帳號:guest(3.22.71.220)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡秀娟
作者(外文):Chien, Hsiu Chuan
論文名稱(中文):添加緩衝溶液對氫原子在活性碳的吸脫附於水相非對稱超級電容器之應用
論文名稱(外文):Effects of buffer agents on hydrogen adsorption and desorption at/within activated carbon for the negative electrode of aqueous asymmetric supercapacitors
指導教授(中文):胡啟章
指導教授(外文):Hu, Chi Chang
口試委員(中文):衛子健
鄧熙聖
口試委員(外文):Wei, Tzu Chien
Teng, Hsi Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:103032504
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:87
中文關鍵詞:氫原子吸脫附活性碳緩衝溶液區域性pH值水相非對稱電容器
外文關鍵詞:hydrogen adsorption/desorptionactivated carbonbuffer agentslocal pH changeaqueous asymmetric supercapacitors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:144
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本研究中,以活性碳做為非對稱電容器之負極,並添加緩衝溶液於水相電解液中,觀察氫原子於碳材上之吸脫附反應。由於氫原子於碳材上之吸脫附反應可逆性差,因此並不適合用於擬電容能量儲存之非對稱電容器。在未添加緩衝溶液之弱酸、弱鹼及中性電解液中,因為氫原子吸附反應時會消耗電解液中的氫離子,導致在電極表面附近的電解液pH值上升,使得氫原子吸附反應之電位往負的方向移動。若添加緩衝溶液於電解液中,可以大幅增進氫離子的供應速率,並提升氫原子吸附於碳材之反應速率。
  在添加緩衝溶液於電解液的系統中,本研究以floating test得到之氫原子吸附電位與 pH 值之關係圖,符合Nernstian dependence,經過多個實驗測試,此為一可信任之圖表,可用於高庫倫效率及高能量效率儲能裝置中活性碳負極之下限電位參考。
  以二氧化釕作為正極、活性碳作為負極之非對稱電容器中,本研究以循環伏安法、電位計時法搭配floating test以探討電容器之可逆性與效率,結果顯示不論有無添加緩衝溶液,當活性碳負極之電位低於 -0.8V 後,非對稱電容器之對稱性開始變差,可逆性大幅下降,即氫原子吸附反應明顯影響非對稱電容器之能量效率,且此氫原子吸附反應之電位符合前面所得之結論。
In this work, the effects of adding buffer agents into aqueous electrolytes on the hydrogen adsorption/desorption behaviour at/within activated carbon are systematically investigated for the negative electrode of asymmetric supercapacitors. Due to the poor electrochemical reversibility of hydrogen adsorption/desorption at/within activated carbon, the hydrogen responses at/within activated carbon are not suitable for pseudo-capacitive energy storage of high-performance asymmetric supercapacitor. The electrochemical adsorption of H atoms consumes protons and causes the local pH change at the activated carbon/electrolyte interface, leading to the negative shift in the H adsorption potential when weakly acidic, neutral, and weakly basic electrolytes without buffer agents are employed. The addition of buffer agents into electrolytes significantly improves the rate of proton supply and promotes the rate of hydrogen adsorption at/within AC. Interestingly, the onset potential of significant H adsorption obtained from the buffered electrolytes generally follows the Nernstian dependence, suggesting the Nerstian dependence of H+/Hads on AC at all pH values. In order to obtain the energy storage devices with high coulombic and energy efficiencies, the onset potential of significant H adsorption obtained from the electrolyte containing buffer agents is a reliable lower potential limit of the AC-coated negative electrode for aqueous asymmetric supercapacitors.
The hydrogen adsorption/desorption behaviour at/within activated carbon are systematically investigated for the RuO2 / activated carbon asymmetric supercapacitors with cyclic voltammetry and chronopotentiometry methods including floating test. Due to the poor electrochemical reversibility of hydrogen adsorption/desorption at/within activated carbon when the low limit potential of activated carbon is lower than -0.8V, the reversibility of asymmetric supercapacitors decreases dramatically.
中文摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XV
第一章 緒論及理論基礎 1
1-1 電化學原理 1
1-1-1 電化學反應系統 1
1-1-3 影響電化學系統之因素 3
1-3 電化學電容器 5
1-3-1 超級電容器之簡介與應用 5
1-3-2 超級電容器之儲能機制與分類 7
1-3-3 超級電容器之計算方法 9
1-4 文獻回顧 14
1-4-1 儲氫材料介紹 14
1-4-2 氫吸附與氫氣產生過電壓之現象 15
1-4-3 區域性pH值與氫氣產生電位之關係 18
1-5 研究動機 21
第二章 實驗方法與儀器介紹 23
2-1 實驗藥品於儀器介紹 23
2-1-1 實驗藥品與配製方法 23
2-1-2 實驗儀器 29
2-2 電極製備 30
2-2-1 石墨基材之製備與處理[34] 30
2-2-2 活性碳工作電極之製備 30
2-3 電化學實驗 31
2-3-1 電化學實驗裝置 31
2-3-2 循環伏安法 (Cyclic voltammetry, CV) 32
2-3-3 安培分析法 (Amperometry, i-t curve) 32
2-3-4 計時電位分析法 (Chronopotentiometry, CP) 33
2-4 材料分析儀器介紹 35
2-4-1 比表面積與孔徑分析儀 (Surface area and porosity analyzer) 35
2-4-2 X光繞射分析 (X-ray Diffraction analysis, XRD) 39
第三章 探討氫原子吸、脫附反應電位 41
3-1 碳材之氮氣吸脫附曲線表面積與孔洞分析 42
3-2 以電化學方法探討氫原子吸、脫附反應電位 43
3-2-1 緩衝溶液於氫原子吸、脫附反應電位之影響 43
3-2-2 以Floating test探討氫原子吸附電位 47
3-2-3 氫原子吸附反應之電位與pH值之關係 51
3-3 以電化學方法探討氫氣產生電位 56
3-3-1 以Floating test探討氫氣產生電位 57
3-3-1 氫氣產生電位與pH值之關係 60
3-4 結論 62
第四章 氫原子吸脫附反應於非對稱電容器之應用 63
4-1 二氧化釕作為正極之合成與材料分析 63
4-2 以電化學方法探討氫原子吸、脫附反應電位於非對稱電容器之影響 64
4-2-1 以循環伏安法探討氫原子吸附電位 64
4-3 以電位計時法探討氫原子吸、脫附反應電位於非對稱電容器之影響 70
4-4 結論 81
第五章 總結與未來展望 82
5-1 總結 82
5-2 未來展望 83
參考文獻 84
[1] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980.
[2] D. R. Crow, Principles and applications of electrochemistry: CRC Press, 1994.
[3] 胡啟章, 電化學原理與方法: 五南圖書出版股份有限公司, 2002.
[4] 田福助, 電化學: 理論與應用: 高立出版, 1987.
[5] D. Pletcher and F. C. Walsh, Industrial electrochemistry: Springer Science & Business Media, 2012.
[6] A. M. Couper, D. Pletcher, and F. C. Walsh, "Electrode materials for electrosynthesis," Chemical Reviews, vol. 90, pp. 837-865, 1990.
[7] D. Galizzioli, F. Tantardini, and S. Trasatti, "Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions," Journal of Applied Electrochemistry, vol. 5, pp. 203-214, 1975.
[8] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications: Springer Science & Business Media, 2013.
[9] R. Kötz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, pp. 2483-2498, 2000.
[10] S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, and H. Yoneda, "Advanced capacitors and their application," Journal of power sources, vol. 97, pp. 807-811, 2001.
[11] G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, and A. Percheron-Guégan, "Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M (OH)(O 2 C–C 6 H 4–CO 2)(M= Al 3+, Cr 3+), MIL-53," Chemical communications, pp. 2976-2977, 2003.
[12] W. Liu, H. Wu, Y. Lei, Q. Wang, and J. Wu, "Amorphization and electrochemical hydrogen storage properties of mechanically alloyed Mg–Ni," Journal of alloys and compounds, vol. 252, pp. 234-237, 1997.
[13] T. Kuji, H. Nakano, and T. Aizawa, "Hydrogen absorption and electrochemical properties of Mg 2− x Ni (x= 0–0.5) alloys prepared by bulk mechanical alloying," Journal of alloys and compounds, vol. 330, pp. 590-596, 2002.
[14] G. Guo, H. Huang, F. Xue, C. Liu, H. Yu, X. Quan, et al., "Electrochemical hydrogen storage of the graphene sheets prepared by DC arc-discharge method," Surface and Coatings Technology, vol. 228, pp. S120-S125, 2013.
[15] C. Zhang, J. Li, E. Liu, C. He, C. Shi, X. Du, et al., "Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage," Carbon, vol. 50, pp. 3513-3521, 2012.
[16] L. Xie and X. Q. Li, "Study on Electrochemical Hydrogen Storage of Multi-Walled Carbon Nanotubes," in Advanced Materials Research, 2007, pp. 831-834.
[17] C. Nützenadel, A. Züttel, D. Chartouni, and L. Schlapbach, "Electrochemical storage of hydrogen in nanotube materials," Electrochemical and solid-state letters, vol. 2, pp. 30-32, 1999.
[18] G. Gundiah, A. Govindaraj, N. Rajalakshmi, K. Dhathathreyan, and C. Rao, "Hydrogen storage in carbon nanotubes and related materials," Journal of Materials Chemistry, vol. 13, pp. 209-213, 2003.
[19] X. Qin, X. Gao, H. Liu, H. Yuan, D. Yan, W. Gong, et al., "Electrochemical hydrogen storage of multiwalled carbon nanotubes," Electrochemical and Solid-State Letters, vol. 3, pp. 532-535, 2000.
[20] N. Rajalakshmi, K. Dhathathreyan, A. Govindaraj, and B. Satishkumar, "Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage," Electrochimica Acta, vol. 45, pp. 4511-4515, 2000.
[21] G. Lota and E. Frackowiak, "Striking capacitance of carbon/iodide interface," Electrochemistry Communications, vol. 11, pp. 87-90, 2009.
[22] A. Züttel, P. Sudan, P. Mauron, T. Kiyobayashi, C. Emmenegger, and L. Schlapbach, "Hydrogen storage in carbon nanostructures," International Journal of Hydrogen Energy, vol. 27, pp. 203-212, 2002.
[23] G. G. Tibbetts, G. P. Meisner, and C. H. Olk, "Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers," Carbon, vol. 39, pp. 2291-2301, 2001.
[24] M. Hirscher and M. Becher, "Hydrogen storage in carbon nanotubes," Journal of nanoscience and nanotechnology, vol. 3, pp. 3-17, 2003.
[25] K. Jurewicz, E. Frackowiak, and F. Béguin, "Enhancement of reversible hydrogen capacity into activated carbon through water electrolysis," Electrochemical and Solid-State Letters, vol. 4, pp. A27-A29, 2001.
[26] K. Jurewicz, E. Frackowiak, and F. Béguin, "Electrochemical storage of hydrogen in activated carbons," Fuel Processing Technology, vol. 77, pp. 415-421, 2002.
[27] K. Jurewicz, "Influence of charging parameters on the effectiveness of electrochemical hydrogen storage in activated carbon," International Journal of Hydrogen Energy, vol. 34, pp. 9431-9435, 2009.
[28] K. Jurewicz, E. Frackowiak, and F. Béguin, "Towards the mechanism of electrochemical hydrogen storage in nanostructured carbon materials," Applied Physics A, vol. 78, pp. 981-987, 2004.
[29] V. Khomenko, E. Raymundo-Pinero, and F. Béguin, "Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2V in aqueous medium," Journal of Power Sources, vol. 153, pp. 183-190, 2006.
[30] L. Demarconnay, E. Raymundo-Pinero, and F. Béguin, "A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution," Electrochemistry Communications, vol. 12, pp. 1275-1278, 2010.
[31] M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions," 1966.
[32] B. Conway and M. Salomon, "Electrochemical reaction orders: Applications to the hydrogen-and oxygen-evolution reactions," Electrochimica Acta, vol. 9, pp. 1599-1615, 1964.
[33] S.-E. Chun and J. Whitacre, "Investigating the role of electrolyte acidity on hydrogen uptake in mesoporous activated carbons," Journal of Power Sources, vol. 242, pp. 137-140, 2013.
[34] Y.-F. Lee, K.-H. Chang, C.-C. Hu, and Y.-H. Chu, "Designing tunable microstructures of Mn 3 O 4 nanoparticles by using surfactant-assisted dispersion," Journal of Power Sources, vol. 206, pp. 469-475, 2012.
[35] K. S. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)," Pure and applied chemistry, vol. 57, pp. 603-619, 1985.
[36] M. Thommes, "Physical adsorption characterization of nanoporous materials," Chem. Ing. Tech, vol. 82, pp. 1059-1073, 2010.
[37] B. C. Lippens and J. De Boer, "Studies on pore systems in catalysts: V. The t method," Journal of Catalysis, vol. 4, pp. 319-323, 1965.
[38] C. C. Hu and T. C. Wen, "Voltammetric Investigation of Hydrogen Sorption/Desorption at/within Oxide‐Derived Pd Electrodes in NaOH and H 2 SO 4," Journal of The Electrochemical Society, vol. 141, pp. 2996-3001, 1994.
[39] C. C. Hu and T. C. Wen, "Effects of pH and Anion on Hydrogen Sorption/Desorption at/within Oxide‐Derived Pd Electrodes," Journal of the Electrochemical Society, vol. 142, pp. 1376-1383, 1995.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *