帳號:guest(18.220.116.195)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉采靈
作者(外文):Liou, Tsai Ling
論文名稱(中文):利用臨場光學干涉儀及低掠角度X光散射儀探討poly (3-hexylthiophene)在旋轉塗佈成膜之過程
論文名稱(外文):In-situ optical interferometry and grazing-incidence x-ray scattering study of poly (3-hexylthiophene) film formation during spin-coating
指導教授(中文):蘇安仲
指導教授(外文):Su, An Chung
口試委員(中文):孫亞賢
阮至正
楊小青
鄭有舜
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032507
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:26
中文關鍵詞:低掠角小角度散射低掠角廣角散射旋轉塗佈
外文關鍵詞:GISAXSGIWAXSSpin-coatingP3HT
相關次數:
  • 推薦推薦:0
  • 點閱點閱:41
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
旋轉塗佈在有機太陽能電池的製備過程中扮演重要的角色,然而在先前的研究中,大多集中在純溶劑或是混合溶液系統(P3HT/PCNM)的討論,因此在本篇文章中我們將重點放在單一系統溶液(P3HT)的探討上。我們利用垂直入射光學反射儀輔以臨場低掠角小角度/廣角X光散射儀觀察P3HT高分子膜在旋轉塗佈的過程。根據垂直入射光學反射儀的結果,若直接假設整個系統為單一液體層,可以將整個旋轉塗佈的過程分為三個階段:1.流體主導階段2.揮發主導階段3.急凍階段。而當我們進一步分析,假設整個系統是由多層組成的,我們發現會有約30 奈米厚且高折射率的薄層覆蓋在氣液介面處,並且此一薄層出現的時機大致與我們在廣角X光散射儀偵測到P3HT結晶的時間吻合。從廣角散射的結果顯示,從揮發主導階段到急凍階段的過程中,高分子的相對結晶度及晶粒大小快速達到飽和值,過程中只有些微的變化;同時的我們從小角度散射的結果可得知在氣液介面處的薄層是由長軸長200奈米、短軸長10奈米的扁橢球組成,而這些扁橢球裡面充滿了P3HT結晶;若進一步觀察這些橢球的大小及數量可以發現,橢球之大小並無顯著改變,僅有數量有些微的增加。綜合以上的觀察,我們認為在旋轉塗佈的過程中,隨著溶劑快速揮發,氣液介面處會有高濃度的高分子,形成一層高折率的薄層,而這一薄層大體決定了最終膜的結構。
Spin-coating is an important process in the preparation of polymer thin films for functional applications. In previous studies, the focus lies mainly in the spin-off stage where fluid flow dominates. Here we pay more attention to the possible presence of a skin layer at the air-liquid interface starting from the relatively early stage of spin-coating. The film formation process during spin-coating of poly(3-hexylthiophene) (P3HT) solutions is examined by means of normal- incidence optical reflectivity (OR) and in-situ grazing incidence small/wide-angle X-ray scattering (GISWAXS). Straight-forward analysis (assuming a single liquid layer) of OR results indicates generally that there are 3 stages in the film-forming process: (1) the spin-off or flow-dominated stage, where the film-thinning rate decreases very quickly according to the Meyerhofer equation, (2) the evaporation-dominated stage of plateaued film-thinning rate, and (3) the freezing-in stage where the film-thinning rate drops to essentially zero. More sophisticated analysis (allowing for multi-layer stratification) suggests the emergence of a thin (ca. 30 nm in thickness) “epidermis” layer of high refractive index at the air/film surface during transition toward evaporation-dominated stage, which coincides approximately with the GIWAXS-detected emergence of P3HT crystallites. The GIWAXS results further indicate that both the relative crystallinity and crystallite size quickly reach saturated values and show only minor changes during the subsequent evaporation-dominated and freezing-in stages. Concurrent GISAXS results indicate the presence of oblate domains with equatorial diameter ≈ 200 nm and polar diameter ≈ 10 nm, within which P3HT crystallites presumably reside. The number of these oblate domains in the skin layer increases moderately with time before entering the freezing-in stage, but the size remains essentially the same.
TABLE OF CONTENTS
ABSTRACT I
LIST OF FIGURES V
LIST OF TABLES VI
1. Introduction 1
1.1 Background 1
1.2 Objectives and approach 2
2. Experimental details 2
3. Data analysis 3
3.1 Normal- incidence optical reflectivity spectroscopy 3
3.2 GISAXS and GIWAXS analysis 4
4. Results and Discussion 4
4.1 Evolution of thin film morphology and surface layering 4
4.2 Structural developments and polymer crystallization 8
4.3 Combination of X-ray scattering and optical reflectance 15
5. Conclusion 17
References 18
Appendix A. Film layer fitting of spin rate 1100 rpm with different models 20
Appendix B. Analysis of GISAXS/GIWAXS of 1100 rpm for bulk layer and surface layer. 21
Appendix C. Analysis of film layer at spin rate 800 rpm and 1500 rpm 23
Appendix D. Analysis of GISAXS/GIWAXS at spin rate 800 rpm and 1500 rpm. 25
LIST OF FIGURES
Figure 1-1. Time-dependent thickness of volatile fluid films during spinning at 2000 rpm.4 2
Figure 4-1. Evolution of (a) film thickness, (b) thinning-rate and (c) the corresponding Meyerhofer plot during spin-casting of a P3HT/CB solution at 1100 rpm. 6
Figure 4-2. Fitting results of optical interferograms collected at (a) t = 3.0 s, (b) t = 5.1 s, (c) t = 6.5 s, and (d) t = 8.0 s during spin-coating at 1100 rpm. 6
Figure 4-3. Schematic illustration for the film formation process during spin-coating at 1100 rpm: (a) t = 3.0 s, (b) t = 5.1 s, (c) t = 6.5 s, and (d) t = 8.0 s. 7
Figure 4-4. Evolution of film formation at spin rate 1100 rpm. 7
Figure 4-5. Representative 2D (a) GIWAXS and (b) GISAXS patterns simultaneously collected during spin-coating (at 1100 rpm) of a freshly prepared P3HT solution. 10
Figure 4- 6. Time-resolved GIWAXS profiles recorded during spin-coating of P3HT at 1100 rpm. 10
Figure 4-7. Demonstration of peak deconvolutio in GIWAXS 1D profile of 1100 rpm at 16 s. 11
Figure 4-8. (a) Crystallite size calculated from FWHM using Scherrer’s equation. (b) Development of the (100) reflection and (200) reflection from P3HT crystallite during spin-coating. (c) The crystal’s lattice spacing of the (100) P3HT peak calculated by the q position. 11
Figure 4-9. Integrated GISAXS profiles during spin-coating of a freshly prepared P3HT solution at 1100 rpm. 12
Figure 4-10. Demonstration of GISAXS (horizontal slicing of GISAXS data at qz = 0.5 nm−1) fitting by spheroid model, when at (a) 4.5 s, (b) 6.4 s and (c) 16.0 s. 13
Figure 4-11. Parameters obtained from modeling the horizontal GISAXS cuts. (a) Evolution of the polar diameter , (b) the polar diameter (c) and the inter-particle distance of oblate domains. 14
Figure 4-12. (a) A representative 2D GISAXS pattern (b) and the corresponding 2D fitGISAXS simulation of the cast film at t = 4.8 s. 14
Figure 4-13. (a) Plots of I(q)q2 v.s. qy obtained from the SAXS data (b) Scattering invariant Qinv (integrated from qy = 0.017 to 0.1 nm-1) for the P3HT recorded during spin-coating. 14
Figure 4-14. Schematic of the structure development with time obtain from the GISWAXS and optical interferometry. (a) Flow-dominated stage, (b) the beginning of evaporation-dominated stage, (c) the end of evaporation-dominated stage and (d) final film stage. 16

Figure A1. Fitting results of optical interferograms using (a) one layer model with layer gradient and (b) one layer model without layer gradient at t = 3.0 s, (c) two layers model at t = 5.1 s and (d) two layers model at t = 6.5 s during spin-coating at 1100 rpm. 20
Figure B1. Representative (a) GIWAXS and (b) GISAXS profiles recorded at 4.8 s, 6.7s and 9.9 s, respectively. 21
Figure B2. Analysis of GIWAXS for bulk layer (θi = 0.2°) and Surface layer (θi = 0.12°). (a) Development of the (100) reflection and (200) reflection from P3HT crystallite during spin-coating. (b) Crystallite size calculated from FWHM using Scherrer’s equation. 22
Figure C1. Evolution of (a) film thickness, (b) thinning rate, and (c) the corresponding Meyerhofer plot for spin-coating of the P3HT/CB solution at 800 rpm. 23
Figure C2. Evolution of (a) film thickness, (b) thinning rate, and (c) the corresponding Meyerhofer plot for spin-coating of the P3HT/CB solution at at 1500 rpm. 24
Figure C3. Stratified film structure during spin-coating at (a) 800 and (b) 1500 rpm. 24
Figure D1. GISAXS patterns collected in the freezing-in stage at (a) 800 and (b) 1500 rpm. 25
Figure D2. Integrated GISAXS profiles during spin-coating of a freshly prepared P3HT solution at (a) 800 and (b) 1500 rpm. 25
Figure D3. Time-resolved GIWAXS profiles recorded during spin-coating of P3HT at (a) 800 and (b) 1500 rpm. 25
Figure D4. (a) Crystallite size calculated from FWHM using Scherrer’s equation. (b) Intensity development of the (100) and (200) reflections from P3HT crystallites during spin-coating at different spin rates. 26


LIST OF TABLES
Table 4-1. Fittings parameters used of the UV-Vis reflectance spectra. 8
Table 4-2. Fitting parameters for scatters of layers in GISAXS simulation, according to the stratified structures revealed from optical reflectance results. The incident angle is 0.120 17
Table A1. Fittings parameters used of the UV-Vis reflectance spectra of 1100 rpm. 22



References
1. Toolan, D. T. W.; Howse J. R. Development of in situ studies of spin coated polymer films. J. Mater. Chem. C 2013, 1, 603–616.
2. Emslie, A. G., Bonner F. T. and Peck L. G. Flow of a viscous liquid on a rotating disk, J. Appl. Phys. 1958, 858–862.
3. Meyerhofer, D. Characteristics of resist films produced by spinning. J. Appl. Phys.1978, 49, 3993−3997.
4. Birnie III, D. P. Combined flow and evaporation during spin coating of complex solutions. J. Non-Cryst. Solids 1997, 218,174−178.
5. Li, G.; Zhu R.; Yang Y. Polymer solar cells. Nat. Photonics 2012, 6, 153−161.
6. Chen, W.; Nikiforov, M. P. ; Darling, S. B. Morphology characterization in organic and hybrid solar cells. Energy Environ. Sci. 2012, 5, 8045–8074.
7. Collins, B. A.; Li Z.; Tumbleston J. R.; Gann E.; McNeill C. R.; Ade H. Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71 BM Solar Cells. Adv. Energy Mater. 2013, 3, 65–74.
8. Dang, M. T.; Hirsch L.; Wantz G.; Wuest J. D. Controlling the morphology and performance bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 2013, 113, 3734−3765.
9. Liu F.; Gu Y.; Shen X.; Ferdous S.; Wanga H. W.; Russell T. P. Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Prog. Polym. Sci. 2013, 38, 1990–2052.
10. Brinkmann M.; Rannou P. Molecular Weight Dependence of Chain Packing and Semicrystalline Structure in Oriented Films of Regioregular Poly(3-hexylthiophene) Revealed by High-Resolution Transmission Electron Microscopy. Macromolecules 2009, 42, 1525.
11. Surin, M.; Leclère Ph.; Lazzaroni R.; Yuen J. D.; Wang G.; Moses D.; Heeger A.J.; Cho S.; Lee K. Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors .Appl. Phys. 2006, 100, 033712.
12. Liu,Y.; Zhao J.; Li Z.; Mu C.; Ma W.; Hu H.; Jiang K.; Lin H.; Ade H.; Yan H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nat Commun. 2014, 5, 5293.
13. Van Franeker, J. J.; Turbiez M.; Li W.; Wienk M. M.; Janssen R. A. J. A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 2015, 6, 6229.
14. Proller S.; Liu F.; Zhu C.; Wang C.; Russell P. Thomas; Hexener A.; Muller-Buschbaum P.; Herzig M. Eva, Following the morphology formation in situ in printed active layers for organic solar cells. Adv.Energy Matter. 2015, 1501580.
15. Chou K. W.; Yan Bi.; Li R.; Li Q. E.; Zhao K.; Anjum H. D.; Alvarez S.; Gassaway R.; Biocca A.; Thoroddsen T. S.; HexemeA.; Amassian A. Spin-cast bulk heterojunction solar cells: A dynamical investigation, Adv. Mater.. 2013, 25, 1923–1929
16. Filmetrics, Inc., http://www.filmetrics.com/
17. Rauscher M.; Paniago R.; Metzger H.; Kovats Z.; Domke J.; Peisl J. Grazing incidence small angle x-ray scattering from free-standing nanostructures. J.Appl. Phys.1996,86,6763-6769.
18. Wang T.; Dunbar A. D. F.; Staniec P. A.; Pearson A. J.; Hopkinson P. E.; MacDonald J. E.; Lilliu S.; Pizzey C.; Terrill N. J.; Donald A. M.; Ryan A. J.; Jones R. A. L.; Lidzey D. G. The development of nanoscale morphology in polymer: fullerene photovoltaic blends during solvent casting. Soft Matter ,2010 , 6 , 4128 .
19. Schmidt-Hansberg B.; Sanyal M. ; Klein M. F. G.; Pfaff M. ; Schnabel N.; Jaiser S.; Vorobiev A.; Müller E.; Colsmann A.; Scharfer P.; Gerthsen D.; Lemmer U.; Barrena E.; Schabel W.; Moving through the Diagram: Morphology Formation in Solution Cast PolymerFullerene Blend Films for Organic Solar Cells ACS Nano 2011 , 5 , 8579 .
20. Babonneau, D. Journal of Applied Crystallography 2010, 43(4), 929-936

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 聚(3-己烷噻吩)/ 6,6-苯基-C61丁酸甲酯薄膜在旋轉塗佈過程中的結構演化
2. 摻合型高分子發光層之型態對其電激白光發射行為的影響
3. Electronic Structure Simulation of Polyfluorenes
4. Phase Transformation in Poly(9,9-di-n-hexyl-2,7-fluorene) as Revealed via Small-/Wide-angle X-ray Scattering and Differential Scanning Calorimetry
5. Polymer Nucleation via Segmental Bundling
6. Molecular Packing in Crystalline Polyfluorenes
7. Determination of Equilibrium Melting Temperature and Fold Surface Energy for Polyethylene and Poly(ethylene oxide) via Simultaneous Small/Wide-angle X-Ray Scattering and Differential Scanning Calorimetry
8. Determination of Equilibrium Melting Temperature and Fold Surface Energy for Poly(L-lactic acid) via Simultaneous Small/Wide-angle X-Ray Scattering and Differential Scanning Calorimetry
9. Structural Evolution during the Cold Crystallization of Isotactic Polypropylene
10. Molecular Dynamics Simulation of Melting and Secondary Nucleation of Syndiotactic Polypropylene
11. Combined Molecular Mechanics / Molecular Dynamics Simulation for Interactions between Single-walled Carbon Nanotube and Poly(3-hexylthiophene)
12. Structural Evolution during the Initial Stage of Cold Crystallization of Syndiotactic Polypropylene
13. Crystallization Behavior of Nano-carbon/Poly(3-hexylthiophene) Composites
14. Crystallization and Melting Behavior of Enantiomeric Polylactide and the Racemic Blend
15. 共聚分子作用於對排聚笨乙烯之結晶與熔融
 
* *