帳號:guest(3.145.202.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡佑如
作者(外文):Chien, Yu Ju
論文名稱(中文):三成份鎳-鈷系尖晶石氧化物於可充式 鋅空氣電池之空氣極的研究
論文名稱(外文):Ternary Spinel Nickel-Cobalt-Based Oxides for the Air Electrode of Rechargeable Zinc-Air Batteries
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi Chang
口試委員(中文):鄧熙聖
衛子健
口試委員(外文):Teng, Hsi sheng
Wei, Tzu Chien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032517
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:115
中文關鍵詞:鋅空氣電池氧氣產生氧氣還原鎳鈷氧化物尖晶石氧化物
外文關鍵詞:zinc air batteryOERORRnickel cobalt oxidespinel oxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:305
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文分為兩部分,第一部分,以簡易的水熱法合成MxNi1-xCo2O4 (M = Mn, Fe, Cu, Zn, x=0.1)尖晶石氧化物,標示為MNCO-01、FNCO-01、CNCO-01和ZNCO-01,利用X光繞射(XRD)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、感應耦合電漿質譜分析儀(ICP-MS)、電子能譜儀(XPS)、比表面積分析儀和電化學技術包含循環伏安法(CV)、線性伏安掃描(LSV)、塔弗曲線與定電流充放電分析,探討四種不同金屬部分取代尖晶石氧化物中的鎳離子,對外觀形貌和氧氣產生與還原的電化學特性之影響,結果顯示,鐵離子添加的鎳鈷系氧化物(FNCO-01)對氧氣產生與氧氣還原有最佳的電催化活性。第二部分,比較不同比例鐵離子添加的三成份尖晶石氧化(FexNi1-xCo2O4, 0≤x≤1),對ORR與OER電催化活性的影響,經由氧化物的結構、表面形貌與電化學表現的分析,部分的鐵離子取代鎳離子可大幅提升氧化物的電催化活性,當FexNi1-xCo2O4的鐵離子比例在0.1≤x≤0.3的範圍時,有最高的ORR和OER催化活性。將催化劑實際用於可充式鋅空氣電池,並在一般大氣下操作,FexNi1-xCo2O4(x=0.3)展現卓越的充放電電位與長效的循環壽命,幾乎無電位損耗。本研究認為FexNi1-xCo2O4兼具高效益與商業可行性,能成為可充式金屬空氣電池的的雙效催化劑。
There are two parts in this research. In the first part, partially substituted MxNi1-xCo2O4 (M = Mn, Fe, Cu, and Zn, x=0.1) spinel oxides, labeled as MNCO-01, FNCO-01, CNCO-01, and ZNCO-01, were synthesized via a facilely hydrothermal method. The effects of the metal partially substitution in the Ni site of the spinel oxide on the morphology and electrocatalytic properties of the materials toward the ORR and OER were investigated and compared by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductively coupled plasma-mass spectrometer (ICP-MS), X-ray photoelectron spectroscopy (XPS), surface area analyzer and electrochemical techniques including cyclic voltammetry (CV), linear sweep voltammetry (LSV), tafel plot, and galvanodynamic charge-discharging. As a result, the iron-substituted nickel-cobalt based oxides (FNCO-01) displayed a significant electrocatalytic activity towards both the ORR and OER in comparison with the Mn-substituted, Cu-substituted, and Zn-substituted nickel-cobalt based oxides.
In the second part, the spinel-type ternary transition metal oxides of nickel, cobalt, and iron with the composition FexNi1-xCo2O4 (0 ≤ x ≤ 1) were prepared and tested as promising electrocatalysts for the ORR and OER in alkaline solution. The structural, morphological and electrocatalytic performances confirmed that substitution of Ni by Fe increases the electrocatalytic activity of the resulting material significantly. The highest activity was achieved for FexNi1-xCo2O4 with 0.1 ≤ x ≤ 0.3. The practicality of the catalyst were corroborated by testing in a realistic rechargeable zinc-air battery utilizing atmospheric air in ambient conditions, where FexNi1-xCo2O4 (x=0.3) demonstrated superior charge and discharge voltages and long-term cycle stability with virtually no battery voltage fading. The excellent electrochemical results presented in this study highlight the FexNi1-xCo2O4 as highly efficient and commercially viable bifunctional catalyst for rechargeable metal-air battery application.
中文摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 XIV
第一章 緒論及文獻回顧 1
1-1鋅空氣電池 1
1-1-1前言 1
1-1-2鋅空氣電池歷史[4, 5] 3
1-1-3鋅空氣電池簡介 4
1-2可充式空氣極的化學反應 6
1-2-1可充式空氣極氧氣還原反應(Oxygen Reduction Reaction, ORR) 6
1-2-2可充式空氣極氧氣產生反應(Oxygen Evolution Reaction, OER) 7
1-3 可充式空氣極催化劑與碳材 8
1-3-1 可充式空氣極雙效催化劑(Bifunctional Air Electrocatalysts) 8
1-3-2 碳材 11
1-4鎳鈷系尖晶石氧化物電極 12
1-4-1 尖晶石氧化物簡介 12
1-4-2 鎳鈷氧化物 15
1-5流動系統分析技術 17
1-5-1旋轉圓盤電極的基本原理 17
1-5-2旋轉環-盤電極的基本原理 19
1-6研究動機與本文大綱 21
第二章實驗方法、步驟與儀器介紹 22
2-1 儀器與藥品 22
2-2 水熱法製備催化劑 24
2-2-1 MxNi1-xCo2O4 (M=Mn, Fe, Cu, Zn)的製備 24
2-2-2 FexNi1-xCo2O4的製備 24
2-3 電化學分析 25
2-3-1旋轉環-盤電極(RRDE)塗布與前處理 25
2-3-2循環伏安法(Cyclic Voltammetry, CV) 25
2-3-3線性伏安掃描(Linear Sweep Voltammetry, LSV) 26
2-3-4塔弗曲線(Tafel curve) 26
2-3-5鋅空氣電池空氣極的塗布與量測分析 27
2-4 材料分析儀器與原理簡介 28
2-4-1 X光繞射分析(X-ray diffraction analysis, XRD) 28
2-4-2掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 28
2-4-3穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 29
2-4-4比表面積與孔徑分析儀 (Surface Area and Porosity Analyzer) 29
2-4-5感應耦合電漿質譜儀(Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 30
2-4-6電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 30
第三章 MxNi1-xCo2O4 (M=Mn, Fe, Cu 和Zn)對氧氣產生(OER)與還原(ORR)電觸媒特性之影響 32
3-1材料分析 32
3-1-1 XRD結果分析 32
3-1-2 SEM結果分析 34
3-1-3 TEM結果分析 34
3-1-4 BET結果分析 35
3-1-5 ICP-MS結果分析 37
3-1-5 XPS結果分析 38
3-2氧氣產生與還原之電化學分析 47
3-2-1循環伏安(CV)行為 47
3-2-2線性掃描伏安(LSV)法分析ORR行為 49
3-2-3線性掃描伏安法(LSV)與塔弗曲線(Tafel slope)分析OER行為 52
3-3 鋅空氣電池電化學行為 55
3-3-1 鋅空氣電池空氣極之極化曲線( polarization ) 55
3-3-2 催化劑於空氣陰極之充放電行為分析 58
3-4結果與討論 62
第四章 FexNi1-xCo2O4對氧氣產生(OER)與還原(ORR)電觸媒特性之影響 64
4-1材料分析 64
4-1-1 XRD結果分析 64
4-1-2 SEM結果分析 66
4-1-3 TEM結果分析 67
4-1-4 BET結果分析 68
4-1-4 ICP-MS結果分析 71
4-1-5 XPS結果分析 72
4-2 氧氣產生與還原之電化學分析 80
4-2-1循環伏安(CV)行為 80
4-2-2線性掃描伏安(LSV)法分析ORR行為 82
4-2-3線性掃描伏安法(LSV)與塔弗曲線(Tafel slope)分析OER行為 85
4-3 鋅空氣電池電化學行為 88
4-3-1 鋅空氣電池空氣陰極極化曲線( polarization ) 88
4-3-2 催化劑於空氣陰極之充放電行為分析 92
4-4 結果與討論 97
第五章 總結與展望 99
5-1 總結 99
5-2 展望 101
參考文獻 102

[1] 萬其超, "電化學之原理與應用," 徐氏基金會,台灣台北, 1996.
[2] M. Winter and R. J. Brodd, "What are batteries, fuel cells, and supercapacitors?," Chemical reviews, vol. 104, pp. 4245-4270, 2004.
[3] G. Girishkumar, B. McCloskey, A. Luntz, S. Swanson, and W. Wilcke, "Lithium-air battery: promise and challenges," The Journal of Physical Chemistry Letters, vol. 1, pp. 2193-2203, 2010.
[4] V. Neburchilov, H. Wang, J. J. Martin, and W. Qu, "A review on air cathodes for zinc-air fuel cells," Journal of Power Sources, vol. 195, pp. 1271-1291, 3/1/ 2010.
[5] 曹玉佳, "鋅空氣燃料電池陰極之奈米化結構研發," 國立中正大學碩士論文, 2007.
[6] D. Linden, "Handbook of Batteries," McGraw-Hill Pub. Co., NY, 1994.
[7] Y. N. Jo, H. S. Kim, K. Prasanna, P. R. Ilango, W. J. Lee, S. W. Eom, et al., "Effect of Additives on Electrochemical and Corrosion Behavior of Gel Type Electrodes for Zn-Air System," Industrial & Engineering Chemistry Research, vol. 53, pp. 17370-17375, 2014.
[8] S. Müller, F. Holzer, and O. Haas, "Optimized zinc electrode for the rechargeable zinc-air battery," Journal of applied electrochemistry, vol. 28, pp. 895-898, 1998.
[9] R. Shivkumar, G. P. Kalaignan, and T. Vasudevan, "Effect of additives on zinc electrodes in alkaline battery systems," Journal of power sources, vol. 55, pp. 53-62, 1995.
[10] C. W. Lee, K. Sathiyanarayanan, S. W. Eom, H. S. Kim, and M. S. Yun, "Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells," Journal of power sources, vol. 160, pp. 161-164, 2006.
[11] Y. Tang, L. Lu, H. W. Roesky, L. Wang, and B. Huang, "The effect of zinc on the aluminum anode of the aluminum-air battery," Journal of Power Sources, vol. 138, pp. 313-318, 2004.
[12] L. Jörissen, "Bifunctional oxygen/air electrodes," Journal of Power Sources, vol. 155, pp. 23-32, 2006.
[13] J. Goldstein and A. Tseung, "A joint pseudo-splitting/peroxide mechanism for oxygen reduction at fuel cell cathodes," 1969.
[14] W. Sunu and D. Bennion, "Transient and Failure Analyses of the Porous Zinc Electrode I. Theoretical," Journal of The Electrochemical Society, vol. 127, pp. 2007-2016, 1980.
[15] M. S. El-Deab and T. Ohsaka, "Electrosynthesis of Single-Crystalline MnOOH Nanorods onto Pt Electrodes Electrocatalytic Activity toward Reduction of Oxygen," Journal of The Electrochemical Society, vol. 155, pp. D14-D21, 2008.
[16] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, "A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles," Science, vol. 334, pp. 1383-1385, 2011.
[17] D. U. Lee, B. J. Kim, and Z. Chen, "One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst," Journal of Materials Chemistry A, vol. 1, pp. 4754-4762, 2013.
[18] 李育書, "鈷系氧化物電極對氧氣產生及葡萄糖氧化之電化學及材料特性," 國立成功大學碩士論文, 1995.
[19] B. E. Conway and T. Liu, "Characterization of electrocatalysis in the oxygen evolution reaction at platinum by evaluation of behavior of surface intermediate states at the oxide film," Langmuir, vol. 6, pp. 268-276, 1990.
[20] S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, et al., "Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability," Catalysis Today, vol. 262, pp. 170-180, 2016.
[21] R. Cao, J. S. Lee, M. Liu, and J. Cho, "Recent Progress in Non‐Precious Catalysts for Metal-Air Batteries," Advanced Energy Materials, vol. 2, pp. 816-829, 2012.
[22] S. Trasatti, "Physical electrochemistry of ceramic oxides," Electrochimica Acta, vol. 36, pp. 225-241, 1991.
[23] X. Ge, Y. Liu, F. T. Goh, T. A. Hor, Y. Zong, P. Xiao, et al., "Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution," ACS applied materials & interfaces, vol. 6, pp. 12684-12691, 2014.
[24] D. U. Lee, H. W. Park, M. G. Park, V. Ismayilov, and Z. Chen, "Synergistic Bifunctional Catalyst Design based on Perovskite Oxide Nanoparticles and Intertwined Carbon Nanotubes for Rechargeable Zinc-Air Battery Applications," ACS applied materials & interfaces, vol. 7, pp. 902-910, 2014.
[25] Y. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra, et al., "In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction," Journal of the American Chemical Society, vol. 135, pp. 8525-8534, 2013.
[26] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, et al., "Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction," Nature materials, vol. 10, pp. 780-786, 2011.
[27] Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, et al., "Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts," Journal of the American Chemical Society, vol. 134, pp. 3517-3523, 2012.
[28] F. Cheng, J. Shen, B. Peng, Y. Pan, Z. Tao, and J. Chen, "Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts," Nature Chemistry, vol. 3, pp. 79-84, 2011.
[29] V. Nikolova, P. Iliev, K. Petrov, T. Vitanov, E. Zhecheva, R. Stoyanova, et al., "Electrocatalysts for bifunctional oxygen/air electrodes," Journal of Power Sources, vol. 185, pp. 727-733, 2008.
[30] C. K. Lee, K. A. Striebel, F. R. McLarnon, and E. J. Cairns, "Thermal treatment of La0.6Ca0.4CoO3 perovskites for bifunctional air electrodes," Journal of The Electrochemical Society, vol. 144, pp. 3801-3806, 1997.
[31] N.-L. Wu, W.-R. Liu, and S.-J. Su, "Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3-x in bifunctional air electrode," Electrochimica Acta, vol. 48, pp. 1567-1571, 2003.
[32] S. Malkhandi, B. Yang, A. Manohar, A. Manivannan, G. S. Prakash, and S. Narayanan, "Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes," The journal of physical chemistry letters, vol. 3, pp. 967-972, 2012.
[33] Z. Chen, A. Yu, D. Higgins, H. Li, H. Wang, and Z. Chen, "Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application," Nano letters, vol. 12, pp. 1946-1952, 2012.
[34] Z. Chen, A. Yu, R. Ahmed, H. Wang, H. Li, and Z. Chen, "Manganese dioxide nanotube and nitrogen-doped carbon nanotube based composite bifunctional catalyst for rechargeable zinc-air battery," Electrochimica Acta, vol. 69, pp. 295-300, 2012.
[35] G. Du, X. Liu, Y. Zong, T. A. Hor, A. Yu, and Z. Liu, "Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc–air batteries," Nanoscale, vol. 5, pp. 4657-4661, 2013.
[36] K.-N. Jung, J.-H. Jung, W. B. Im, S. Yoon, K.-H. Shin, and J.-W. Lee, "Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries," ACS applied materials & interfaces, vol. 5, pp. 9902-9907, 2013.
[37] G. Toussaint, P. Stevens, L. Akrour, R. Rouget, and F. Fourgeot, "Development of a rechargeable zinc-air battery in Metal/Air and Metal/Water Batteries," vol. 28, N. Dudney, Ed., ed Pennington: Electrochemical Soc Inc, 2010, pp. 25-34.
[38] M. Prabu, P. Ramakrishnan, and S. Shanmugam, "CoMn2O4 nanoparticles anchored on nitrogen-doped graphene nanosheets as bifunctional electrocatalyst for rechargeable zinc–air battery," Electrochemistry Communications, vol. 41, pp. 59-63, 2014.
[39] M. Prabu, K. Ketpang, and S. Shanmugam, "Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries," Nanoscale, vol. 6, pp. 3173-3181, 2014.
[40] K. Kinoshita, "Carbon: electrochemical and physicochemical properties," 1988.
[41] M. Srivastava, M. E. Uddin, J. Singh, N. H. Kim, and J. H. Lee, "Preparation and characterization of self-assembled layer by layer NiCo2O4-reduced graphene oxide nanocomposite with improved electrocatalytic properties," Journal of Alloys and Compounds, vol. 590, pp. 266-276, 2014.
[42] Y.-z. Su, Q.-z. Xu, Q.-s. Zhong, S.-t. Shi, C.-j. Zhang, and C.-w. Xu, "NiCo2O4/C prepared by one-step intermittent microwave heating method for oxygen evolution reaction in splitter," Journal of Alloys and Compounds, vol. 617, pp. 115-119, 2014.
[43] H. Zhang, H. Qiao, H. Wang, N. Zhou, J. Chen, Y. Tang, et al., "Nickel cobalt oxide/carbon nanotubes hybrid as a high-performance electrocatalyst for metal/air battery," Nanoscale, vol. 6, pp. 10235-10242, 2014.
[44] B. Issa, I. M. Obaidat, B. A. Albiss, and Y. Haik, "Magnetic nanoparticles: surface effects and properties related to biomedicine applications," International journal of molecular sciences, vol. 14, pp. 21266-21305, 2013.
[45] S. Jasem and A. Tseung, "A Potentiostatic Pulse Study of Oxygen Evolution on Teflon‐Bonded Nickel-Cobalt Oxide Electrodes," Journal of The Electrochemical Society, vol. 126, pp. 1353-1360, 1979.
[46] F.A.Cotton, G.Wilkinson, and P.L.Gaus, Basic Inorganic Chemistry, 3rd ed. Inc. New York: John Wiley and Sons, 1995.
[47] R. Janes and E. A. Moore, Metal-ligand bonding: Royal society of chemistry, 2004.
[48] K. E. Sickafus, J. M. Wills, and N. W. Grimes, "Structure of spinel," Journal of the American Ceramic Society, vol. 82, pp. 3279-3292, 1999.
[49] R. J. Hill, J. R. Craig, and G. Gibbs, "Systematics of the spinel structure type," Physics and Chemistry of Minerals, vol. 4, pp. 317-339, 1979.
[50] M. Hamdani, R. Singh, and P. Chartier, "Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes," Int. J. Electrochem. Sci, vol. 5, p. 556, 2010.
[51] M. Lenglet, R. Guillamet, J. Dürr, D. Gryffroy, and R. E. Vandenberghe, "Electronic structure of NiCo2O4 by XANES, EXAFS and 61Ni Mössbauer studies," Solid State Communications, vol. 74, pp. 1035-1039, 1990/06/01 1990.
[52] R. Ning, J. Tian, A. M. Asiri, A. H. Qusti, A. O. Al-Youbi, and X. Sun, "Spinel CuCo2O4 nanoparticles supported on N-doped reduced graphene oxide: a highly active and stable hybrid electrocatalyst for the oxygen reduction reaction," Langmuir, vol. 29, pp. 13146-13151, 2013.
[53] J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang, and L. Guo, "Surface structure dependent electrocatalytic activity of Co3O4 anchored on graphene sheets toward oxygen reduction reaction," Scientific reports, vol. 3, 2013.
[54] Z. Chen, M. Waje, W. Li, and Y. Yan, "Supportless Pt and PtPd Nanotubes as Electrocatalysts for Oxygen-Reduction Reactions," Angewandte Chemie, vol. 119, pp. 4138-4141, 2007.
[55] 胡啟章, "電化學原理與方法," 五南圖書出版股份有限公司, 2002.
[56] S. J. Lee, S. I. Pyun, S. K. Lee, and S. J. L. Kang, "Fundamentals of Rotating Disc and Ring-Disc Electrode Techniques and their Applications to Study of the Oxygen Reduction Mechanism at Pt/C Electrode for Fuel Cells," Israel Journal of Chemistry, vol. 48, pp. 215-228, 2008.
[57] C. Song and J. Zhang, "Electrocatalytic oxygen reduction reaction in PEM fuel cell electrocatalysts and catalyst layers," ed: Springer, 2008, pp. 89-134.
[58] Y. S. Lee, C. C. Hu, and T. C. Wen, "Oxygen Evolution on Co-Cu-Zn Ternary Spinel Oxide-Coated Electrodes in Alkaline Solution Integration of Statistical, Electrochemical, and Textural Approaches," Journal of The Electrochemical Society, vol. 143, pp. 1218-1225, 1996.
[59] J. Wang, T. Qiu, X. Chen, Y. Lu, and W. Yang, "Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium," Journal of Power Sources, vol. 268, pp. 341-348, 2014.
[60] R. J. Toh, A. Y. S. Eng, Z. Sofer, D. Sedmidubsky, and M. Pumera, "Ternary Transition Metal Oxide Nanoparticles with Spinel Structure for the Oxygen Reduction Reaction," ChemElectroChem, vol. 2, pp. 982-987, 2015.
[61] J. Marco, J. Gancedo, M. Gracia, J. Gautier, E. Rı́, and F. Berry, "Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: An XRD, XANES, EXAFS, and XPS study," Journal of Solid State Chemistry, vol. 153, pp. 74-81, 2000.
[62] R. Ding, L. Qi, M. Jia, and H. Wang, "Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation," Journal of Power Sources, vol. 251, pp. 287-295, 2014.
[63] Z.-Y. Tian, P. H. T. Ngamou, V. Vannier, K. Kohse-Höinghaus, and N. Bahlawane, "Catalytic oxidation of VOCs over mixed Co-Mn oxides," Applied Catalysis B: Environmental, vol. 117, pp. 125-134, 2012.
[64] L. Qiu, Y. Wang, D. Pang, F. Ouyang, C. Zhang, and G. Cao, "Characterization and Catalytic Activity of Mn-Co/TiO2 Catalysts for NO Oxidation to NO2 at Low Temperature," Catalysts, vol. 6, p. 9, 2016.
[65] L. Fu, Y. Lu, Z. Liu, and R. Zhu, "Influence of the metal sites of MNC (M= Co, Fe, Mn) catalysts derived from metalloporphyrins in ethylbenzene oxidation," Chinese Journal of Catalysis, vol. 37, pp. 398-404, 2016.
[66] T. Yamashita and P. Hayes, "Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials," Applied Surface Science, vol. 254, pp. 2441-2449, 2008.
[67] A. Grosvenor, B. Kobe, M. Biesinger, and N. McIntyre, "Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds," Surface and Interface Analysis, vol. 36, pp. 1564-1574, 2004.
[68] Y. Zhang, T. Han, L. Zhu, J. Fang, J. Xu, P. Xu, et al., "Pt35Cu65 nanoarchitecture: a highly durable and effective electrocatalyst towards methanol oxidation," Nanotechnology, vol. 26, p. 135706, 2015.
[69] F. Jing, Y. Zhang, S. Luo, W. Chu, H. Zhang, and X. Shi, "Catalytic synthesis of 2-methylpyrazine over Cr-promoted copper based catalyst via a cyclo-dehydrogenation reaction route," Journal of chemical sciences, vol. 122, pp. 621-630, 2010.
[70] H. Han, G. Ding, T. Wu, D. Yang, T. Jiang, and B. Han, "Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde," Molecules, vol. 20, pp. 12686-12697, 2015.
[71] Z.-Q. Liu, Q.-Z. Xu, J.-Y. Wang, N. Li, S.-H. Guo, Y.-Z. Su, et al., "Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction," international journal of hydrogen energy, vol. 38, pp. 6657-6662, 2013.
[72] C. Yuan, J. Li, L. Hou, L. Yang, L. Shen, and X. Zhang, "Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors," Journal of Materials Chemistry, vol. 22, pp. 16084-16090, 2012.
[73] M. El Baydi, S. K. Tiwari, R. N. Singh, J.-L. Rehspringer, P. Chartier, J. F. Koenig, et al., "High Specific Surface Area Nickel Mixed Oxide Powders LaNiO3 (Perovskite) and NiCo2O4 (Spinel) via Sol-Gel Type Routes for Oxygen Electrocatalysis in Alkaline Media," Journal of Solid State Chemistry, vol. 116, pp. 157-169, 1995.
[74] J.-H. Zhong, A.-L. Wang, G.-R. Li, J.-W. Wang, Y.-N. Ou, and Y.-X. Tong, "Co3O4/Ni(OH)2 composite mesoporous nanosheet networks as a promising electrode for supercapacitor applications," Journal of Materials Chemistry, vol. 22, pp. 5656-5665, 2012.
[75] B. Lu, D. Cao, P. Wang, G. Wang, and Y. Gao, "Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes," International Journal of Hydrogen Energy, vol. 36, pp. 72-78, 2011.
[76] T.-Y. Wei, C.-H. Chen, H.-C. Chien, S.-Y. Lu, and C.-C. Hu, "A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process," Advanced materials, vol. 22, p. 347, 2010.
[77] D. Ghosh, S. Giri, and C. K. Das, "Hydrothermal synthesis of platelet β-Co(OH)2 and Co3O4: Smart electrode material for energy storage application," Environmental Progress & Sustainable Energy, vol. 33, pp. 1059-1064, 2014.
[78] A. Angelo, E. Gonzalez, and L. Avaca, "Mechanistic studies of the oxygen reactions on NiCo2O4 spinel and the hydrogen evolution reaction on amorphous Ni-Co sulphide," International journal of hydrogen energy, vol. 16, pp. 1-7, 1991.
[79] T. Ferreira, J. Waerenborgh, M. Mendonça, M. Nunes, and F. Costa, "Structural and morphological characterization of FeCo2O4 and CoFe2O4 spinels prepared by a coprecipitation method," Solid State Sciences, vol. 5, pp. 383-392, 2003.
[80] S. G. Mohamed, C.-J. Chen, C. K. Chen, S.-F. Hu, and R.-S. Liu, "High-Performance Lithium-Ion Battery and Symmetric Supercapacitors Based on FeCo2O4 Nanoflakes Electrodes," ACS applied materials & interfaces, vol. 6, pp. 22701-22708, 2014.
[81] Y. Sharma, N. Sharma, G. S. Rao, and B. Chowdari, "Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries," Solid State Ionics, vol. 179, pp. 587-597, 2008.
[82] Y. Sun, S. Gao, F. Lei, J. Liu, L. Liang, and Y. Xie, "Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts," Chem. Sci., vol. 5, pp. 3976-3982, 2014.
[83] Y. Cai, C. Ma, Y. Zhu, J. X. Wang, and R. R. Adzic, "Low-coordination sites in oxygen-reduction electrocatalysis: their roles and methods for removal," Langmuir, vol. 27, pp. 8540-8547, 2011.
[84] C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, and J. Chen, "Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis," Nature communications, vol. 6, 2015.
[85] 廖士權, "錳系氧化物電觸媒於鋅空氣電池陰極之研究," 國立中正大學碩士論文, 2009.
[86] D. U. Lee, M. G. Park, H. W. Park, M. H. Seo, X. Wang, and Z. Chen, "Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries," ChemSusChem, vol. 8, pp. 3129-3138, 2015.
[87] M. Prabu, P. Ramakrishnan, H. Nara, T. Momma, T. Osaka, and S. Shanmugam, "Zinc-air battery: understanding the structure and morphology changes of graphene-supported CoMn2O4 bifunctional catalysts under practical rechargeable conditions," ACS applied materials & interfaces, vol. 6, pp. 16545-16555, 2014.
[88] X. Liu, M. Park, M. G. Kim, S. Gupta, G. Wu, and J. Cho, "Integrating NiCo Alloys with Their Oxides as Efficient Bifunctional Cathode Catalysts for Rechargeable Zinc-Air Batteries," Angewandte Chemie International Edition, vol. 54, pp. 9654-9658, 2015.
[89] Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, et al., "Advanced zinc-air batteries based on high-performance hybrid electrocatalysts," Nature communications, vol. 4, p. 1805, 2013.
[90] J. Armijo, "The kinetics and mechanism of solid-state spinel formation-A review and critique," Oxidation of metals, vol. 1, pp. 171-198, 1969.
[91] J. Lu, C. Zhan, T. Wu, J. Wen, Y. Lei, A. J. Kropf, et al., "Effectively suppressing dissolution of manganese from spinel lithium manganate via a nanoscale surface-doping approach," Nature communications, vol. 5, 2014.
[92] S. W. Price, S. J. Thompson, X. Li, S. F. Gorman, D. Pletcher, A. E. Russell, et al., "The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries," Journal of Power Sources, vol. 259, pp. 43-49, 2014.
[93] L. Zhou, D. Zhao, and X. W. Lou, "Double‐Shelled CoMn2O4 Hollow Microcubes as High-Capacity Anodes for Lithium-Ion Batteries," Advanced materials, vol. 24, pp. 745-748, 2012.
[94] P. Lavela, J. Tirado, and C. Vidal-Abarca, "Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells," Electrochimica Acta, vol. 52, pp. 7986-7995, 2007.
[95] B. Zheng, J. Wang, F.-B. Wang, and X.-H. Xia, "Low-loading cobalt coupled with nitrogen-doped porous graphene as excellent electrocatalyst for oxygen reduction reaction," Journal of Materials Chemistry A, vol. 2, pp. 9079-9084, 2014.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *