帳號:guest(3.145.12.212)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃俊紘
作者(外文):HUANG, CHUN-HUNG
論文名稱(中文):利用CRISPRi系統調控細長聚球藻PCC 7942之基因表現並應用於琥珀酸之生產
論文名稱(外文):Regulation of gene expression and production of succinate by CRISPRi system in S. elongatus PCC7942
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
口試委員(中文):沈若樸
陳彥霖
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032510
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:83
中文關鍵詞:藍綠菌細長聚球藻PCC 7942基因調控代謝工程
外文關鍵詞:cyanobacteriaS. elongatus PCC7942CRISPR interferencemetabolic engineering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:279
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著氣候變遷以及能源危機的驅動下,已有許多生質能利用微生物結合基因工程大規模的被生產出來。其中藍綠菌是被認為近年來最具有潛力的微生物之一,能進行光合作用將二氧化碳轉換成可用的生質能,不需提供碳水化合物來當作碳源。然而,現有的基因工程技術是利用同源重組的方法來剔除目標基因,進而調控代謝路徑。但由於藍綠菌為多倍體生物,利用傳統方法並不易將目標基因完全剔除。而新興的CRISPRi (CRISPR interference)基因調控系統,僅需設計sgRNA (single guide RNA)來辨視目標基因即可達到抑制基因表現的功效,它具有設計便捷,且能同時調控多重目標基因等優勢。本研究首先在藍綠菌-細長聚球藻PCC 7942中以黃螢光蛋白(EYFP)作為報導基因來探討多種不同啟動子之表現強度。接著,結合前述之啟動子(如conII啟動子)我們建立一套CRISPRi基因調控系統,並先以黃螢光蛋白基因的抑制程度來驗證CRISPRi系統的效用。從螢光顯微鏡中可觀察到螢光表現明顯的被抑制,不論是sgRNA辨視的位置為conII啟動子或eyfp基因,而在流式細胞儀分析可發現到螢光表現不同程度的抑制效果(72-99%),其中我們發現當sgRNA標的至eyfp基因之位置越接近轉錄起始點時其抑制效果越好。之後,我們進行21天長期培養來觀察CRISPRi系統的穩定性以及細胞生長曲線,我們發現到CRISPRi系統能長期穩定抑制基因表現並且不會對細胞生長造成負面影響。接著,我們進一步利用CRISPRi系統來抑制glgc、sdhA或sdhB等內源基因表現,並在缺乏氮源的情況下培養,藉此改變PCC7942代謝路徑來促進琥珀酸之產量。由mRNA分析結果同樣發現,標的基因位置越接近轉錄起始點時,效果越好,且各組之琥珀酸產量也隨著基因抑制效果的增加而提升,最高可達到0.63 mg/L,為wild type的12倍。本研究證實CRISPRi系統可應用於代謝工程中藉此來優化目標產物產量。

Genetically engineered cyanobacteria hold promise as a host organism for bio-derived product production, but traditional method to modulate cyanobacterial metabolism requires time-consuming gene knock-in/knock-out. For gene suppression, a novel RNA-guided CRISPR interference (CRISPRi) technology was recently developed, which only requires co-expression of dead Cas9 protein (dCas9) and single guide RNA (sgRNA) that target specific genomic sequences without permanently altering genomic DNA. To explore CRISPRi for the modulation of cyanobacterial gene expression and succinate production, we first compared the strength of various promoters in S. elongates PCC7942 using EYFP as the reporter. Next, we developed an CRISPRi system in PCC7942 by co-expressing dCas9 (driven by the smt promoter) and sgRNA (driven by J23119 promoter) to repress the expression of EYFP (driven by conII promoter). Fluorescence microscopy confirmed significant downregulation of EYFP, either by sgRNA targeting to the conII promoter or eyfp gene. Using different sgRNAs targeting different gene regions, CRISPRi suppressed EYFP expression with efficiencies ranging from 72% to 99%. In addition, repression was inversely correlated with the target distance from the transcription start site. The CRISPRi-mediated gene suppression caused no appreciable side effects and persisted for 21 days. Using CRISPRi, we successfully knocked down the expression of endogenous genes such as glgc, sdhA, sdhB, which allowed us to modulate the metabolic flux and enhanced the succinate production to 0.63 mg/L under nitrogen deprived conditions in S. elongates PCC7942. Similarly, repression was inversely correlated with the target distance from the transcription start site and consistent with the succinate production. This study paved a new avenue to regulate the metabolic pathways of PCC7942 by CRISPRi for optimal production of desired bio-derived products.
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 X
第一章 文獻回顧 1
1-1藍綠菌S. elongatus PCC7942簡介 1
1-2 RNA調控機制 2
1-3 CRISPR基因編輯與調控系統 4
1-3-1 CRISPR/Cas9基因剪輯系統 4
1-3-2 CRISPRi基因調控系統 5
1-4 琥珀酸介紹 7
1-5 研究動機 10
第二章 實驗材料及方法 17
2-1建構質體方法 17
2-1-1 DNA引子黏合反應(primer annealing) 17
2-1-2 PCR反應 17
2-1-3 線性DNA磷酸化反應(phosphorylation reaction) 18
2-1-4限制酶(DNA restriction enzyme)反應及接合酶(DNA ligase)反應 18
2-1-5反轉錄(Reverse transcription)合成單股cNDA 18
2-2質體建構:不同啟動子與RBS之螢光表現系統 19
2-2-1 不同啟動子螢光表現系統之建構 19
2-2-2 不同RBS之建構 22
2-3 CRISPRi基因調控系統所需質體之建構 23
2-3-1 CRISPRi基因調控系統抑制黃螢光蛋白測試模型質體之建構 23
2-3-2 CRISPRi基因調控系統抑制藍綠菌內源性基因所需質體之建構 25
2-4 Synechococcus elongatus PCC 7942培養條件 27
2-5 Synechococcus elongatus PCC 7942質體轉型 28
2-5-1質體轉型 28
2-5-2以colony PCR與定序驗證同源重組至染色體正確位置 28
2-6 流式細胞儀分析(flow cytometry) 29
2-7螢光顯微鏡分析(Fluorescence microscopy analysis) 30
2-8即時偵測同步定量反轉錄聚合酶連鎖反應(qRT-PCR) 31
2-8-1 抽取細胞mRNA與反轉錄合成單股cDNA 31
2-9 胞內肝醣定量分析(Quantification of glycogen) 33
2-10 琥珀酸產量分析(Succinate analysis) 34
第三章 實驗結果與討論 49
3-1不同啟動子之螢光表現系統 49
3-1-1不同啟動子之螢光表現系統之建立 49
3-1-2不同啟動子之螢光表現系統之分析 49
3-2 CRISPRi基因調控系統 50
3-2-1 建立CRISPRi基因調控系統以及黃螢光測試模型 51
3-2-2 CRISPRi基因調控系統之抑制成效及其穩定性與毒性之分析 52
3-2-3 改良CRISPRi基因調控系統之誘導表現 55
3-2-4 建立CRISPRi基因調控系統來抑制藍綠菌PCC7942內源性基因表現 56
3-2-5 CRISPRi系統抑制藍綠菌內源性基因表現之成效以及琥珀酸產量之分析 58
3-3 結論 59
第四章 未來工作 73
參考文獻 78

2014. Bio-Succinic Acid Market Analysis by Application (BDO, Polyester Polyols, PBS/PBST, Plasticizers, Alkyd Resins) And Segment Forecasts To 2020. GRAND VIEW RESEARCH.
Atsumi S, Higashide W, Liao JC. 2009. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27: 1177-1180.
Berla BM, Saha R, Immethun CM, Maranas CD, Moon TS, Pakrasi HB. 2013. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front Microbiol 4: 246.
Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41: 7429-7437.
Camsund D, Lindblad P. 2014. Engineered transcriptional systems for cyanobacterial biotechnology. Front Bioeng Biotechnol 2: 40.
Cao Y, Zhang R, Sun C, Cheng T, Liu Y, Xian M. 2013. Fermentative succinate production: an emerging technology to replace the traditional petrochemical processes. Biomed Res Int 2013: 723412.
Carrieri D, Broadbent C, Carruth D, Paddock T, Ungerer J, Maness PC, Ghirardi M, Yu J. 2015. Enhancing photo-catalytic production of organic acids in the cyanobacterium Synechocystis sp. PCC 6803 DeltaglgC, a strain incapable of glycogen storage. Microb Biotechnol 8: 275-280.
Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 1479-1491.
Cheng KK, Wang GY, Zeng J, Zhang JA. 2013. Improved succinate production by metabolic engineering. Biomed Res Int 2013: 538790.
Choi YJ, Morel L, Le Francois T, Bourque D, Bourget L, Groleau D, Massie B, Miguez CB. 2010. Novel, versatile, and tightly regulated expression system for Escherichia coli strains. Appl Environ Microbiol 76: 5058-5066.
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823.
Cooley JW, Howitt CA, Vermaas WF. 2000. Succinate:quinol oxidoreductases in the cyanobacterium synechocystis sp. strain PCC 6803: presence and function in metabolism and electron transport. J Bacteriol 182: 714-722.
Copeland MF, Politz MC, Pfleger BF. 2014. Application of TALEs, CRISPR/Cas and sRNAs as trans-acting regulators in prokaryotes. Curr Opin Biotechnol 29: 46-54.
Cress BF, Jones JA, Kim DC, Leitz QD, Englaender JA, Collins SM, Linhardt RJ, Koffas MA. 2016. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res 44: 4472-4485.
Davies FK, Work VH, Beliaev AS, Posewitz MC. 2014. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 2: 21.
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471: 602-607.
Ducat DC. 2015. Metabolic engineering: Kick-starting TCA cycling. Nature Plants 1: 15058.
Erbe JL, Adams AC, Taylor KB, Hall LM. 1996. Cyanobacteria carrying an smt-lux transcriptional fusion as biosensors for the detection of heavy metal cations. Journal of Industrial Microbiology 17: 80-83.
Erbe JL, Taylor KB, Hall LM. 1995. Metalloregulation of the Cyanobacterial Smt Locus - Identification of Smtb Binding-Sites and Direct Interaction with Metals. Nucleic Acids Research 23: 2472-2478.
Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC, Qi LS, Kampmann M, Weissman JS. 2014. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 159: 647-661.
Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA, Weissman JS, Qi LS. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154: 442-451.
Guilinger JP, Thompson DB, Liu DR. 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 32: 577-582.
Harrison MM, Jenkins BV, O'Connor-Giles KM, Wildonger J. 2014. A CRISPR view of development. Genes Dev 28: 1859-1872.
Hickman JW, Kotovic KM, Miller C, Warrener P, Kaiser B, Jurista T, Budde M, Cross F, Roberts JM, Carleton M. 2013. Glycogen synthesis is a required component of the nitrogen stress response in Synechococcus elongatus PCC 7942. Algal Research-Biomass Biofuels and Bioproducts 2: 98-106.
Holtman CK, Chen Y, Sandoval P, Gonzales A, Nalty MS, Thomas TL, Youderian P, Golden SS. 2005. High-throughput functional analysis of the Synechococcus elongatus PCC 7942 genome. DNA Res 12: 103-115.
Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167-170.
Huckle JW, Morby AP, Turner JS, Robinson NJ. 1993. Isolation of a Prokaryotic Metallothionein Locus and Analysis of Transcriptional Control by Trace-Metal Ions. Molecular Microbiology 7: 177-187.
Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK. 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31: 227-229.
Jackson SA, Eaton-Rye JJ, Bryant DA, Posewitz MC, Davies FK. 2015. Dynamics of Photosynthesis in a Glycogen-Deficient glgC Mutant of Synechococcus sp. Strain PCC 7002. Appl Environ Microbiol 81: 6210-6222.
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81: 2506-2514.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816-821.
Kang Z, Zhang C, Zhang J, Jin P, Zhang J, Du G, Chen J. 2014. Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 98: 3413-3424.
Lai MC, Lan EI. 2015. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production. Metabolites 5: 636-658.
Lan EI, Liao JC. 2012. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci U S A 109: 6018-6023.
Lan EI, Ro SY, Liao JC. 2015. Oxygen-tolerant coenzyme A-acylating aldehyde dehydrogenase facilitates efficient photosynthetic n-butanol biosynthesis in cyanobacteria. Energy & Environmental Science.
Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LS. 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc 8: 2180-2196.
Lau NS, Matsui M, Abdullah AA. 2015. Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products. Biomed Res Int 2015: 754934.
Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD. 2011. BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J Biol Eng 5: 12.
Li H, Liao JC. 2013. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Microb Cell Fact 12: 4.
Li X, Shen CR, Liao JC. 2014. Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. Photosynth Res 120: 301-310.
Lv L, Ren YL, Chen JC, Wu Q, Chen GQ. 2015. Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29: 160-168.
Ma AT, Schmidt CM, Golden JW. 2014. Regulation of gene expression in diverse cyanobacterial species by using theophylline-responsive riboswitches. Appl Environ Microbiol 80: 6704-6713.
Mali P, Esvelt KM, Church GM. 2013. Cas9 as a versatile tool for engineering biology. Nat Methods 10: 957-963.
Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM. 2013. RNA-guided human genome engineering via Cas9. Science 339: 823-826.
Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. 2013. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31: 170-174.
Nozzi NE, Atsumi S. 2015. Genome Engineering of the 2,3-Butanediol Biosynthetic Pathway for Tight Regulation in Cyanobacteria. ACS Synth Biol.
Nozzi NE, Oliver JW, Atsumi S. 2013. Cyanobacteria as a Platform for Biofuel Production. Front Bioeng Biotechnol 1: 7.
Oliver JW, Atsumi S. 2014. Metabolic design for cyanobacterial chemical synthesis. Photosynth Res 120: 249-261.
Pei-Hong Chen H-LL, Yin-Ju Chen, Yi-Hsiang Cheng, Wei-Ling Lin, Chien-Hung Yeh and Chuan-Hsiung Chang. 2012. Enhancing CO2 bio-mitigation by genetic engineering of cyanobacteria. Energy & Environmental Science
Qi LS, Arkin AP. 2014. A versatile framework for microbial engineering using synthetic non-coding RNAs. Nat Rev Microbiol 12: 341-354.
Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152: 1173-1183.
Ramey CJ, Baron-Sola A, Aucoin HR, Boyle NR. 2015. Genome Engineering in Cyanobacteria: Where We Are and Where We Need To Go. ACS Synth Biol.
Rosgaard L, de Porcellinis AJ, Jacobsen JH, Frigaard NU, Sakuragi Y. 2012. Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J Biotechnol 162: 134-147.
Ruffing AM, Jones HD. 2012. Physiological effects of free fatty acid production in genetically engineered Synechococcus elongatus PCC 7942. Biotechnol Bioeng 109: 2190-2199.
Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T. 2014. Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 4: 5400.
Song CW, Lee J, Lee SY. 2015. Genome engineering and gene expression control for bacterial strain development. Biotechnol J 10: 56-68.
Steinhauser D, Fernie AR, Araujo WL. 2012. Unusual cyanobacterial TCA cycles: not broken just different. Trends Plant Sci 17: 503-509.
Tajima Y, Yamamoto Y, Fukui K, Nishio Y, Hashiguchi K, Usuda Y, Sode K. 2015. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes. Microb Cell Fact 14: 80.
Taton A, Unglaub F, Wright NE, Zeng WY, Paz-Yepes J, Brahamsha B, Palenik B, Peterson TC, Haerizadeh F, Golden SS, Golden JW. 2014. Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria. Nucleic Acids Res 42: e136.
Tomohisa Hasunuma M, AkihikoKondo. 2016. Improved sugar-free succinate production by Synechocystis sp. PCC 6803 following identification of the limiting steps in glycogen catabolism. Metabolic Engineering Communications 3: 130-141.
Triana J, Montagud A, Siurana M, Fuente D, Urchueguia A, Gamermann D, Torres J, Tena J, de Cordoba PF, Urchueguia JF. 2014. Generation and Evaluation of a Genome-Scale Metabolic Network Model of Synechococcus elongatus PCC7942. Metabolites 4: 680-698.
Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C, Yu J. 2012. Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy & Environmental Science 5: 8998-9006.
van der Woude AD, Angermayr SA, Puthan Veetil V, Osnato A, Hellingwerf KJ. 2014. Carbon sink removal: Increased photosynthetic production of lactic acid by Synechocystis sp. PCC6803 in a glycogen storage mutant. J Biotechnol 184: 100-102.
Weyman, Institute] PDJCV, Smith HO. 2014. Hydrogen from Water in a Novel Recombinant Cyanobacterial System
Work VH, Melnicki MR, Hill EA, Davies FK, Kucek LA, Beliaev AS, Posewitz MC. 2015. Lauric Acid Production in a Glycogen-Less Strain of Synechococcus sp. PCC 7002. Front Bioeng Biotechnol 3: 48.
Wu J, Du G, Chen J, Zhou J. 2015. Enhancing flavonoid production by systematically tuning the central metabolic pathways based on a CRISPR interference system in Escherichia coli. Sci Rep 5: 13477.
Xu J, Guo B-H. 2010. Microbial Succinic Acid, Its Polymer Poly(butylene succinate), and Applications, p. 347-388. In G.-Q. G. Chen (ed.), Plastics from Bacteria: Natural Functions and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg.
Xu Y, Weyman PD, Umetani M, Xiong J, Qin X, Xu Q, Iwasaki H, Johnson CH. 2013. Circadian yin-yang regulation and its manipulation to globally reprogram gene expression. Curr Biol 23: 2365-2374.
Xue Y, He Q. 2015. Cyanobacteria as cell factories to produce plant secondary metabolites. Front Bioeng Biotechnol 3: 57.
Yao L, Cengic I, Anfelt J, Hudson EP. 2016. Multiple Gene Repression in Cyanobacteria Using CRISPRi. ACS Synth Biol 5: 207-212.
Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB. 2015. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO(2). Sci Rep 5: 8132.
Yu Wang FT, Jun Ni,a,b Chao Li and Ping Xu. 2015. Production of C3 platform chemicals from CO2 by genetically engineered cyanobacteria. Green Chemistry.
Yu Y, You L, Liu D, Hollinshead W, Tang YJ, Zhang F. 2013. Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory. Mar Drugs 11: 2894-2916.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *