帳號:guest(18.190.153.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顏榆欣
作者(外文):Yan, Yu Sin
論文名稱(中文):開發以廢甘油為原料合成生物可分解高分子與其性質分析
論文名稱(外文):Synthesis and Characterization of Biodegradable Polymer Using Waste Glycerol as Raw Material
指導教授(中文):王潔
指導教授(外文):Jane Wang
口試委員(中文):劉大佼
朱一民
鄭兆珉
口試委員(外文):Liu, Ta Jo
Chu, I Ming
Cheng, Chao-Min
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032518
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:116
中文關鍵詞:生物可分解高分子甘油塑膠汙染環境
外文關鍵詞:biodegradablepolymersplasticenvironmentglycerol
相關次數:
  • 推薦推薦:0
  • 點閱點閱:608
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
不可分解塑膠對環境所造成的汙染在近幾年逐漸受到關注,而可分解塑膠的發展被認為是一個減少塑膠汙染的解方。然而,由於生產成本較高以及機械強度不足,目前可分解塑膠的應用多侷限在生醫材料與組織工程方面。為了改善上述缺點並拓展可分解高分子的應用,本研究提出以生質柴油過程中所產生的廢甘油作為合成新型可分解高分子的原料,解決可分解高分子原料成本較高的問題,同時為生產過剩的廢甘油利用提高附加價值,而由甘油與馬來酸合成的新型可分解高分子PGM具備高機械強度及低成本的優勢,有機會取代PLA應用於農膜及塑膠袋等民生產品。
本研究首先以HPLC及ICP-MS檢測廢甘油及工業級癸二酸中的雜質,結果顯示雜質中不含重金屬及有害物質,並且檢測出的雜質濃度符合國際標準要求。為了解原料中的雜質對於高分子的影響,本研究以不同等級的甘油及癸二酸合成PGS並製成薄膜,探討雜質對其機械性質及熱性質所造成的影響。
由於PGS的機械性質不足,不適合做為工業上大規模生產的薄膜與塑膠袋材料,且PGS的原料癸二酸成本偏高,因此本研究進一步將癸二酸換成馬來酸及己二酸,開發出成本更低且機械性質更佳的生物可分解高分子。結果顯示PGM膜的機械性質最好,而機械性質隨己二酸的莫耳數增加而下降。將原料試藥級甘油換成廢甘油後,相比PGM膜,PGM(I)膜的楊式模數及最大拉伸強度大幅提升了3倍,其機械性質媲美PE、PP、PLA。本研究亦使用UV光交聯製膜,然而光固化的膜相比熱固化的膜機械性質較差,可根據產品應用與熱交聯製程搭配,以符合製程速率及機械性質上的需求。熱性質方面,PGM及PGAM1-3的玻璃轉化溫度(Tg)皆高於室溫,因此在室溫時呈現玻璃態的剛性特質。PGM及PGAM的裂解溫度(Td)皆高於300度,熱穩定性高。PGM、PGM(I)及PGAM1-3(I)膜在30天的堆肥降解實驗中降解超過95%。

關鍵字:生物可分解高分子、甘油、塑膠汙染、環境
During the past two decades, plastics pollution has become an increasingly severe problem, and has been causing increasing environmental concerns. Biodegradable products are considered a solution to reduce plastic waste production, thus raising a lot of interests in research. However, most biodegradable polymers are limited in biomedical materials and tissue engineering applications due to their high cost and insufficient mechanical properties. In order to improve these drawbacks and expand the applications of biodegradable polymers, a new strategy is proposed in this work.
PGS has received much attention since it was first reported in 2002 as a biodegradable elastomer which can be used in tissue engineering. It was thought to have potential for large-scale applications. In this work, the original raw materials of PGS: reagent grade glycerol and sebacic acid, are replaced by waste glycerol and industrial grade sebacic acid for lower cost and value-added utilizations of overproduced glycerol from biodiesel production. The impurities in different grades of raw materials are analyzed by HPLC and ICP-MS, and the impacts of impurities on mechanical properties and thermal properties of PGS are discussed. The Young’s modulus and ultimate tensile strength of PGS synthesized with waste glycerol are further improved (0.49 MPa →2.13 MPa, 0.28 MPa →0.77 MPa) by increasing the molar ratio of sebacic acid.
Novel biodegradable polymers, PGM and PGAM, are synthesized by replacing sebacic acid with maleic acid and adipic acid to lower the cost and to obtain better mechanical properties. The polymer structures are characterized by FT-IR and NMR to confirm successful synthesis of polyesters and the grafting ratio of acids. The polymers are fabricated into films for characterizations via three methods: thermal curing, UV curing, and UV+thermal curing. It is found that regardless of the curing methods, PGM exhibit the highest Young’s modulus, elongation at break and ultimate tensile strength when synthesized with reagent grade materials. The mechanical properties of PGAM are found to decrease with increasing ratio of adipic acid. Meanwhile, the Young’s modulus and ultimate tensile strength of PGM(I), which is synthesized by replacing reagent glycerol with waste glycerol, are 3 times higher than that of PGM (YM: 264MPa→878MPa, UTS: 7MPa→23MPa). PGM(I) has exhibited great potential for the development of biodegradable products to replace its conventional counterparts (PE and PP) and the common biodegradable plastic PLA. The thermal properties analyzed by DSC show that the glass transition temperatures of thermal-cured and UV-cured PGM, PGAM1-3, PGM(I) and PGAM1-3(I) are all above room temperature, which indicate the polymers are at glassy state at room temperature. The decomposition temperatures measured by TGA were all higher than 300°C for all kind of PGM and PGAM films in this work, indicating high thermal stability for applications. The contact angle test demonstrate that the surface of PGM and PGAM films are hydrophilic, and the hydrophilicity decrease as the ratio of adipic acid increase. PGM, PGM(I) and PGAM1-3(I) are observed to exhibit over 95% of biodegradation in compost degradation for 30 days.
This work aims to expand the applications of biodegradable polymers from biomedical materials to packaging, agricultural and commodity products, creating a new environmental-friendly plastic. As PGM and PGAM provide much cheaper options over PLA, it is thought to have great potential in replacing many of the existing PLA eco-products.

Keywords: biodegradable, polymers, plastic, environment, glycerol
致謝 I
摘要 III
Abstract IV
List of Figures VIII
List of Tables XII
Chapter 1: Research Background and Motivation 1
1.1 Introduction to Global Demand in Biodegradable Product 1
1.2 Research Motivation 6
1.3 Research Framework 8
Chapter 2: Literature Review 9
2.1 Common Polymeric Material Used in Plastic Bags/Films 9
2.2 Biodegradable Polymer as a Novel Alternative Plastic Material 16
2.3 Polymerization Using Polyol and Polyprotic acid 25
2.3.1 Introduction to Poly(glycerol sebacate) 27
2.3.2 Introduction to Other Glycerol-Based Biodegradable Polymer 40
2.4 Photopolymerization 44
2.5 Compost Degradation 48
Chapter 3: Materials and Methods 53
3.1 Experimental Materials 53
3.2 Experimental Instruments 55
3.3 Experimental Procedure 57
3.3.1 Characterization of Raw Material 57
3.3.2 Polymer Synthesis 58
3.3.3 Film Fabrication 60
3.4 Characterization of PGS 63
3.4.1 Fourier Transform-Infrared Spectroscopy (FT-IR) 63
3.4.2 Tensile Test 64
3.4.3 Differential Scanning Calorimetry (DSC) 64
3.5 Characterization of PGM and PGAM 65
3.5.1 Nuclear Magnetic Resonance Spectroscopy (NMR) 65
3.5.2 Fourier Transform-Infrared Spectroscopy (FT-IR) 65
3.5.3 Tensile Test 65
3.5.4 Thermogravimetric Analysis (TGA) 66
3.5.5 Differential Scanning Calorimetry (DSC) 66
3.5.6 X-ray Diffraction (XRD) 66
3.5.7 Contact Angle 66
3.5.8 Compost Degradation 67
Chapter 4: Results and Discussions 69
4.1 Impurities Analysis 69
4.1.1 Waste Glycerol Analyzed Using HPLC 69
4.1.2 Industrial Sebacic Acid Analyzed Using ICP-MS 70
4.1.3 PGS Films and Glycerol Analyzed Using LA-ICP-MS 71
4.2 Characterization of PGS 73
4.2.1 FT-IR Spectrum 73
4.2.2 Mechanical Properties 74
4.2.3 Thermal Properties 77
4.3 Characterization of PGM and PGAM Films 78
4.3.1 Grafting Ratio of Adipic Acid to Maleic Acid 78
4.3.2 FT-IR and ATR-FTIR 81
4.3.3 Mechanical Properties 83
4.3.4 Thermal Properties 87
4.3.5 Hydrophilicity 92
4.3.6 Compost Degradation 95
Chapter 5:Conclusions 101
Chapter 6:Future Work 105
6.1 Scale-up Production of PGM, PGM(I), PGAM1-3 and PGAM1-3(I) Films 105
6.2 Compost Degradation of Thermal-cured and UV-cured PGM, PGM(I), and PGAM1-3(I) Films 105
Chapter 7:References 107

1. Thompson, R.C., et al., Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009. 364(1526): p. 2153-2166.
2. Andrady, A.L. and M.A. Neal, Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009. 364(1526): p. 1977-1984.
3. Plastics- the Facts 2014/2015 An analysis of European plastics production,demand and waste data. PlasticsEurope.
4. L.J., W., It's Not My Bag, Baby. On Earth: Environmental Politics People. 2003. 25(2): p. 32-34.
5. http://www.earth-policy.org/press_room/C68/plastic_bags_fact_sheet, Plastic Bags Fact Sheet. Earth Policy Institute, 2014.
6. http://www.cleanair.org/program/waste_and_recycling/recyclenow_philadelphia/waste_and_recycling_facts, Waste and Recycling Facts. Clean Air Council.
7. Stevens, E.S., Green Plastics: An introduction to the new science of biodegradable plastics. NJ: Princeton University Press, 2001: p. 15-30.
8. Ecnomy and Policy, Data center. Earth Policy Institute, 2014.
9. Witt, U., R.-J. Müller, and W.-D. Deckwer, Biodegradation behavior and material properties of aliphatic/aromatic polyesters of commercial importance. Journal of environmental polymer degradation, 1997. 5(2): p. 81-89.
10. Song, J.H., et al., Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009. 364(1526): p. 2127-2139.
11. Petersen, K., et al., Potential of biobased materials for food packaging. Trends in Food Science & Technology, 1999. 10(2): p. 52-68.
12. Widdecke, H., Bioplastics 09/10: Processing Parameters and Technical Characteristics : a Global Overview. 2009: CTC Clean Tech Consulting GmbH & Fachhochschule Braunschweig/Wolfenbüttel.
13. Biodegradable Plastics Market by Type (PLA, PHA, PBS, Starch-Based Plastics, Regenerated Cellulose, PCL), by Application (Packaging, Fibers, Agriculture, Injection Molding, and Others) - Global Trends & Forecasts to 2020. Markets and Markets, 2015.
14. Market | european-bioplastics. European bioplastics, 2014.
15. Global and China Biodegradable Plastics Industry Report, 2013 - 2016: Worldwide Industry Share, Investment Trends, Growth, Size, Strategy And Forecast Research Report. Marketresearchreports.biz 2014.
16. Plastics – the Facts 2013 An analysis of European latest plastics production,demand and waste data. PlasticsEurope, 2013.
17. Kitley, G., Biodiesel byproduct rejuvenated into plastic feedstock. Chemistryworld, 2014.
18. Hosler, D., S.L. Burkett, and M.J. Tarkanian, Prehistoric Polymers: Rubber Processing in Ancient Mesoamerica. Science, 1999. 284(5422): p. 1988-1991.
19. Plastic Resins in the United States. American Chemistry Council Economics & Statistics Department, 2013.
20. Meunier, B., European plastic production & demand data. PlasticsEurope, 2014.
21. Harper, C.A., Handbook of Plastics, Elastomers, and Composites. 2002: McGraw-Hill.
22. Brydson, J.A., 11 - Aliphatic Polyolefins other than Polyethylene, and Diene Rubbers, in Plastics Materials (Seventh Edition), J.A. Brydson, Editor. 1999, Butterworth-Heinemann: Oxford.
23. Odian, G.G., Principles of polymerization. 1981: Wiley.
24. Mangaraj, S., T.K. Goswami, and P.V. Mahajan, Applications of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables: A Review. Food Engineering Reviews, 2009. 1(2): p. 133-158.
25. Brydson, J.A., 12 - Vinyl Chloride Polymers, in Plastics Materials (Seventh Edition), J.A. Brydson, Editor. 1999, Butterworth-Heinemann: Oxford. p. 311-362.
26. St. Pierre, L.E., Textbook of polymer science, 2nd Ed., F. W. Billmeyer, Jr., Wiley–Interscience, New York. Journal of Polymer Science Part B: Polymer Letters, 1972. 10(7): p. 420.
27. Braun, D., Poly(vinyl chloride) on the way from the 19th century to the 21st century. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(3): p. 578-586.
28. Bhat, G.S., Plastics: Materials and Processing Materials and Manufacturing Processes, 1997. 12(3): p. 560-562.
29. Feldman, D., Degradation and Stabilization of PVC, by E. D. Owen, Ed., Elsevier, London and New York, 1984, 320 pp. Price: $52.50. Journal of Polymer Science Part C: Polymer Letters, 1986. 24(7): p. 355-355.
30. Allsopp, M.W. and G. Vianello, Poly(Vinyl Chloride), in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA.
31. Vroman, I. and L. Tighzert, Biodegradable Polymers. Materials, 2009. 2(2): p. 307.
32. Avérous, L. and E. Pollet, Biodegradable Polymers, in Environmental Silicate Nano-Biocomposites, L. Avérous and E. Pollet, Editors. 2012, Springer London. p. 13-39.
33. Tamada, J.A. and R. Langer, Erosion kinetics of hydrolytically degradable polymers. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(2): p. 552-556.
34. Burkersroda, F.v., L. Schedl, and A. Göpferich, Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002. 23(21): p. 4221-4231.
35. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in Polymer Science, 2007. 32(8–9): p. 762-798.
36. Azevedo, H.S. and R.L. Reis, Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. Biodegradable systems in tissue engineering and regenerative medicine. Boca Raton, FL: CRC Press, 2005. 177201.
37. Foster, L.J.R., A. Saufi, and P.J. Holden, Environmental concentrations of polyhydroxyalkanoates and their potential as bioindicators of pollution. Biotechnology Letters, 2001. 23(11): p. 893-898.
38. Madison, L.L. and G.W. Huisman, Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiology and Molecular Biology Reviews, 1999. 63(1): p. 21-53.
39. Koning, d.G.J.M., Prospects of bacterial poly[(R)-3-hydroxyalkanoates]. Eindhoven University of Technology, Eindhoven, 1993.
40. Lakshman, K. and T.R. Shamala, Enhanced biosynthesis of polyhydroxyalkanoates in a mutant strain of Rhizobium meliloti. Biotechnol Lett, 2003. 25(2): p. 115-9.
41. Stevens, E.S., What makes green plastics green? Biocycle, 2003. 44: p. 24-27.
42. Lenz, R.W., Biodegradable polymers, in Biopolymers I. 1993. p. 1-40.
43. Chandra, R.a.R., R., Biodegradable Polymers. Progress in Polymer Science, 1998. 23: p. 1273-1335.
44. Zhang, L., et al., Biodegradable polymer blends of poly(3-hydroxybutyrate) and starch acetate. Polymer International, 1997. 44(1): p. 104-110.
45. Savenkova, L., et al., Mechanical properties and biodegradation characteristics of PHB-based films. Process Biochemistry, 2000. 35(6): p. 573-579.
46. El-Hadi, A., et al., Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polymer Testing, 2002. 21(6): p. 665-674.
47. Barham, P.J. and A. Keller, The relationship between microstructure and mode of fracture in polyhydroxybutyrate. Journal of Polymer Science Part B: Polymer Physics, 1986. 24(1): p. 69-77.
48. Grassie, N., E.J. Murray, and P.A. Holmes, The thermal degradation of poly(-(d)-β-hydroxybutyric acid): Part 2—Changes in molecular weight. Polymer Degradation and Stability, 1984. 6(2): p. 95-103.
49. Avella, M., et al., Reactive blending methodologies for biopol. Polymer International, 1996. 39(3): p. 191-204.
50. Mohanty, A.K., M. Misra, and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview. Macromolecular Materials and Engineering, 2000. 276-277(1): p. 1-24.
51. Hsieh, W.-C., et al., Effect of hydrophilic and hydrophobic monomers grafting on microbial poly(3-hydroxybutyrate). Journal of the Taiwan Institute of Chemical Engineers, 2009. 40(4): p. 413-417.
52. Amass, W., A. Amass, and B. Tighe, A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer International, 1998. 47(2): p. 89-144.
53. Parikh, M.G., R.A.; MacCarthy, S.P., The influence of injection molding conditions on biodegradable polymers. The Journal of injection molding technology 1998. 2: p. 30.
54. Rodriguez, F., et al., Principles of Polymer Systems, Sixth Edition. 2014: CRC Press.
55. Middleton, J.C. and A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000. 21(23): p. 2335-46.
56. Mochizuki, M. and M. Hirami, Structural Effects on the Biodegradation of Aliphatic Polyesters. Polymers for Advanced Technologies, 1997. 8(4): p. 203-209.
57. Jacobsen, S. and H.G. Fritz, Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polymer Engineering & Science, 1999. 39(7): p. 1303-1310.
58. Md. Mahabub Hasan, K.A.N., Mohammad Billal Hossain, Sharmin Nahar, Production of Tissue Engineering Scaffolds from Poly Caprolactone (PCL) and Its Microscopic Analysis. International Journal of Textile Science, 2014. 3(3): p. 39-43.
59. Gunatillake, P., R. Mayadunne, and R. Adhikari, Recent developments in biodegradable synthetic polymers, in Biotechnology Annual Review, M.R. El-Gewely, Editor. 2006, Elsevier. p. 301-347.
60. Nair, L. and C. Laurencin, Polymers as Biomaterials for Tissue Engineering and Controlled Drug Delivery, in Tissue Engineering I, K. Lee and D. Kaplan, Editors. 2006, Springer Berlin Heidelberg. p. 47-90.
61. Sinha, V.R., et al., Poly-ϵ-caprolactone microspheres and nanospheres: an overview. International Journal of Pharmaceutics, 2004. 278(1): p. 1-23.
62. Chiari, C., et al., A tissue engineering approach to meniscus regeneration in a sheep model. Osteoarthritis and Cartilage, 2006. 14(10): p. 1056-1065.
63. Mondrinos, M.J., et al., Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials, 2006. 27(25): p. 4399-408.
64. Lendlein, A., Polymere als Implantatwerkstoffe. Chemie in unserer Zeit, 1999. 33(5): p. 279-295.
65. Yan, D., C. Gao, and H. Frey, Hyperbranched Polymers: Synthesis, Properties, and Applications. 2011: Wiley.
66. Gao, C. and D. Yan, Hyperbranched polymers: from synthesis to applications. Progress in Polymer Science, 2004. 29(3): p. 183-275.
67. Kienle, R.H. and A.G. Hovey, THE POLYHYDRIC ALCOHOL-POLYBASIC ACID REACTION. I. GLYCEROL-PHTHALIC ANHYDRIDE. Journal of the American Chemical Society, 1929. 51(2): p. 509-519.
68. Kienle, R.H. and F.E. Petke, The Polyhydric Alcohol-Polybasic Acid Reaction. V. The Glyceryl Succinate and Glyceryl Maleate Polyesters. Journal of the American Chemical Society, 1940. 62(5): p. 1053-1056.
69. Flory, P.J., Molecular Size Distribution in Three Dimensional Polymers. I. Gelation1. Journal of the American Chemical Society, 1941. 63(11): p. 3083-3090.
70. Jikei, M., et al., Synthesis of Hyperbranched Aromatic Polyamide from Aromatic Diamines and Trimesic Acid. Macromolecules, 1999. 32(6): p. 2061-2064.
71. Emrick, T., H.-T. Chang, and J.M.J. Fréchet, An A2 + B3 Approach to Hyperbranched Aliphatic Polyethers Containing Chain End Epoxy Substituents. Macromolecules, 1999. 32(19): p. 6380-6382.
72. Voit, B., New developments in hyperbranched polymers. Journal of Polymer Science Part A: Polymer Chemistry, 2000. 38(14): p. 2505-2525.
73. Jikei, M. and M.-a. Kakimoto, Dendritic aromatic polyamides and polyimides. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(6): p. 1293-1309.
74. Hult, A., M. Johansson, and E. Malmström, Hyperbranched Polymers, in Branched Polymers II, J. Roovers, Editor. 1999, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-34.
75. Froehling, P., Development of DSM's hybrane® hyperbranched polyesteramides. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(13): p. 3110-3115.
76. Wang, Y., et al., A tough biodegradable elastomer. Nat Biotech, 2002. 20(6): p. 602-606.
77. Rai, R., et al., Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, 2012. 37(8): p. 1051-1078.
78. Pomerantseva, I., et al., Degradation behavior of poly(glycerol sebacate). J Biomed Mater Res A, 2009. 91(4): p. 1038-47.
79. Maliger, R., P.J. Halley, and J.J. Cooper-White, Poly(glycerol–sebacate) bioelastomers—kinetics of step-growth reactions using Fourier Transform (FT)-Raman spectroscopy. Journal of Applied Polymer Science, 2013. 127(5): p. 3980-3986.
80. Mark, D.H., Thermal characterization of polymeric materials. Journal of Polymer Science: Polymer Letters Edition, 1982. 20(5): p. 281-282.
81. Manzanedo, D., Biorubber (PGS): evaluation of a novel biodegradable elastomer. MEng thesis. Boston: Department of Materials Science and Engineering, Massachusetts Institute of Technology, 2006.
82. Sundback, C.A., et al., Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, 2005. 26(27): p. 5454-5464.
83. Chen, Q.-Z., et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 2008. 29(1): p. 47-57.
84. Yamaguchi, S., Analysis of stress-strain curves at fast and slow velocities of loading in vitro in the transverse section of the rat incisor periodontal ligament following the administration of β-aminopropionitrile. Archives of Oral Biology, 1992. 37(6): p. 439-444.
85. Lee, M.C. and R.C. Haut, Strain rate effects on tensile failure properties of the common carotid artery and jugular veins of ferrets. J Biomech, 1992. 25(8): p. 925-7.
86. Komatsu, K. and M. Chiba, The effect of velocity of loading on the biomechanical responses of the periodontal ligament in transverse sections of the rat molar in vitro. Archives of Oral Biology, 1993. 38(5): p. 369-375.
87. Liu, Q., et al., Structure and properties of thermoplastic poly(glycerol sebacate) elastomers originating from prepolymers with different molecular weights. Journal of Applied Polymer Science, 2007. 104(2): p. 1131-1137.
88. Kemppainen, J.M. and S.J. Hollister, Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. J Biomed Mater Res A, 2010. 94(1): p. 9-18.
89. Mitsak, A.G., A.M. Dunn, and S.J. Hollister, Mechanical characterization and non-linear elastic modeling of poly(glycerol sebacate) for soft tissue engineering. J Mech Behav Biomed Mater, 2012. 11: p. 3-15.
90. Jaafar, I., et al., Spectroscopic evaluation, thermal, and thermomechanical characterization of poly(glycerol-sebacate) with variations in curing temperatures and durations. Journal of Materials Science, 2010. 45(9): p. 2525-2529.
91. Ipsita Roy and Visakh, P.M., Polyhydroxyalkanoate (PHA) based Blends, Composites and Nanocomposites. Royal Society of Chemistry, 2015: p. 33-34.
92. Cai, W. and L. Liu, Shape-memory effect of poly (glycerol–sebacate) elastomer. Materials Letters, 2008. 62(14): p. 2171-2173.
93. Samra, B.K., I.Y. Galaev, and B. Mattiasson, Thermosensitive, Reversibly Cross-Linking Gels with a Shape “Memory”. Angewandte Chemie International Edition, 2000. 39(13): p. 2364-2367.
94. Monkman, G.J., Advances in shape memory polymer actuation. Mechatronics, 2000. 10(4–5): p. 489-498.
95. Chen, Q.Z., et al., An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials, 2010. 31(14): p. 3885-93.
96. Wang, Y., Y.M. Kim, and R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). J Biomed Mater Res A, 2003. 66(1): p. 192-7.
97. Liang, S.L., et al., In vitro enzymatic degradation of poly (glycerol sebacate)-based materials. Biomaterials, 2011. 32(33): p. 8486-96.
98. Nijst, C.L.E., et al., Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol-co-sebacate). Biomacromolecules, 2007. 8(10): p. 3067-3073.
99. Sant, S., et al., Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties. J Tissue Eng Regen Med, 2011. 5(4): p. 283-91.
100. Masoumi, N., et al., Electrospun PGS:PCL microfibers align human valvular interstitial cells and provide tunable scaffold anisotropy. Adv Healthc Mater, 2014. 3(6): p. 929-39.
101. Jeong, C.G. and S.J. Hollister, A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes. Biomaterials, 2010. 31(15): p. 4304-12.
102. Yi, F. and D.A. LaVan, Poly(glycerol sebacate) nanofiber scaffolds by core/shell electrospinning. Macromol Biosci, 2008. 8(9): p. 803-6.
103. Sun, Z.-J., et al., The characterization of mechanical and surface properties of poly (glycerol–sebacate–lactic acid) during degradation in phosphate buffered saline. Applied Surface Science, 2008. 255(2): p. 350-352.
104. Chen, Q., S. Liang, and G.A. Thouas, Synthesis and characterisation of poly(glycerol sebacate)-co-lactic acid as surgical sealants. Soft Matter, 2011. 7(14): p. 6484-6492.
105. Kenar, H., G.T. Kose, and V. Hasirci, Design of a 3D aligned myocardial tissue construct from biodegradable polyesters. J Mater Sci Mater Med, 2010. 21(3): p. 989-97.
106. Jeffries, E.M., et al., Highly elastic and suturable electrospun poly(glycerol sebacate) fibrous scaffolds. Acta Biomater, 2015. 18: p. 30-9.
107. Balguid, A., et al., Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng Part A, 2009. 15(2): p. 437-44.
108. LL, H., Bioceramics. J Am Ceram Soc, 1998. 81(1705): p. 28.
109. Liang, S.L., et al., The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Biomaterials, 2010. 31(33): p. 8516-29.
110. Bettinger, C., et al., Amino alcohol-based degradable poly(ester amide) elastomers. Biomaterials, 2008. 29(15): p. 2315-2325.
111. Rodriguez, F.J., et al., Highly permeable polylactide-caprolactone nerve guides enhance peripheral nerve regeneration through long gaps. Biomaterials, 1999. 20(16): p. 1489-500.
112. Zhao, X., et al., Synthesis and application of water-soluble hyperbranched poly(ester)s from maleic anhydride and glycerol. Journal of Applied Polymer Science, 2009. 113(5): p. 3376-3381.
113. Kienle, R.H. and F.E. Petke, The Polyhydric Alcohol-Polybasic Acid Reaction. VI. The Glyceryl Adipate and Glyceryl Sebacate Polyesters. Journal of the American Chemical Society, 1941. 63(2): p. 481-484.
114. Stumbé, J.-F. and B. Bruchmann, Hyperbranched Polyesters Based on Adipic Acid and Glycerol. Macromolecular Rapid Communications, 2004. 25(9): p. 921-924.
115. Brioude, M.d.M., et al., Synthesis and characterization of aliphatic polyesters from glycerol, by-product of biodiesel production, and adipic acid. Materials Research, 2007. 10: p. 335-339.
116. Korupp, C., et al., Scaleup of Lipase-Catalyzed Polyester Synthesis. Organic Process Research & Development, 2010. 14(5): p. 1118-1124.
117. Ferreira, P., et al., Photocrosslinkable Polymers for Biomedical Applications. 2011: INTECH Open Access Publisher.
118. Tehfe, M., et al., Photopolymerization Reactions: On the Way to a Green and Sustainable Chemistry. Applied Sciences, 2013. 3(2): p. 490.
119. Williams, J.L.R., Photopolymerization and photocrosslinking of polymers, in Photochemistry. 1969, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 227-250.
120. Fouassier, J.P., Photoinitiated Polymerisation: Theory and Applications. 1998: Rapra Technology Limited.
121. Hoyle, C.E., et al., Radiation Curing of Polymeric Materials. 1990: American Chemical Society.
122. Goodner, M.D. and C.N. Bowman, Modeling Primary Radical Termination and Its Effects on Autoacceleration in Photopolymerization Kinetics. Macromolecules, 1999. 32(20): p. 6552-6559.
123. Goodner, M.D. and C.N. Bowman, Modeling and Experimental Investigation of Light Intensity and Initiator Effects on Solvent-Free Photopolymerizations, in Solvent-Free Polymerizations and Processes. 1998, American Chemical Society. p. 220-231.
124. Ifkovits, J.L. and J.A. Burdick, Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng, 2007. 13(10): p. 2369-85.
125. Cook, W.D., Thermal aspects of the kinetics of dimethacrylate photopolymerization. Polymer, 1992. 33(10): p. 2152-2161.
126. Anseth, K.S., C.M. Wang, and C.N. Bowman, Reaction behaviour and kinetic constants for photopolymerizations of multi(meth)acrylate monomers. Polymer, 1994. 35(15): p. 3243-3250.
127. Anseth, K.S., C.M. Wang, and C.N. Bowman, Kinetic evidence of reaction diffusion during the polymerization of multi(meth)acrylate monomers. Macromolecules, 1994. 27(3): p. 650-655.
128. Anseth, K.S., C. Decker, and C.N. Bowman, Real-Time Infrared Characterization of Reaction Diffusion during Multifunctional Monomer Polymerizations. Macromolecules, 1995. 28(11): p. 4040-4043.
129. Muggli, D.S., et al., Reaction Behavior of Biodegradable, Photo-Cross-Linkable Polyanhydrides. Macromolecules, 1998. 31(13): p. 4120-4125.
130. Biala, J., The benefits of using compost for mitigating climate change. The Organic Force, 2011.
131. Tuomela, M., et al., Biodegradation of lignin in a compost environment: a review. Bioresource Technology, 2000. 72(2): p. 169-183.
132. Golueke, C.G., Principles of composting. The Staff of BioCycle Journal of Waste Recycling. The Art and Science of Composting. The JG Press Inc., Pennsylvania, USA, 1991: p. 14-27.
133. Golueke, C.G., Bacteriology of composting. BioCycle, 1992. 33: p. 55-57.
134. Crawford, J.H., Composting of agricultural wastes - a review. Process Biochemistry, 1983. 18: p. 14-18.
135. McKinley, V.L. and J.R. Vestal, Physical and chemical correlates of microbial activity and biomass in composting municipal sewage sludge. Appl Environ Microbiol, 1985. 50(6): p. 1395-403.
136. Strom, P.F., Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol, 1985. 50(4): p. 899-905.
137. Prescott, L.M., J.P. Harley, and D.A. Klein, Microbiology. 2002: McGraw-Hill.
138. Yates, G.T. and T. Smotzer, On the lag phase and initial decline of microbial growth curves. Journal of Theoretical Biology, 2007. 244(3): p. 511-517.
139. Andreani, L. and J.D. Rocha, Use of ionic liquids in biodiesel production: a review. Brazilian Journal of Chemical Engineering, 2012. 29: p. 1-13.
140. 陳志平, 生質柴油技術. 化工技術月刊, 2004. 12: p. 135-146.
141. Materials Data Book. 2003.
142. Van de Velde, K. and P. Kiekens, Biopolymers: overview of several properties and consequences on their applications. Polymer Testing, 2002. 21(4): p. 433-442.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *