帳號:guest(3.145.8.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陸詩婷
作者(外文):Lu, Shi Ting
論文名稱(中文):Bi-In-Te、Bi-In-Se三元熱電材料之相平衡與In/Bi2Te3之界面反應
論文名稱(外文):Phase equilibria of the Bi-In-Te, Bi-In-Se ternary thermoelectric materials and In/Bi2Te3 interfacial reactions
指導教授(中文):陳信文
指導教授(外文):Chen, Sinn Wen
口試委員(中文):陳洋元
吳子嘉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032512
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:143
中文關鍵詞:熱電材料碲化鉍相圖液相線投影圖等溫橫截面圖界面反應
外文關鍵詞:Thermoelectric materialsBi2Te3InPhase diagramLiquidus projectionIsothermal sectionInterfacial reaction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:419
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
Bi2Te3基熱電材料目前已廣泛應用於廢熱回收與熱電致冷領域。根據文獻指出N-型半導體材料Bi2Te3-xSex摻雜In元素,可進一步提升材料熱電性質。商業化熱電元件中存在許多接點,而以In銲料發展過度液相連接技術,對於製程溫度不能太高,卻在較高溫度下運作之熱電模組的應用十分具有潛力。相圖可提供材料微結構與生成相的基本知識。本研究針對Bi-In-Te、Bi-In-Se三元系統進行探討,分析結果包含:(1)以實驗建構Bi-In-Te三元系統之液相線投影圖以及於250oC等溫橫截面圖(2)以實驗建構Bi-In-Se三元系統於250oC等溫橫截面圖(3)探討In/Bi2Te3於250oC界面反應的生成相、反應機制與路徑(4)Bi-In-Te三元合金之熱電性質量測。本研究以純元素配製不同組成之三元合金;液相線部分對於as-cast的合金進行分析,判斷相區邊界與不變反應點之溫度、類別;將合金置於250oC高溫爐進行相平衡以建構等溫橫截面圖;於250oC接合定量銲料與基材,進行液/固界面反應實驗。以SEM、EPMA與XRD進行微結構分析、組成分析與相鑑定,並針對部分三元合金進行熱電量測。在Bi-In-Te三元系統液相線投影圖之分析結果,並沒有發現三元相的出現。此系統含有14個首要析出相區,分別為Bi、InBi、In5Bi3、In2Bi、In9Bi、In、In4Te3、InTe、In3Te4、In2Te3、In2Te5、Te、Bi2Te3以及(Bi2)m(Bi2Te3)n相區,在In4Te3相區內有一不互溶區。此系統包含12個不變反應點,利用熱分析決定其中6個反應點的溫度與種類,包含1個Class I、4個Class II以及1個Class III。在250oC等溫橫截面圖的分析結果,Bi-In-Te三元系統含有10個三相區與20個兩相區,以及1個三元相BiIn2Te4存在;Bi-In-Se三元系統含有7個三相區與15個兩相區。在In/Bi2Te3於250oC之液/固界面反應中,觀察到In4Te3、InTe、(Bi2)m(Bi2Te3)n生成相與Liquid相固化形成之交錯微結構。最後針對部分Bi-In-Te三元合金進行熱電性質量測,探討析出相造成熱導率降與
熱電優值提升之相對關係。
Since their promising applications in waste heat recovery and solid-state cooling, thermoelectric devices have attracted intensive research efforts. The Bi2Te3-based alloys have good thermoelectric properties. The N-type Bi2Te3-xSex alloys are the most commonly used commercial thermoelectric materials nowadays. It has been reported that their thermoelectric properties can be enhanced with indium doping. Furthermore, indium is also a promising candidate for transient liquid phase bonding of the thermoelectric modules. The efforts of this study include: (1) determination liquidus projection and 250oC isothermal section of Bi-In-Te ternary systems, (2) determination of the 250oC isothermal section of Bi-In-Se ternary systems, (3) In/Bi2Te3 interfacial reactions at 250oC, (4) thermoelectric properties measurement of Bi-In-Te ternary alloys. Ternary alloys are prepared with pure elements. The as-cast alloys are used for the construction of liquidus projection. The primary solidification phases are determined by the results of metallographical, compositional and XRD analyses. No ternary compound is found. There are 14 primary solidification phase regions, including Bi, InBi, In5Bi3, In2Bi, In9Bi, In, In4Te3, InTe, In3Te4, In2Te3, In2Te5, Te, Bi2Te3 and the (Bi2)m(Bi2Te3)n region. There is a miscibility gap in the In4Te3 region. The Bi-In-Te liquidus projection has 12 invariant reactions. Six of their reaction temperatures and reaction types are determined by differential thermal analysis.The 250oC isothermal sections are determined by experiment. There are 10 tie-triangles and 20 two-phase region in the Bi-In-Te ternary system. In addition, ternary compound BiIn2Te4 is found. There are 7 tie-triangles and 15 two-phase region in the Bi-In-Se ternary system.Three IMCs are formed in In/Bi2Te3 couples reacted at 250oC, including In4Te3, InTe, (Bi2)m(Bi2Te3)n. The alternating InTe/Liquid and In4Te3/Liquid layers are observed in reaction couples. Furthermore, some Bi-In-Te ternary alloys are prepared and their thermoelectric properties are measured. The thermal conductivity of alloys is reduced by the
secondary phases precipitation, and increase of the ZT value is observed.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 X
一、前言 1
二、文獻回顧 5
2-1 碲化鉍(Bi2Te3)熱電材料 5
2-2 相圖 6
2-3 二元系統文獻回顧 6
2-3-1 Bi-Te二元系統 6
2-3-2 Bi-In二元系統 7
2-3-3 In-Te二元系統 7
2-3-4 Bi-Se二元系統 8
2-3-5 In-Se二元系統 8
2-4 Bi-In-Te三元系統 9
2-4-1 Bi2Te3-In2Te3等值剖面圖 9
2-4-2 Bi-InTe等值剖面圖 9
2-5 Bi-In-Se三元系統 9
2-5-1 Bi2Se3-In2Se3等值剖面圖 9
2-5-2 Bi2Se3-InSe等值剖面圖 10
2-6 不互溶區 10
2-7 界面反應 10
2-7-1 In/Bi界面反應 10
2-7-2 In/Te界面反應 11
2-7-3 In/Bi2Te3界面反應 11
三、研究方法 19
3-1 Bi-In-Te、Bi-In-Se三元系統熱電材料之相平衡 19
3-1-1 合金製備 19
3-1-2 相平衡之熱處理 19
3-1-3 金相分析 19
3-1-4 X光粉末繞射分析 20
3-1-5 微熱差分析 20
3-2 In/Bi2Te3界面反應 20
3-2-1 熱電材料Bi2Te3基材與In銲料之製備 20
3-2-2 界面反應流程 21
3-3 熱電性質量測 21
四、結果與討論 23
4-1 Bi-In-Te三元系統之液相線投影圖 23
4-1-1 首要析出相: Bi2Te3 27
4-1-2 首要析出相:Te 35
4-1-3 首要析出相:In2Te5 38
4-1-4 首要析出相:In2Te3 41
4-1-5 首要析出相:InTe 44
4-1-6 首要析出相:In4Te3 48
4-1-7 首要析出相:Bi 53
4-1-8 首要析出相:InBi 57
4-1-9 首要析出相:In5Bi3 60
4-1-10 首要析出相:(Bi2)m(Bi2Te3)n 63
4-1-11 Bi-In-Te三元系統熱分析 65
4-2 Bi-In-Te三元系統250oC等溫橫截面圖 74
4-2-1 Bi2Te3-In2Te5-In2Te3三相區 76
4-2-2 (Bi2)m(Bi2Te3)n-BiIn2Te4兩相區 78
4-2-3 (Bi2)m(Bi2Te3)n單相區 81
4-2-4 (Bi2)m(Bi2Te3)n-In2Te3-In3Te4三相區 83
4-2-5 (Bi2)m(Bi2Te3)n-In3Te4-Bi三相區 86
4-2-6 Bi-InTe兩相區 89
4-2-7 Bi-InTe-Liquid三相區 92
4-2-8 In4Te3-Liquid兩相區 94
4-2-9 Bi-In-Te三元系統250oC等溫橫截面圖實驗結果 96
4-3 Bi-In-Se三元系統250oC等溫橫截面圖 97
4-3-1 Liquid-InSe兩相區 99
4-3-2 Bi-Liquid-InSe三相區 101
4-3-3 Bi-In6Se7-In2Se3三相區 104
4-3-4 Bi-(Bi2)m(Bi2Se3)n-In2Se3三相區 106
4-3-5 (Bi2)m(Bi2Se3)n相區 110
4-3-6 Bi2Se3單相區 112
4-3-7 Bi2Se3-Liquid兩相區 114
4-3-8 Bi-In-Se三元系統250oC等溫橫截面圖實驗結果 116
4-4 In/Bi2Te3於250oC之液/固界面反應 117
4-5 Bi-In-Te三元系統合金之熱電性質量測 132
五、結論 138
六、參考文獻 140
1. C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, "Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features", Advanced Materials, Vol. 22(36), pp. 3970-3980, (2010).
2. T. M. Tritt and M. A. Subramanian, "Thermoelectric Materials, Phenomena, and Applications: A Bird's Eye View", MRS Bulletin, Vol. 31, pp. 188-194, (2006).
3. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, "Quantum dot superlattice thermoelectric materials and devices", Science, Vol. 297(5590), pp. 2229-2232, (2002).
4. M. H. Bhuiyan, Y. Isoda, T. S. Kim, and S. J. Hong, "Thermoelectric properties of n-type 95%Bi2Te3-5%Bi2Se3 materials fabricated by magnetic pulsed compaction (MPC)", Intermetallics, Vol. 34, pp. 49-55, (2013).
5. M. Allahkarami, L. S. Faraji, G. Kavei, and Y. Zare, "Composition and thermoelectric power factor variation of (Bi2Te3)0.96(Bi2Se3)0.04 crystal in growth direction", Materials Chemistry and Physics, Vol. 119(1-2), pp. 145-148, (2010).
6. M. H. Bhuiyan, T. S. Kim, J. M. Koo, and S. J. Hong, "Microstructural behavior of the heat treated n-type 95% Bi2Te3-5% Bi2Se3 gas atomized thermoelectric powders", Journal of Alloys and Compounds, Vol. 509(5), pp. 1722-1728, (2011).
7. H. S. Kim and S. J. Hong, "Thermoelectric properties of n-type 95%Bi2Te3-5%Bi2Se3 compounds fabricated by gas-atomization and spark plasma sintering", Journal of Alloys and Compounds, Vol. 586, pp. S428-S431, (2014).
8. J. Y. Yang, T. Aizawa, A. Yamamoto, and T. Ohta, "Thermoelectric properties of n-type (Bi2Se3)x(Bi2Te3)1-x prepared by bulk mechanical alloying and hot pressing", Journal of Alloys and Compounds, Vol. 312(1-2), pp. 326-330, (2000).
9. Y. Du, K. F. Cai, H. Li, and B. J. An, "The Influence of Sintering Temperature on the Microstructure and Thermoelectric Properties of n-Type Bi2Te3-xSex Nanomaterials", Journal of Electronic Materials, Vol. 40(5), pp. 518-522, (2011).
10. L. Jansa, P. Lošťák, J. Šrámková, and J. Horák, "The Change of the Electric-Conductivity Type in Crystals of Bi2-XInxTe3 Solid-Solutions", Journal of materials science, Vol. 27, pp. 6062-6066, (1992).
11. J. H. Yim, K. Jung, M. J. Yoo, H. H. Park, J. S. Kim, and C. Park, "Preparation and thermoelectric properties of quaternary bismuth telluride-indium selenide compound", Current Applied Physics, Vol. 11(4), pp. S46-S49, (2011).
12. X. Duan, K. Hu, S. Ding, D. Man, W.Zhang, and M. Ma, "Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 by indium and sodium co-doping", Functional Materials Letters, Vol. 8(1), pp. 1550008-1-1550008-5, (2015).
13. T. E. Svechnikova, I. Y. Nikhezina, and M. A. Korzhuev, "Thermoelectric properties of n-Bi2Te2.7Se0.3 < I,In > crystals", Inorganic Materials, Vol. 47(12), pp. 1314-1318, (2011).
14. G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials", Nature Materials, Vol. 7(2), pp. 105-114, (2008).
15. E. Bastow, "5 solder families and how they work", Advanced Materials & Processes, Vol. 161(12), pp. 26-29, (2003).
16. D. Suraski and K. Seelig, "The current status of lead-free solder alloys", Ieee Transactions on Electronics Packaging Manufacturing, Vol. 24(4), pp. 244-248, (2001).
17. J. R. Drabble and C. H. L. Goodman, "Chemical Bonding in Bismuth Telluride", Journal of Physics and Chemistry of Solids, Vol. 5(1-2), pp. 142-144, (1958).
18. J. Ko, J. Y. Kim, S. M. Choi, Y. S. Lim, W. S. Seo, and K. H. Lee, "Nanograined thermoelectric Bi2Te2.7Se0.3 with ultralow phonon transport prepared from chemically exfoliated nanoplatelets", Journal of Materials Chemistry A, Vol. 1(41), pp. 12791-12796, (2013).
19. H. Köhler, "Non-Parabolicity of the Highest Valence Band of Bi2Te3 from Shubnikov-de Haas Effect", Physica status solidi (b), Vol. 74, pp. 591, (1976).
20. P. W. Lange, "Ein Vergleich zwischen Bi2Te3 und Bi2Te2S", Natuewissenschsften, Vol. 27(8), pp. 133-134, (1939).
21. P. Cucka and C. S. Barrett, "Crystal Structure of Bi and of Solid Solutions of Pb, Sn, Sb and Te in Bi", Acta Crystallographica, Vol. 15, pp. 865-872, (1962).
22. N. K. Abrikosov, V. F. Bankina, and K. F. Kharitonovich, "Issledovanie Diagrammy Sostoyaniya Sistemy Bi-Te", Russian Journal of Inorganic Chemistry, Vol. 5, pp. 978-982, (1960).
23. R. F. Brebrick, "Characterization of Phases in the 50-60 at.% Te Region of the Bi-Te System by X-ray Powder Diffraction Patterns ", Journal of Applied Crystallography, Vol. 1, pp. 241-246, (1968).
24. K. Yamana, K. Kihara, and T. Matsumoto, "Bismuth Tellurides - BiTe and Bi4Te3", Acta Crystallographica Section B-Structural Science, Vol. B35, pp. 147-149, (1979).
25. H. Okamoto, "Bi-Te (Bismuth-Tellurium)", Binary Alloy Phase Diagrams, 2 ed., Vol. 1, pp. 800-801, (1990).
26. J. W. G. Bos, H. W. Zandbergen, M. H. Lee, P. Ong, and R. J. Cava, "Structures and thermoelectric properties of the infinitely adaptive series (Bi2)m(Bi2Te3)n", Physical Review B, Vol. 75(19), pp. 195203-1-195203-9, (2007).
27. D. S. Evans and A. Prince, "Bi-In System", Metal Science, Vol. 17(3), pp. 117-121, (1983).
28. H. Okamoto, "Bi-In (Bismuth-Indium)", Binary Alloy Phase Diagrams, 2 ed., Vol. 1, pp. 748-751, (1990).
29. W. Klemm and H. U. von Vogel, "Messungen an Gallium- und Indium-Verbindungen. X. Über die Chalkogenide von Gallium und Indium", Zeitschrift Fur Anorganische Und Allgemeine Chemie, Vol. 219(1), pp. 45-64, (1934).
30. E. G. Grochowski, D. R. Mason, G. A. Schmitt, D. R. Mason, and P. H. Smith, "Phase Diagram for Binary System Indium-Tellurium and Electrical Properties of In3Te5", Journal of Physics and Chemistry of Solids, Vol. 25(6), pp. 551-558, (1964).
31. M. Wobst, "Verlauf der mischungslücken der binären systeme silber-tellur, indium-tellur, gallium-tellur, thallium-tellur und antimon-selen", Scripta Metallurgica, Vol. 5, pp. 583-585, (1971).
32. H. Okamoto, "In-Te (Indium-Tellurium)", Binary Alloy Phase Diagrams, 2 ed., Vol. 3, pp. 2301-2304, (1990).
33. V. P. Zlomanov, M. S. Sheiman, V. N. Demin, and B. Legendre, "Phase Diagram and Thermodynamic Properties of Phases in the In-Te System", Journal of Phase Equilibria, Vol. 22(3), pp. 339-344, (2001).
34. H. Okamoto, "Bi-Se (Bismuth-Selenium)", Binary Alloy Phase Diagrams, 2 ed., Vol. 1, pp. 790-792, (1990).
35. H. Lind, S. Lidin, and U. Haussermann, "Structure and bonding properties of (Bi2Se3)m(Bi2)n stacks by first-principles density functional theory", Physical Review B, Vol. 72(18), pp. 572-576, (2005).
36. T. Gödecke, T. Haalboom, and F. Sommer, "Stable and Metastable Phase Equilibria of the In-Se System ", Journal of Phase Equilibria, Vol. 19(6), pp. 572-576, (1998).
37. J. B. Li, M. C. Record, and J. C. Tedenac, "A Thermodynamic Assessment of the In–Se System", Zeitschrift für Metallkunde, Vol. 94(4), pp. 381-389, (2003).
38. H. Okamoto, "In-Se(Indium-Selenium)", Binary Alloy Phase Diagrams., 2 ed., Vol. 3, pp. 2288-2292, (1990).
39. A. J. Rosenberg and A. J. Strauss, "Solid Solutions of In2Te3 in Sb2Te3 and Bi2Te3", Journal of Physics and Chemistry of Solids, Vol. 19(1-2), pp. 105-116, (1961).
40. L. R. Scherpereel, P. L. Palumbo, and E. A. Peretti, "The quasibinary system In2Te3-Bi2Te3", Journal of the Less-Common Metals, Vol. 14, pp. 41-46, (1968).
41. D. J. Bologna and E. A. Peretti, "Phase Diagram of the System InTe-Bi", ASM Transactions Quarterly, Vol. 56, pp. 194-196, (1963).
42. H. G. Bouanani, D. Eddike, B. Liautard, and G. Brun, "Solid state demixing in Bi2Se3-Bi2Te3 and Bi2Se3-In2Se3 phase diagrams", Materials Research Bulletin, Vol. 31, pp. 177-187, (1996).
43. M. G. Safarov, R. S. Gamidov, P. M. Poladov, and E. M. Bagirova, "The Bi2Se3-InSe system", Russian Journal of Inorganic Chemistry, Vol. 37, pp. 228-229, (1992).
44. I. Ohnuma, T. Saegusa, Y. Takaku, C. P. Wang, X. J. Liu, R. Kainuma, and K. Ishida, "Microstructural Evolution of Alloy Powder for Electronic Materials with Liquid Miscibility Gap", Journal of Electronic Materials, Vol. 38(1), pp. 2-9, (2009).
45. C. P. Wang, X. J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, "Formation of immiscible alloy powders with egg-type microstructure", Science, Vol. 297(5583), pp. 990-993, (2002).
46. C. P. Wang, X. J. Liu, Y. Takaku, I. Ohnuma, R. Kainuma, and K. Ishida, "Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap", Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 35A(4), pp. 1243-1253, (2004).
47. D. Li, X. Y. Qin, J. Zhang, C. J. Song, Y. F. Liu, L. Wang, H. X. Xin, and Z. M. Wang, "Thermoelectric anisotropy of n-type Bi2Te3-xSex prepared by spark plasma sintering", RSC Advances, Vol. 5(54), pp. 43717-43722, (2015).
48. S. Il Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, "Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics", Science, Vol. 348(6230), pp. 109-114, (2015).


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *