|
[1] Z. Zhang and P. Wang, "Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays," Energy & Environmental Science, vol. 5, pp. 6506-6512, 2012. [2] N. S. Lewis, "Toward cost-effective solar energy use," science, vol. 315, pp. 798-801, 2007. [3] M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, vol. 11, pp. 401-425, 2007. [4] S. Chen and Y. Liu, "Study on the photocatalytic degradation of glyphosate by TiO2 photocatalyst," Chemosphere, vol. 67, pp. 1010-1017, 2007. [5] D. Tryk, A. Fujishima, and K. Honda, "Recent topics in photoelectrochemistry: achievements and future prospects," Electrochimica acta, vol. 45, pp. 2363-2376, 2000. [6] J. R. H. Ross, "Heterogeneous Catalysis Fundamentals and Applications," ed: Elsevier B.V. , 2012, pp. 48-51. [7] D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, et al., "Band alignment of rutile and anatase TiO2," Nature materials, vol. 12, pp. 798-801, 2013. [8] A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chemical Society Reviews, vol. 38, pp. 253-278, 2009. [9] A. J. Bard and M. Stratmann, Encyclopedia of electrochemistry volume 6: semiconductor electrodes and photoelectrochemistry: Wiley-VCh, 2003. [10] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001. [11] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, et al., "Solar water splitting cells," Chemical reviews, vol. 110, pp. 6446-6473, 2010. [12] S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, V. Cauda, et al., "Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting," Physical Chemistry Chemical Physics, vol. 17, pp. 7775-7786, 2015. [13] W. Huang, X. Wang, Y. Xue, Y. Yang, and X. Ao, "Hybrid nanostructures of mixed-phase TiO2 for enhanced photoelectrochemical water splitting," RSC Advances, vol. 5, pp. 56098-56102, 2015. [14] Q. Kang, J. Cao, Y. Zhang, L. Liu, H. Xu, and J. Ye, "Reduced TiO2 nanotube arrays for photoelectrochemical water splitting," Journal of Materials Chemistry A, vol. 1, pp. 5766-5774, 2013. [15] K. Raja, V. Mahajan, and M. Misra, "Determination of photo conversion efficiency of nanotubular titanium oxide photo-electrochemical cell for solar hydrogen generation," Journal of power sources, vol. 159, pp. 1258-1265, 2006. [16] A. Murphy, P. Barnes, L. Randeniya, I. Plumb, I. Grey, M. Horne, et al., "Efficiency of solar water splitting using semiconductor electrodes," International journal of hydrogen energy, vol. 31, pp. 1999-2017, 2006. [17] Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, et al., "Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols," J. Mater. Res, vol. 25, p. 3, 2010. [18] U. Diebold, "The surface science of titanium dioxide," Surface science reports, vol. 48, pp. 53-229, 2003. [19] Y. C. Nah, I. Paramasivam, and P. Schmuki, "Doped TiO2 and TiO2 nanotubes: synthesis and applications," ChemPhysChem, vol. 11, pp. 2698-2713, 2010. [20] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, "Environmental applications of semiconductor photocatalysis," Chemical reviews, vol. 95, pp. 69-96, 1995. [21] A. L. Linsebigler, G. Lu, and J. T. Yates Jr, "Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results," Chemical reviews, vol. 95, pp. 735-758, 1995. [22] M. Landmann, E. Rauls, and W. Schmidt, "The electronic structure and optical response of rutile, anatase and brookite TiO2," Journal of Physics: Condensed Matter, vol. 24, p. 195503, 2012. [23] D. Macwan, P. N. Dave, and S. Chaturvedi, "A review on nano-TiO2 sol–gel type syntheses and its applications," Journal of materials science, vol. 46, pp. 3669-3686, 2011. [24] 高濂, 鄭珊, and 張青紅, 奈米光觸媒: 五南圖書出版股份有限公司, 2004. [25] 蘇致豪, "微波輔助水熱法合成高熱穩定性銳鈦礦相二氧化鈦於光催化之研究," Master of Science, Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan, 2014. [26] T. Sakata, K. Hashimoto, and T. Kawai, "Catalytic properties of ruthenium oxide on n-type semiconductors under illumination," The Journal of Physical Chemistry, vol. 88, pp. 5214-5221, 1984. [27] M. T. Uddin, Y. Nicolas, C. l. Olivier, T. Toupance, M. M. Müller, H.-J. Kleebe, et al., "Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations," The Journal of Physical Chemistry C, vol. 117, pp. 22098-22110, 2013. [28] Y. Mi and Y. Weng, "Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2," Scientific reports, vol. 5, 2015. [29] H. Choi, E. Stathatos, and D. D. Dionysiou, "Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol–gel method modified with nonionic surfactants," Thin Solid Films, vol. 510, pp. 107-114, 2006. [30] 徐雯芳, "熱鍛燒法製備二氧化鈦披覆鈦基光陽極於電化學輔助光催化降解orange G染料之研究," Master of Science, Environmental Technology for Sustainability National Chiao Tung University Hsinchu Taiwan, 2015. [31] Y. Li, H. Yu, W. Song, G. Li, B. Yi, and Z. Shao, "A novel photoelectrochemical cell with self-organized TiO2 nanotubes as photoanodes for hydrogen generation," International journal of hydrogen energy, vol. 36, pp. 14374-14380, 2011. [32] A. Fujishima, "Electrochemical photolysis of water at a semiconductor electrode," nature, vol. 238, pp. 37-38, 1972. [33] S. Banerjee and A. Tyagi, Functional materials: preparation, processing and applications: Elsevier, 2011. [34] X. Chen, C. Li, M. Grätzel, R. Kostecki, and S. S. Mao, "Nanomaterials for renewable energy production and storage," Chemical Society Reviews, vol. 41, pp. 7909-7937, 2012. [35] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, et al., "Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting," Nano letters, vol. 11, pp. 3026-3033, 2011. [36] H. Zhang, X. Liu, Y. Li, Q. Sun, Y. Wang, B. J. Wood, et al., "Vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties," Journal of Materials Chemistry, vol. 22, pp. 2465-2472, 2012. [37] J. Yu, G. Dai, and B. Cheng, "Effect of crystallization methods on morphology and photocatalytic activity of anodized TiO2 nanotube array films," The Journal of Physical Chemistry C, vol. 114, pp. 19378-19385, 2010. [38] R. Freitas, M. Santanna, and E. Pereira, "Preparation and characterization of TiO2 nanotube arrays in ionic liquid for water splitting," Electrochimica Acta, vol. 136, pp. 404-411, 2014. [39] R. Sánchez-Tovar, R. Fernández-Domene, D. García-García, and J. García-Antón, "Enhancement of photoelectrochemical activity for water splitting by controlling hydrodynamic conditions on titanium anodization," Journal of Power Sources, vol. 286, pp. 224-231, 2015. [40] 郭正次, 奈米結構材料科學: 全華, 2004. [41] 胡啟章, 電化學原理與方法: 五南圖書出版股份有限公司, 2002. [42] T. Berger, D. Monllor‐Satoca, M. Jankulovska, T. Lana‐Villarreal, and R. Gómez, "The electrochemistry of nanostructured titanium dioxide electrodes," ChemPhysChem, vol. 13, pp. 2824-2875, 2012. [43] O. o. E. E. R. Energy. (06.12). Hydrogen Production. Available: http://energy.gov/eere/fuelcells/hydrogen-production [44] G. Wang, Y. Ling, H. Wang, L. Xihong, and Y. Li, "Chemically modified nanostructures for photoelectrochemical water splitting," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 19, pp. 35-51, 2014. [45] P. Kar, "Effect of anodization voltage on the formation of phase pure anatase nanotubes with doped carbon," Inorganic Materials, vol. 46, pp. 377-382, 2010. [46] V. Král, M. Valík, T. V. Shishkanova, and J. L. Sessler, "Dekker encyclopedia of nanoscience and nanotechnology," 2004. [47] K. Ozawa, M. Emori, S. Yamamoto, R. Yukawa, S. Yamamoto, R. Hobara, et al., "Electron–hole recombination time at TiO2 single-crystal surfaces: influence of surface band bending," The journal of physical chemistry letters, vol. 5, pp. 1953-1957, 2014. [48] N. Wetchakun, B. Incessungvorn, K. Wetchakun, and S. Phanichphant, "Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method," Materials Letters, vol. 82, pp. 195-198, 2012. [49] H. Kwon and S. Kang, "Effect of milling on the carbothermal reduction of oxide mixture for (Ti, W) C-Ni," Materials transactions, vol. 49, pp. 1594-1599, 2008. [50] H. Wriedt and J. Murray, "The n-Ti (nitrogen-titanium) system," Bulletin of Alloy Phase Diagrams, vol. 8, pp. 378-388, 1987. [51] J. Van de Lagemaat, N.-G. Park, and A. Frank, "Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques," The Journal of Physical Chemistry B, vol. 104, pp. 2044-2052, 2000. [52] H. Döscher, J. F. Geisz, T. G. Deutsch, and J. Turner, "Correction: sunlight absorption in water–efficiency and design implications for photoelectrochemical devices," Energy & Environmental Science, vol. 9, pp. 1849-1849, 2016. [53] O. Khaselev and J. A. Turner, "A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting," Science, vol. 280, pp. 425-427, 1998. [54] B. Conway and B. Tilak, "Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H," Electrochimica Acta, vol. 47, pp. 3571-3594, 2002. [55] J. O. M. Bockris, B. E. Conway, and R. E. White, Modern aspects of electrochemistry vol. 22: Springer Science & Business Media, 2012. [56] X. Li and I.-M. Hsing, "The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotubes," Electrochimica acta, vol. 51, pp. 5250-5258, 2006. [57] Z. Li, W. Luo, M. Zhang, J. Feng, and Z. Zou, "Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook," Energy & Environmental Science, vol. 6, pp. 347-370, 2013. [58] X. Chen, L. Liu, and F. Huang, "Black titanium dioxide (TiO2) nanomaterials," Chemical Society Reviews, vol. 44, pp. 1861-1885, 2015. [59] H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, et al., "Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting," J. Mater. Chem. A, vol. 2, pp. 8612-8616, 2014. [60] S. Bauer, S. Kleber, and P. Schmuki, "TiO2 nanotubes: tailoring the geometry in H3PO4/HF electrolytes," Electrochemistry Communications, vol. 8, pp. 1321-1325, 2006. [61] S. Sreekantan, R. Hazan, and Z. Lockman, "Photoactivity of anatase–rutile TiO2 nanotubes formed by anodization method," Thin Solid Films, vol. 518, pp. 16-21, 2009. [62] C.-C. Chen, H.-W. Chung, C.-H. Chen, H.-P. Lu, C.-M. Lan, S.-F. Chen, et al., "Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells," The Journal of Physical Chemistry C, vol. 112, pp. 19151-19157, 2008. [63] V. Zwilling, E. Darque‐Ceretti, A. Boutry‐Forveille, D. David, M.-Y. Perrin, and M. Aucouturier, "Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy," Surface and Interface Analysis, vol. 27, pp. 629-637, 1999. [64] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, and C. A. Grimes, "Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure," Advanced Materials, vol. 15, pp. 624-627, 2003. [65] R. Beranek, H. Hildebrand, and P. Schmuki, "Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes," Electrochemical and solid-state letters, vol. 6, pp. B12-B14, 2003. [66] Q. Cai, M. Paulose, O. K. Varghese, and C. A. Grimes, "The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation," Journal of Materials Research, vol. 20, pp. 230-236, 2005. [67] J. Macak, L. Taveira, H. Tsuchiya, K. Sirotna, J. Macak, and P. Schmuki, "Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization," Journal of electroceramics, vol. 16, pp. 29-34, 2006. [68] M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, et al., "Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length," The Journal of Physical Chemistry B, vol. 110, pp. 16179-16184, 2006. [69] G. Li, Z.-Q. Liu, J. Lu, L. Wang, and Z. Zhang, "Effect of calcination temperature on the morphology and surface properties of TiO2 nanotube arrays," Applied Surface Science, vol. 255, pp. 7323-7328, 2009. [70] D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. Singh, Z. Chen, et al., "Titanium oxide nanotube arrays prepared by anodic oxidation," Journal of Materials Research, vol. 16, pp. 3331-3334, 2001. [71] K. Shankar, G. K. Mor, H. E. Prakasam, S. Yoriya, M. Paulose, O. K. Varghese, et al., "Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells," Nanotechnology, vol. 18, p. 065707, 2007. [72] H. Li, N. Tang, H. Yang, X. Leng, and J. Zou, "Interface feature characterization and Schottky interfacial layer confirmation of TiO2 nanotube array film," Applied Surface Science, vol. 355, pp. 849-860, 2015. [73] J. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, et al., "TiO2 nanotubes: self-organized electrochemical formation, properties and applications," Current Opinion in Solid State and Materials Science, vol. 11, pp. 3-18, 2007. [74] D. Regonini, C. Bowen, A. Jaroenworaluck, and R. Stevens, "A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes," Materials Science and Engineering: R: Reports, vol. 74, pp. 377-406, 2013. [75] C. A. Grimes and G. K. Mor, TiO2 nanotube arrays: synthesis, properties, and applications: Springer Science & Business Media, 2009.
|