帳號:guest(3.143.25.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴建銘
作者(外文):Lai, Chien Ming
論文名稱(中文):以預鋰化鍺銅和矽銅雙層奈米線織布 作為陽極材料的鋰離子電容器
論文名稱(外文):Bilayer Prelithiated Ge/Cu and Si/Cu Nanowire Fabric as an Anode for Lithium Ion Capacitors
指導教授(中文):段興宇
指導教授(外文):Tuan, Hsing Yu
口試委員(中文):周更生
曾院介
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032530
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:42
中文關鍵詞:鋰離子電容器混合型超級電容器奈米線織布鍺銅矽銅預鋰化
外文關鍵詞:Lithium ion capacitorshybrid supercapacitorsnanowire fabricGe/CuSi/Cupre-lithiated
相關次數:
  • 推薦推薦:0
  • 點閱點閱:144
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在行動裝置及各種電動裝置發展快速的年代,高能量密度的儲電裝置已經不僅僅是唯一的需求,高效率密度也將視需要考慮的重點,因此,開發一個同時擁有高能量密度極高效率密度的儲電裝置將會是未來發展的趨勢。藉此我們使用預鋰化的鍺銅奈米織布以及矽銅奈米織布作為陽極陽極搭配活性碳作為陰極材料,組成鋰離子電容器。不僅可以提升高能量密度,同時擁有不輸電雙層電容器的效率密度。而鍺銅為陽極的電容器的表現如下:可以在0.1 A g-1 的電流密度下,擁有將近200 F g-1 的電容,而在高達100 A g-1 的高電流密度也仍保持有50 F g-1 的電容大小,同時此電容器在180 W h kg-1 的較高能量密度下,仍有108 W kg-1 的功率密度;而在較低的能量密度時,擁有約110 kW kg-1 的高效率密度,有著比現今許多文獻還高的效率密度值,而以矽銅為陽極的電容器在0.1 A g-1 的低電流密度下,擁有約170 F g-1 的電容值,並且在50 A g-1 的高電流密度下,也能保有50 F g-1 的電容值,並且擁有208 Wh kg-1 的高能量密度以及75 kW kg-1 的高功率密度,相信這個裝置將可以使用在許多的電動裝置上。
At present, due to the development of portable device and electric vehicles, high energy density isn’t the only purpose required. Possessing high power density is another issue which needs to be considered. An electrical device containing both high energy density and high power density will be the most wanted result. As a result, a lithium ion capacitor has been designed by using pre-lithiated germanium/copper and silicon/copper nanowire fabric for negative electrodes with activated carbon for positive electrodes. For germanium, the performance is 200 F g-1 at 0.1 A g-1. And at high current density of 100 A g-1, the capacitance can still hold about 50 F g-1. The LIC have 108 W kg-1, when the energy density is 180 W h kg-1. While low energy density, the LIC would have ultrahigh power density of 110kW kg-1. For silicon, the performance of this LIC at 0.1 g-1 is 220 F g-1, which is approximated twice of capacitance of AC in EDLCs. Even at high current density of 50 A g-1, the capacitance can still hold about 80 F g-1. At a low power density of 170 W kg-1, the energy density is as high as 208 W h kg-1. The power density increases to 75 kW kg-1, which is much higher than most results in lithium ion capacitors, while the energy density still remains at 43 W h kg-1. As a result, we believe that this device can be used in numerous applications such as electrical vehicles (EVs) and hybrid electrical vehicles (HEVs).
中文摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables VIII
Chapter 1. Introduction 1
1.1 Supercapacitors 2
1.2 Electric Double Layer Capacitors 2
1.3 Lithium Ion Capacitors 5
Chapter 2. Experimental Details 9
2.1Materials. 9
2.2 Au Nanoparticles Synthesis 9
2.3 Ge Nanowires Synthesis 10
2.4 Ge Nanowires Surface Passivation 11
2.5 Si Nanowires Synthesis 11
2.6 Si Nanowires Surface Passivation 12
2.7 Cu Nanowires Synthesis 12
2.8 Preparation of Ge/Cu and Si/Cu Nanowire Fabric Electrode 13
2.9 Preparation of Activated Carbon Electrode 13
2.10 Lithium Ion Battery Assembly and Electrochemical Characterization 14
2.11 Lithium Ion Capacitors Assembly and Electrochemical Characterization 14
2.12 Experimental Analysis 14
Chapter 3. Result and Discussion 15
3.1 Ge/Cu Nanowire Fabric// AC Lithium Ion Capacitors 15
3.1.1 Ge Nanowires Characteristic 15
3.1.2 Cu Nanowires Characteristic 17
3.1.3 Ge/Cu Nanowire Fabric Characteristic 17
3.1.4 Ge/Cu Nanowire Fabric Electrochemical Performance 19
3.1.5 Activated Carbon Electrode Electrochemical Performance 19
3.1.6 Asymmetric Lithium ion Capacitors Electrochemical Performance 22
3.2 Si/Cu Nanowire Fabric// AC Lithium Ion Capacitors 26
3.2.1 Si Nanowires Characteristic 26
3.2.2 Si/Cu Nanowire Fabric Electrochemical Performance 29
3.2.3 Pre-lithiation of Si/Cu Nanowire Fabric 29
3.2.4 Si/Cu Nanowire Fabric Electrochemical Performance 32
Chapter 4. Conclusion 37
Chapter 5. Reference 38
1. Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
2. Miller, J. R.; Simon, P., Materials science - Electrochemical capacitors for energy management. Science 2008, 321 (5889), 651-652.
3. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nat Mater 2008, 7 (11), 845-854.
4. Simon, P.; Gogotsi, Y.; Dunn, B., Where Do Batteries End and Supercapacitors Begin? Science 2014, 343 (6176), 1210-1211.
5. Winter, M.; Brodd, R. J., What are batteries, fuel cells, and supercapacitors? Chem Rev 2004, 104 (10), 4245-4269.
6. Kotz, R.; Carlen, M., Principles and applications of electrochemical capacitors. Electrochim Acta 2000, 45 (15-16), 2483-2498.
7. Frackowiak, E.; Beguin, F., Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39 (6), 937-950.
8. Zhang, L. L.; Zhao, X. S., Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38 (9), 2520-2531.
9. Obreja, V. V. N., On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material - A review. Physica E-Low-Dimensional Systems & Nanostructures 2008, 40 (7), 2596-2605.
10. Vivekchand, S. R. C.; Rout, C. S.; Subrahmanyam, K. S.; Govindaraj, A.; Rao, C. N. R., Graphene-based electrochemical supercapacitors. J Chem Sci 2008, 120 (1), 9-13.
11. Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P., Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130 (9), 2730-+.
12. Qu, D. Y.; Shi, H., Studies of activated carbons used in double-layer capacitors. J Power Sources 1998, 74 (1), 99-107.
13. Sivakkumar, S. R.; Pandolfo, A. G., Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode. Electrochim Acta 2012, 65, 280-287.
14. Plitz, I.; DuPasquier, A.; Badway, F.; Gural, J.; Pereira, N.; Gmitter, A.; Amatucci, G. G., The design of alternative nonaqueous high power chemistries. Appl Phys a-Mater 2006, 82 (4), 615-626.
15. Choi, H. S.; Im, J. H.; Kim, T.; Park, J. H.; Park, C. R., Advanced energy storage device: a hybrid BatCap system consisting of battery-supercapacitor hybrid electrodes based on Li4Ti5O12-activated-carbon hybrid nanotubes. J. Mater. Chem. 2012, 22 (33), 16986-16993.
16. Kim, H.; Cho, M. Y.; Kim, M. H.; Park, K. Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K., A Novel High-Energy Hybrid Supercapacitor with an Anatase TiO2-Reduced Graphene Oxide Anode and an Activated Carbon Cathode. Adv Energy Mater 2013, 3 (11), 1500-1506.
17. Li, H. Q.; Cheng, L.; Xia, Y. Y., A hybrid electrochemical supercapacitor based on a 5 VLi-ion battery cathode and active carbon. Electrochem Solid St 2005, 8 (9), A433-A436.
18. Wu, H. M.; Rao, C. V.; Rambabu, B., Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor. Mater Chem Phys 2009, 116 (2-3), 532-535.
19. Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J., LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy-Storage Devices. Adv. Mater. 2009, 21 (25-26), 2710-+.
20. Ma, S. B.; Nam, K. W.; Yoon, W. S.; Yang, X. Q.; Ahn, K. Y.; Oh, K. H.; Kim, K. B., A novel concept of hybrid capacitor based on manganese oxide materials. Electrochem. Commun. 2007, 9 (12), 2807-2811.
21. Amatucci, G. G.; Badway, F.; Du Pasquier, A.; Zheng, T., An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 2001, 148 (8), A930-A939.
22. Du Pasquier, A.; Plitz, I.; Gural, J.; Menocal, S.; Amatucci, G., Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes. J Power Sources 2003, 113 (1), 62-71.
23. Zhang, F.; Zhang, T. F.; Yang, X.; Zhang, L.; Leng, K.; Huang, Y.; Chen, Y. S., A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energ Environ Sci 2013, 6 (5), 1623-1632.
24. Kennedy, T.; Mullane, E.; Geaney, H.; Osiak, M.; O'Dwyer, C.; Ryan, K. M., High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles Through in Situ Formation of a Continuous Porous Network. Nano Lett. 2014, 14 (2), 716-723.
25. Bogart, T. D.; Chockla, A. M.; Korgel, B. A., High capacity lithium ion battery anodes of silicon and germanium. Curr Opin Chem Eng 2013, 2 (3), 286-293.
26. Weydanz, W. J.; Wohlfahrt-Mehrens, M.; Huggins, R. A., A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries. J Power Sources 1999, 81, 237-242.
27. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 2008, 3 (1), 31-35.
28. Obrovac, M. N.; Christensen, L., Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid St 2004, 7 (5), A93-A96.
29. Dahn, J. R.; Zheng, T.; Liu, Y. H.; Xue, J. S., Mechanisms for Lithium Insertion in Carbonaceous Materials. Science 1995, 270 (5236), 590-593.
30. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P., Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10 (10), 725-763.
31. Khomenko, V.; Raymundo-Pinero, E.; Beguin, F., High-energy density graphite/AC capacitor in organic electrolyte. J Power Sources 2008, 177 (2), 643-651.
32. Chen, Z.; Augustyn, V.; Wen, J.; Zhang, Y. W.; Shen, M. Q.; Dunn, B.; Lu, Y. F., High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. Adv. Mater. 2011, 23 (6), 791-+.
33. Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.; Mitlin, D., Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res 2012, 5 (9), 605-617.
34. Aravindan, V.; Chuiling, W.; Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R.; Madhavi, S., Carbon coated nano-LiTi2(PO4)(3) electrodes for non-aqueous hybrid supercapacitors. PCCP 2012, 14 (16), 5808-5814.
35. Chen, Z.; Yuan, Y.; Zhou, H. H.; Wang, X. L.; Gan, Z. H.; Wang, F. S.; Lu, Y. F., 3D Nanocomposite Architectures from Carbon-Nanotube-Threaded Nanocrystals for High-Performance Electrochemical Energy Storage. Adv. Mater. 2014, 26 (2), 339-345.
36. Wang, Y. G.; Hong, Z. S.; Wei, M. D.; Xia, Y. Y., Layered H2Ti6O13-Nanowires: A New Promising Pseudocapacitive Material in Non-Aqueous Electrolyte. Adv. Funct. Mater. 2012, 22 (24), 5185-5193.
37. Leng, K.; Zhang, F.; Zhang, L.; Zhang, T. F.; Wu, Y. P.; Lu, Y. H.; Huang, Y.; Chen, Y. S., Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res 2013, 6 (8), 581-592.
38. Jain, A.; Aravindan, V.; Jayaraman, S.; Kumar, P. S.; Balasubramanian, R.; Ramakrishna, S.; Madhavi, S.; Srinivasan, M. P., Activated carbons derived from coconut shells as high energy density cathode material for Li-ion capacitors. Sci Rep-Uk 2013, 3.
39. Wang, H. L.; Xu, Z. W.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X. H.; Zahiri, B.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D., Hybrid Device Employing Three-Dimensional Arrays of MnO in Carbon Nanosheets Bridges Battery-Supercapacitor Divide. Nano Lett. 2014, 14 (4), 1987-1994.
40. Holmberg, V. C.; Korgel, B. A., Corrosion Resistance of Thiol- and Alkene-Passivated Germanium Nanowires. Chem Mater 2010, 22 (12), 3698-3703.
41. Yuan, F. W.; Tuan, H. Y., Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications. Chem Mater 2014, 26 (6), 2172-2179.
42. Barth, S.; Seifner, M. S.; Bernardi, J., Microwave-assisted solution-liquid-solid growth of Ge1-xSnx nanowires with high tin content. Chem. Commun. 2015, 51 (61), 12282-12285.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *