|
1. Thompson, R.C., et al., Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009. 364(1526): p. 2153-2166. 2. Andrady, A.L. and M.A. Neal, Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. 364(1526): p. 1977-1984. 3. Plastics- the Facts 2014/2015 An analysis of European plastics production,demand and waste data. PlasticsEurope. 4. L.J., W., It's Not My Bag, Baby. On Earth: Environmental Politics People. 2003. 25(2): p. 32-34. 5. http://www.earth-policy.org/press_room/C68/plastic_bags_fact_sheet, Plastic Bags Fact Sheet. Earth Policy Institute, 2014. 6. http://www.cleanair.org/program/waste_and_recycling/recyclenow_philadelphia/waste_and_recycling_facts, Waste and Recycling Facts. Clean Air Council. 7. Stevens, E.S., Green Plastics: An introduction to the new science of biodegradable plastics. NJ: Princeton University Press, 2001: p. 15-30. 8. Ecnomy and Policy, Data center. Earth Policy Institute, 2014. 9. Witt, U., R.-J. Müller, and W.-D. Deckwer, Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. Journal of environmental polymer degradation, 1997. 5(2): p. 81-89. 10. Song, J.H., et al., Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009. 364(1526): p. 2127-2139. 11. Petersen, K., et al., Potential of biobased materials for food packaging. Trends in Food Science & Technology, 1999. 10(2): p. 52-68. 12. Widdecke, H., Bioplastics 09/10: Processing Parameters and Technical Characteristics : a Global Overview. 2009: CTC Clean Tech Consulting GmbH & Fachhochschule Braunschweig/Wolfenbüttel. 13. Biodegradable Plastics Market by Type (PLA, PHA, PBS, Starch-Based Plastics, Regenerated Cellulose, PCL), by Application (Packaging, Fibers, Agriculture, Injection Molding, and Others) - Global Trends & Forecasts to 2020. Markets and Markets, 2015. 14. Market | european-bioplastics. European bioplastics, 2014. 15. Global and China Biodegradable Plastics Industry Report, 2013 - 2016: Worldwide Industry Share, Investment Trends, Growth, Size, Strategy And Forecast Research Report. Marketresearchreports.biz 2014. 16. Plastics – the Facts 2013 An analysis of European latest plastics production,demand and waste data. PlasticsEurope, 2013. 17. Kitley, G., Biodiesel byproduct rejuvenated into plastic feedstock. Chemistryworld, 2014. 18. Hosler, D., S.L. Burkett, and M.J. Tarkanian, Prehistoric Polymers: Rubber Processing in Ancient Mesoamerica. Science, 1999. 284(5422): p. 1988-1991. 19. Plastic Resins in the United States. American Chemistry Council Economics & Statistics Department, 2013. 20. Meunier, B., European plastic production & demand data. PlasticsEurope, 2014. 21. Harper, C.A., Handbook of Plastics, Elastomers, and Composites. 2002: McGraw-Hill. 22. Brydson, J.A., 11 - Aliphatic Polyolefins other than Polyethylene, and Diene Rubbers, in Plastics Materials (Seventh Edition), J.A. Brydson, Editor. 1999, Butterworth-Heinemann: Oxford. 23. Odian, G.G., Principles of polymerization. 1981: Wiley. 24. Mangaraj, S., T.K. Goswami, and P.V. Mahajan, Applications of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables: A Review. Food Engineering Reviews, 2009. 1(2): p. 133-158. 25. Brydson, J.A., 12 - Vinyl Chloride Polymers, in Plastics Materials (Seventh Edition), J.A. Brydson, Editor. 1999, Butterworth-Heinemann: Oxford. p. 311-362. 26. St. Pierre, L.E., Textbook of polymer science, 2nd Ed., F. W. Billmeyer, Jr., Wiley–Interscience, New York. Journal of Polymer Science Part B: Polymer Letters, 1972. 10(7): p. 420. 27. Braun, D., Poly(vinyl chloride) on the way from the 19th century to the 21st century. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(3): p. 578-586. 28. Bhat, G.S., Plastics: Materials and Processing Materials and Manufacturing Processes, 1997. 12(3): p. 560-562. 29. Feldman, D., Degradation and Stabilization of PVC, by E. D. Owen, Ed., Elsevier, London and New York, 1984, 320 pp. Price: $52.50. Journal of Polymer Science Part C: Polymer Letters, 1986. 24(7): p. 355-355. 30. Allsopp, M.W. and G. Vianello, Poly(Vinyl Chloride), in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA. 31. Vroman, I. and L. Tighzert, Biodegradable Polymers. Materials, 2009. 2(2): p. 307. 32. Avérous, L. and E. Pollet, Biodegradable Polymers, in Environmental Silicate Nano-Biocomposites, L. Avérous and E. Pollet, Editors. 2012, Springer London. p. 13-39. 33. Tamada, J.A. and R. Langer, Erosion kinetics of hydrolytically degradable polymers. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(2): p. 552-556. 34. Burkersroda, F.v., L. Schedl, and A. Göpferich, Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002. 23(21): p. 4221-4231. 35. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007. 32(8–9): p. 762-798. 36. Azevedo, H.S. and R.L. Reis, Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. Biodegradable systems in tissue engineering and regenerative medicine. Boca Raton, FL: CRC Press, 2005. 177201. 37. Foster, L.J.R., A. Saufi, and P.J. Holden, Environmental concentrations of polyhydroxyalkanoates and their potential as bioindicators of pollution. Biotechnology Letters, 2001. 23(11): p. 893-898. 38. Madison, L.L. and G.W. Huisman, Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiology and Molecular Biology Reviews, 1999. 63(1): p. 21-53. 39. Koning, d.G.J.M., Prospects of bacterial poly[(R)-3-hydroxyalkanoates]. Eindhoven University of Technology, Eindhoven, 1993. 40. Lakshman, K. and T.R. Shamala, Enhanced biosynthesis of polyhydroxyalkanoates in a mutant strain of Rhizobium meliloti. Biotechnol Lett, 2003. 25(2): p. 115-9. 41. Stevens, E.S., What makes green plastics green? Biocycle, 2003. 44: p. 24-27. 42. Lenz, R.W., Biodegradable polymers, in Biopolymers I. 1993. p. 1-40. 43. Chandra, R.a.R., R., Biodegradable Polymers. Progress in Polymer Science, 1998. 23: p. 1273-1335. 44. Zhang, L., et al., Biodegradable polymer blends of poly(3-hydroxybutyrate) and starch acetate. Polymer International, 1997. 44(1): p. 104-110. 45. Savenkova, L., et al., Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochemistry, 2000. 35(6): p. 573-579. 46. El-Hadi, A., et al., Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polymer Testing, 2002. 21(6): p. 665-674. 47. Barham, P.J. and A. Keller, The relationship between microstructure and mode of fracture in polyhydroxybutyrate. Journal of Polymer Science Part B: Polymer Physics, 1986. 24(1): p. 69-77. 48. Grassie, N., E.J. Murray, and P.A. Holmes, The thermal degradation of poly(-(d)-β-hydroxybutyric acid): Part 2—Changes in molecular weight. Polymer Degradation and Stability, 1984. 6(2): p. 95-103. 49. Avella, M., et al., Reactive blending methodologies for biopol. Polymer International, 1996. 39(3): p. 191-204. 50. Mohanty, A.K., M. Misra, and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 2000. 276-277(1): p. 1-24. 51. Hsieh, W.-C., et al., Effect of hydrophilic and hydrophobic monomers grafting on microbial poly(3-hydroxybutyrate). Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(4): p. 413-417. 52. Amass, W., A. Amass, and B. Tighe, A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer International, 1998. 47(2): p. 89-144. 53. Parikh, M.G., R.A.; MacCarthy, S.P., The influence of injection molding conditions on biodegradable polymers. The Journal of injection molding technology 1998. 2: p. 30. 54. Rodriguez, F., et al., Principles of Polymer Systems, Sixth Edition. 2014: CRC Press. 55. Middleton, J.C. and A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000. 21(23): p. 2335-46. 56. Mochizuki, M. and M. Hirami, Structural Effects on the Biodegradation of Aliphatic Polyesters. Polymers for Advanced Technologies, 1997. 8(4): p. 203-209. 57. Jacobsen, S. and H.G. Fritz, Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polymer Engineering & Science, 1999. 39(7): p. 1303-1310. 58. Md. Mahabub Hasan, K.A.N., Mohammad Billal Hossain, Sharmin Nahar, Production of Tissue Engineering Scaffolds from Poly Caprolactone (PCL) and Its Microscopic Analysis. International Journal of Textile Science, 2014. 3(3): p. 39-43. 59. Gunatillake, P., R. Mayadunne, and R. Adhikari, Recent developments in biodegradable synthetic polymers, in Biotechnology Annual Review, M.R. El-Gewely, Editor. 2006, Elsevier. p. 301-347. 60. Nair, L. and C. Laurencin, Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery, in Tissue Engineering I, K. Lee and D. Kaplan, Editors. 2006, Springer Berlin Heidelberg. p. 47-90. 61. Sinha, V.R., et al., Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 2004. 278(1): p. 1-23. 62. Chiari, C., et al., A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis and Cartilage, 2006. 14(10): p. 1056-1065. 63. Mondrinos, M.J., et al., Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials, 2006. 27(25): p. 4399-408. 64. Lendlein, A., Polymere als Implantatwerkstoffe. Chemie in unserer Zeit, 1999. 33(5): p. 279-295. 65. Yan, D., C. Gao, and H. Frey, Hyperbranched Polymers: Synthesis, Properties, and Applications. 2011: Wiley. 66. Gao, C. and D. Yan, Hyperbranched polymers: from synthesis to applications. Progress in Polymer Science, 2004. 29(3): p. 183-275. 67. Kienle, R.H. and A.G. Hovey, THE POLYHYDRIC ALCOHOL-POLYBASIC ACID REACTION. I. GLYCEROL-PHTHALIC ANHYDRIDE. Journal of the American Chemical Society, 1929. 51(2): p. 509-519. 68. Kienle, R.H. and F.E. Petke, The Polyhydric Alcohol-Polybasic Acid Reaction. V. The Glyceryl Succinate and Glyceryl Maleate Polyesters. Journal of the American Chemical Society, 1940. 62(5): p. 1053-1056. 69. Flory, P.J., Molecular Size Distribution in Three Dimensional Polymers. I. Gelation1. Journal of the American Chemical Society, 1941. 63(11): p. 3083-3090. 70. Jikei, M., et al., Synthesis of Hyperbranched Aromatic Polyamide from Aromatic Diamines and Trimesic Acid. Macromolecules, 1999. 32(6): p. 2061-2064. 71. Emrick, T., H.-T. Chang, and J.M.J. Fréchet, An A2 + B3 Approach to Hyperbranched Aliphatic Polyethers Containing Chain End Epoxy Substituents. Macromolecules, 1999. 32(19): p. 6380-6382. 72. Voit, B., New developments in hyperbranched polymers. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(14): p. 2505-2525. 73. Jikei, M. and M.-a. Kakimoto, Dendritic aromatic polyamides and polyimides. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(6): p. 1293-1309. 74. Hult, A., M. Johansson, and E. Malmström, Hyperbranched Polymers, in Branched Polymers II, J. Roovers, Editor. 1999, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-34. 75. Froehling, P., Development of DSM's hybrane® hyperbranched polyesteramides. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(13): p. 3110-3115. 76. Wang, Y., et al., A tough biodegradable elastomer. Nat Biotech, 2002. 20(6): p. 602-606. 77. Rai, R., et al., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, 2012. 37(8): p. 1051-1078. 78. Pomerantseva, I., et al., Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res A, 2009. 91(4): p. 1038-47. 79. Maliger, R., P.J. Halley, and J.J. Cooper-White, Poly(glycerol–sebacate) bioelastomers—kinetics of step-growth reactions using Fourier Transform (FT)-Raman spectroscopy. Journal of Applied Polymer Science, 2013. 127(5): p. 3980-3986. 80. Mark, D.H., Thermal characterization of polymeric materials. Journal of Polymer Science: Polymer Letters Edition, 1982. 20(5): p. 281-282. 81. Manzanedo, D., Biorubber (PGS): evaluation of a novel biodegradable elastomer. MEng thesis. Boston: Department of Materials Science and Engineering, Massachusetts Institute of Technology, 2006. 82. Sundback, C.A., et al., Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 2005. 26(27): p. 5454-5464. 83. Chen, Q.-Z., et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 2008. 29(1): p. 47-57. 84. Yamaguchi, S., Analysis of stress-strain curves at fast and slow velocities of loading in vitro in the transverse section of the rat incisor periodontal ligament following the administration of β-aminopropionitrile. Archives of Oral Biology, 1992. 37(6): p. 439-444. 85. Lee, M.C. and R.C. Haut, Strain rate effects on tensile failure properties of the common carotid artery and jugular veins of ferrets. J Biomech, 1992. 25(8): p. 925-7. 86. Komatsu, K. and M. Chiba, The effect of velocity of loading on the biomechanical responses of the periodontal ligament in transverse sections of the rat molar in vitro. Archives of Oral Biology, 1993. 38(5): p. 369-375. 87. Liu, Q., et al., Structure and properties of thermoplastic poly(glycerol sebacate) elastomers originating from prepolymers with different molecular weights. Journal of Applied Polymer Science, 2007. 104(2): p. 1131-1137. 88. Kemppainen, J.M. and S.J. Hollister, Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. J Biomed Mater Res A, 2010. 94(1): p. 9-18. 89. Mitsak, A.G., A.M. Dunn, and S.J. Hollister, Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering. J Mech Behav Biomed Mater, 2012. 11: p. 3-15. 90. Jaafar, I., et al., Spectroscopic evaluation, thermal, and thermomechanical characterization of poly(glycerol-sebacate) with variations in curing temperatures and durations. Journal of Materials Science, 2010. 45(9): p. 2525-2529. 91. Ipsita Roy and Visakh, P.M., Polyhydroxyalkanoate (PHA) based Blends, Composites and Nanocomposites. Royal Society of Chemistry, 2015: p. 33-34. 92. Cai, W. and L. Liu, Shape-memory effect of poly (glycerol–sebacate) elastomer. Materials Letters, 2008. 62(14): p. 2171-2173. 93. Samra, B.K., I.Y. Galaev, and B. Mattiasson, Thermosensitive, Reversibly Cross-Linking Gels with a Shape “Memory”. Angewandte Chemie International Edition, 2000. 39(13): p. 2364-2367. 94. Monkman, G.J., Advances in shape memory polymer actuation. Mechatronics, 2000. 10(4–5): p. 489-498. 95. Chen, Q.Z., et al., An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 2010. 31(14): p. 3885-93. 96. Wang, Y., Y.M. Kim, and R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res A, 2003. 66(1): p. 192-7. 97. Liang, S.L., et al., In vitro enzymatic degradation of poly (glycerol sebacate)-based materials. Biomaterials, 2011. 32(33): p. 8486-96. 98. Nijst, C.L.E., et al., Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol-co-sebacate). Biomacromolecules, 2007. 8(10): p. 3067-3073. 99. Sant, S., et al., Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J Tissue Eng Regen Med, 2011. 5(4): p. 283-91. 100. Masoumi, N., et al., Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy. Adv Healthc Mater, 2014. 3(6): p. 929-39. 101. Jeong, C.G. and S.J. Hollister, A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials, 2010. 31(15): p. 4304-12. 102. Yi, F. and D.A. LaVan, Poly(glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromol Biosci, 2008. 8(9): p. 803-6. 103. Sun, Z.-J., et al., The characterization of mechanical and surface properties of poly (glycerol–sebacate–lactic acid) during degradation in phosphate buffered saline. Applied Surface Science, 2008. 255(2): p. 350-352. 104. Chen, Q., S. Liang, and G.A. Thouas, Synthesis and characterisation of poly(glycerol sebacate)-co-lactic acid as surgical sealants. Soft Matter, 2011. 7(14): p. 6484-6492. 105. Kenar, H., G.T. Kose, and V. Hasirci, Design of a 3D aligned myocardial tissue construct from biodegradable polyesters. J Mater Sci Mater Med, 2010. 21(3): p. 989-97. 106. Jeffries, E.M., et al., Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta Biomater, 2015. 18: p. 30-9. 107. Balguid, A., et al., Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng Part A, 2009. 15(2): p. 437-44. 108. LL, H., Bioceramics. J Am Ceram Soc, 1998. 81(1705): p. 28. 109. Liang, S.L., et al., The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Biomaterials, 2010. 31(33): p. 8516-29. 110. Bettinger, C., et al., Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials, 2008. 29(15): p. 2315-2325. 111. Rodriguez, F.J., et al., Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials, 1999. 20(16): p. 1489-500. 112. Zhao, X., et al., Synthesis and application of water-soluble hyperbranched poly(ester)s from maleic anhydride and glycerol. Journal of Applied Polymer Science, 2009. 113(5): p. 3376-3381. 113. Kienle, R.H. and F.E. Petke, The Polyhydric Alcohol-Polybasic Acid Reaction. VI. The Glyceryl Adipate and Glyceryl Sebacate Polyesters. Journal of the American Chemical Society, 1941. 63(2): p. 481-484. 114. Stumbé, J.-F. and B. Bruchmann, Hyperbranched Polyesters Based on Adipic Acid and Glycerol. Macromolecular Rapid Communications, 2004. 25(9): p. 921-924. 115. Brioude, M.d.M., et al., Synthesis and characterization of aliphatic polyesters from glycerol, by-product of biodiesel production, and adipic acid. Materials Research, 2007. 10: p. 335-339. 116. Korupp, C., et al., Scaleup of Lipase-Catalyzed Polyester Synthesis. Organic Process Research & Development, 2010. 14(5): p. 1118-1124. 117. Ferreira, P., et al., Photocrosslinkable Polymers for Biomedical Applications. 2011: INTECH Open Access Publisher. 118. Tehfe, M., et al., Photopolymerization Reactions: On the Way to a Green and Sustainable Chemistry. Applied Sciences, 2013. 3(2): p. 490. 119. Williams, J.L.R., Photopolymerization and photocrosslinking of polymers, in Photochemistry. 1969, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 227-250. 120. Fouassier, J.P., Photoinitiated Polymerisation: Theory and Applications. 1998: Rapra Technology Limited. 121. Hoyle, C.E., et al., Radiation Curing of Polymeric Materials. 1990: American Chemical Society. 122. Goodner, M.D. and C.N. Bowman, Modeling Primary Radical Termination and Its Effects on Autoacceleration in Photopolymerization Kinetics. Macromolecules, 1999. 32(20): p. 6552-6559. 123. Goodner, M.D. and C.N. Bowman, Modeling and Experimental Investigation of Light Intensity and Initiator Effects on Solvent-Free Photopolymerizations, in Solvent-Free Polymerizations and Processes. 1998, American Chemical Society. p. 220-231. 124. Ifkovits, J.L. and J.A. Burdick, Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng, 2007. 13(10): p. 2369-85. 125. Cook, W.D., Thermal aspects of the kinetics of dimethacrylate photopolymerization. Polymer, 1992. 33(10): p. 2152-2161. 126. Anseth, K.S., C.M. Wang, and C.N. Bowman, Reaction behaviour and kinetic constants for photopolymerizations of multi(meth)acrylate monomers. Polymer, 1994. 35(15): p. 3243-3250. 127. Anseth, K.S., C.M. Wang, and C.N. Bowman, Kinetic evidence of reaction diffusion during the polymerization of multi(meth)acrylate monomers. Macromolecules, 1994. 27(3): p. 650-655. 128. Anseth, K.S., C. Decker, and C.N. Bowman, Real-Time Infrared Characterization of Reaction Diffusion during Multifunctional Monomer Polymerizations. Macromolecules, 1995. 28(11): p. 4040-4043. 129. Muggli, D.S., et al., Reaction Behavior of Biodegradable, Photo-Cross-Linkable Polyanhydrides. Macromolecules, 1998. 31(13): p. 4120-4125. 130. Biala, J., The benefits of using compost for mitigating climate change. The Organic Force, 2011. 131. Tuomela, M., et al., Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 2000. 72(2): p. 169-183. 132. Golueke, C.G., Principles of composting. The Staff of BioCycle Journal of Waste Recycling. The Art and Science of Composting. The JG Press Inc., Pennsylvania, USA, 1991: p. 14-27. 133. Golueke, C.G., Bacteriology of composting. BioCycle, 1992. 33: p. 55-57. 134. Crawford, J.H., Composting of agricultural wastes - a review. Process Biochemistry, 1983. 18: p. 14-18. 135. McKinley, V.L. and J.R. Vestal, Physical and chemical correlates of microbial activity and biomass in composting municipal sewage sludge. Appl Environ Microbiol, 1985. 50(6): p. 1395-403. 136. Strom, P.F., Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol, 1985. 50(4): p. 899-905. 137. Prescott, L.M., J.P. Harley, and D.A. Klein, Microbiology. 2002: McGraw-Hill. 138. Yates, G.T. and T. Smotzer, On the lag phase and initial decline of microbial growth curves. Journal of Theoretical Biology, 2007. 244(3): p. 511-517. 139. Andreani, L. and J.D. Rocha, Use of ionic liquids in biodiesel production: a review. Brazilian Journal of Chemical Engineering, 2012. 29: p. 1-13. 140. 陳志平, 生質柴油技術. 化工技術月刊, 2004. 12: p. 135-146. 141. Materials Data Book. 2003. 142. Van de Velde, K. and P. Kiekens, Biopolymers: overview of several properties and consequences on their applications. Polymer Testing, 2002. 21(4): p. 433-442.
|