 14(1): p. 65-81.
55. Halim, A.S., T.L. Khoo, and S.J. Mohd. Yussof, Biologic and synthetic skin substitutes: An overview. Indian Journal of Plastic Surgery : Official Publication of the Association of Plastic Surgeons of India, 2010. 43(Suppl): p. S23-S28.
56. Jones, I., L. Currie, and R. Martin, A guide to biological skin substitutes. British Journal of Plastic Surgery, 2002. 55(3): p. 185-193.
57. Pham, C., et al., Bioengineered skin substitutes for the management of burns: A systematic review. Burns, 2007. 33(8): p. 946-957.
58. G Naughton, J Mansbridge, G Gentzkow
Artif. Organs, 21 (1997), p. 1203.
59. Larson, B.J., M.T. Longaker, and H.P. Lorenz, Scarless fetal wound healing: a basic science review. Plast Reconstr Surg, 2010. 126(4): p. 1172-80.
60. Alberts B, J.A., Lewis J, et al. Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. Blood Vessels and Endothelial Cells. Available from: http://www.ncbi.nlm.nih.gov/books/NBK26848/.
61. Cines, D.B., et al., Endothelial Cells in Physiology and in the Pathophysiology of Vascular Disorders. Blood, 1998. 91(10): p. 3527-3561.
62. Sumpio, B.E., J.T. Riley, and A. Dardik, Cells in focus: endothelial cell. Int J Biochem Cell Biol, 2002. 34(12): p. 1508-12.
63. Sumpio, B.E., J. Timothy Riley, and A. Dardik, Cells in focus: endothelial cell. The International Journal of Biochemistry & Cell Biology, 2002. 34(12): p. 1508-1512.
64. Park, H.J., et al., Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem Cell Rev, 2006. 2(2): p. 93-102.
65. Organization, W.H., Cardiovascular diseases (CVDs). 2012.
66. Sherer, Y. and Y. Shoenfeld, Mechanisms of Disease: atherosclerosis in autoimmune diseases. Nat Clin Pract Rheum, 2006. 2(2): p. 99-106.
67. Seal, B.L., T.C. Otero, and A. Panitch, Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports, 2001. 34(4–5): p. 147-230.
68. Couet, F., N. Rajan, and D. Mantovani, Macromolecular biomaterials for scaffold-based vascular tissue engineering. Macromol Biosci, 2007. 7(5): p. 701-18.
69. L'Heureux, N., et al., Technology Insight: the evolution of tissue-engineered vascular grafts[mdash]from research to clinical practice. Nat Clin Pract Cardiovasc Med, 2007. 4(7): p. 389-395.
70. Chlupac, J., E. Filova, and L. Bacakova, Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res, 2009. 58 Suppl 2: p. S119-39.
71. Blumenberg, R.M., et al., Clinical significance of aortic graft dilation. J Vasc Surg, 1991. 14(2): p. 175-80.
72. Clarke, J., et al., Seeding Dacron arterial prostheses with peritoneal mesothelial cells: a preliminary morphological study. British journal of surgery, 1984. 71(7): p. 492-494.
73. Golden, M.A., et al., Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J Vasc Surg, 1990. 11(6): p. 838-44; discussion 845.
74. Guidoin, R., et al., Expanded polytetrafluoroethylene arterial prostheses in humans: histopathological study of 298 surgically excised grafts. Biomaterials, 1993. 14(9): p. 678-93.
75. Roll, S., et al., Dacron vs. PTFE as bypass materials in peripheral vascular surgery--systematic review and meta-analysis. BMC Surg, 2008. 8: p. 22.
76. Peck, M., et al., The evolution of vascular tissue engineering and current state of the art. Cells Tissues Organs, 2012. 195(1-2): p. 144-58.
77. Bordenave, L., P. Menu, and C. Baquey, Developments towards tissue-engineered, small-diameter arterial substitutes. Expert Rev Med Devices, 2008. 5(3): p. 337-47.
78. Greenwald, S.E. and C.L. Berry, Improving vascular grafts: the importance of mechanical and haemodynamic properties. J Pathol, 2000. 190(3): p. 292-9.
79. Wang, Y., et al., A tough biodegradable elastomer. Nat Biotech, 2002. 20(6): p. 602-606.
80. Assoul, N., et al., Mechanical properties of rat thoracic and abdominal aortas. Journal of Biomechanics, 2008. 41(10): p. 2227-2236.
81. Harrison, R. G. (1912), The cultivation of tissues in extraneous media as a method of morpho-genetic study. Anat. Rec., 6: 181–193. doi: 10.1002/ar.1090060404.
82. Weiss, P., Experiments on cell and axon orientation in vitro; the role of colloidal exudates in tissue organization. J Exp Zool, 1945. 100: p. 353-86.
83. Zhu, B., et al., Effects of laser-modified polystyrene substrate on CHO cell growth and alignment. J Biomed Mater Res B Appl Biomater, 2004. 70(1): p. 43-8.
84. Curtis, A. and C. Wilkinson, Topographical control of cells. Biomaterials, 1997. 18(24): p. 1573-83.
85. Brunette, D.M., The effects of implant surface topography on the behavior of cells. Int J Oral Maxillofac Implants, 1988. 3(4): p. 231-46.
86. Bourget, Jean-Michel, et al. Alignment of Cells and Extracellular Matrix Within Tissue-Engineered Substitutes. INTECH Open Access Publisher, 2013.
87. Zhou, F., et al., Phenomenon of “contact guidance“ on the surface with nano-micro-groove-like pattern and cell physiological effects. Chinese Science Bulletin, 2009. 54(18): p. 3200-3205.
88. von Recum, A.F. and T.G. van Kooten, The influence of micro-topography on cellular response and the implications for silicone implants. J Biomater Sci Polym Ed, 1995. 7(2): p. 181-98.
89. Hoffmann, M. and U. Schwarz, A kinetic model for RNA-interference of focal adhesions. BMC Systems Biology, 2013. 7(1): p. 2.
90. Barthes, J., et al., Cell Microenvironment Engineering and Monitoring for Tissue Engineering and Regenerative Medicine: The Recent Advances. BioMed Research International, 2014. 2014: p. 18.
91. Ranucci, C.S. and P.V. Moghe, Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density. J Biomed Mater Res, 2001. 54(2): p. 149-61.
92. Walboomers, X.F. and J.A. Jansen, Cell and tissue behavior on micro-grooved surfaces. Odontology, 2001. 89(1): p. 2-11.
93. Micromechanical tools for precise control and measurement of mechanical stimuli and responses. IBBL research, 2015.
94. Wang, J.H.C., et al., Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction. Journal of Biomechanics, 2004. 37(4): p. 573-576.
95. Silver, F.H., D. DeVore, and L.M. Siperko, Invited Review: Role of mechanophysiology in aging of ECM: effects of changes in mechanochemical transduction. J Appl Physiol (1985), 2003. 95(5): p. 2134-41.
96. Ottani, V., M. Raspanti, and A. Ruggeri, Collagen structure and functional implications. Micron, 2001. 32(3): p. 251-60.
97. Chou, L., et al., Effects of titanium substratum and grooved surface topography on metalloproteinase-2 expression in human fibroblasts. J Biomed Mater Res, 1998. 39(3): p. 437-45.
98. Goto, T. and D.M. Brunette, Surface topography and serum concentration affect the appearance of tenascin in human gingival fibroblasts in vitro. Exp Cell Res, 1998. 244(2): p. 474-80.
99. Wojciak-Stothard, B., et al., Role of the cytoskeleton in the reaction of fibroblasts to multiple grooved substrata. Cell Motil Cytoskeleton, 1995. 31(2): p. 147-58.
100. van Kooten, T.G., J.F. Whitesides, and A. von Recum, Influence of silicone (PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. J Biomed Mater Res, 1998. 43(1): p. 1-14.
101. den Braber, E.T., et al., Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro-grooves. Biomaterials, 1996. 17(11): p. 1093-9.
102. Walboomers, X.F., et al., Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials, 1998. 19(20): p. 1861-8.
103. Walboomers, X.F., et al., Attachment of fibroblasts on smooth and microgrooved polystyrene. J Biomed Mater Res, 1999. 46(2): p. 212-20.
104. Walboomers, X.F., L.A. Ginsel, and J.A. Jansen, Early spreading events of fibroblasts on microgrooved substrates. J Biomed Mater Res, 2000. 51(3): p. 529-34.
105. Hong, Y., et al., A small diameter, fibrous vascular conduit generated from a poly(ester urethane)urea and phospholipid polymer blend. Biomaterials, 2009. 30(13): p. 2457-67.
106. Williamson, M.R., R. Black, and C. Kielty, PCL–PU composite vascular scaffold production for vascular tissue engineering: Attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials, 2006. 27(19): p. 3608-3616.
107. Sarkar, S., et al., The Mechanical Properties of Infrainguinal Vascular Bypass Grafts: Their Role in Influencing Patency. European Journal of Vascular and Endovascular Surgery, 2006. 31(6): p. 627-636.
108. Uttayarat, P., et al., Microtopography and flow modulate the direction of endothelial cell migration. Am J Physiol Heart Circ Physiol, 2008. 294(2): p. H1027-35.
109. Uttayarat, P., et al., Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J Biomed Mater Res A, 2005. 75(3): p. 668-80.
110. Jiang, X., et al., Controlling Mammalian Cell Spreading and Cytoskeletal Arrangement with Conveniently Fabricated Continuous Wavy Features on Poly(dimethylsiloxane). Langmuir, 2002. 18(8): p. 3273-3280.
111. Uttayarat, P., et al., Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater, 2010. 6(11): p. 4229-37.
112. Dewez, J.-L., et al., Competitive adsorption of proteins: Key of the relationship between substratum surface properties and adhesion of epithelial cells. Biomaterials, 1999. 20(6): p. 547-559.
113. Wei, J., et al., Influence of surface wettability on competitive protein adsorption and initial attachment of osteoblasts. Biomed Mater, 2009. 4(4): p. 045002.
114. Goddard, J.M. and J.H. Hotchkiss, Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 2007. 32(7): p. 698-725.
115. Roach, P., et al., Quantification of surface-bound proteins by fluorometric assay: Comparison with quartz crystal microbalance and amido black assay. J Phys Chem B, 2006. 110(41): p. 20572-9.
116. Song, W. and J.F. Mano, Interactions between cells or proteins and surfaces exhibiting extreme wettabilities. Soft Matter, 2013. 9(11): p. 2985-2999.
117. Vogler, E.A., Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998. 74(1–3): p. 69-117.
118. Geckeler, K.E., R. Wacker, and W.K. Aicher, Biocompatibility correlation of polymeric materials using human osteosarcoma cells. Naturwissenschaften, 2000. 87(8): p. 351-4.
119. Vladkova, T.G., Surface Engineered Polymeric Biomaterials with Improved Biocontact Properties. International Journal of Polymer Science, 2010. 2010.
120. van Wachem, P.B., et al., Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials, 1987. 8(5): p. 323-8.
121. Dowling, D.P., et al., Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J Biomater Appl, 2011. 26(3): p. 327-47.
122. Malek, C. and M. Khan, Laser processing for bio-microfluidics applications (part I). Analytical and bioanalytical chemistry, 2006. 385(8): p. 1351-1361.
123. Khan Malek, C. and M. Khan, Laser processing for bio-microfluidics applications (part II). Analytical and bioanalytical chemistry, 2006. 385(8): p. 1362-1369.
124. D.Schaeffer, R., Fundamentals of Laser Micromachining. 2012.
125. D.Minteer, S., Microfluidic Technique Reviews and Protocols. 2006.
126. Thomas, R., Practical Guide to ICP-MS: A Tutorial for Beginners, Third Edition. 2013: CRC Press. 178.
127. Chiu, C. and C.F. Moss, The role of the external ear in vertical sound localization in the free flying bat, Eptesicus fuscus. Journal of the Acoustical Society of America, 2007. 121(4).
128. Hicklin, D.J. and L.M. Ellis, Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal of clinical oncology, 2005. 23(5): p. 1011-1027.
129. Cosentino, F. and T. Lüscher, Endothelial dysfunction in diabetes mellitus. Journal of cardiovascular pharmacology, 1997. 32: p. S54-61.
130. Wong, K.H., et al., Microfluidic models of vascular functions. Annual review of biomedical engineering, 2012. 14: p. 205-230.
131. Li, Y.-S.J., J.H. Haga, and S. Chien, Molecular basis of the effects of shear stress on vascular endothelial cells. Journal of biomechanics, 2005. 38(10): p. 1949-1971.
132. Cunningham, K.S. and A.I. Gotlieb, The role of shear stress in the pathogenesis of atherosclerosis. Laboratory investigation, 2005. 85(1): p. 9-23.
133. Myers, D.R., et al., Endothelialized microfluidics for studying microvascular interactions in hematologic diseases. Journal of visualized experiments: JoVE, 2012(64).
134. Tkachenko, E., et al., An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab on a Chip, 2009. 9(8): p. 1085-1095.
135. Van der Meer, A., et al., Microfluidic technology in vascular research. BioMed Research International, 2009. 2009.
136. Al-Nasiry, S., et al., The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Human Reproduction, 2007. 22(5): p. 1304-1309.
137. alamarBlue® Assay for Assessment of Cell Proliferation using the FLUOstar OPTIMA
A.E. Markaki, Dept. of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK, 06/2009.
138. Reagent, T.S.a.C.V.A., alamarBlue™ Cell Viability
Assay Reagent http://www.interchim.fr/ft/6/66941P.pdf.
139. Proliferation Bioassay HUVECs https://www.rndsystems.com/resources/protocols/proliferation-bioassay-huvecs.
140. Fels, J., H. Oberleithner, and K. Kusche-Vihrog, Ménage à trois: Aldosterone, sodium and nitric oxide in vascular endothelium. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2010. 1802(12): p. 1193-1202.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *