|
1. Otsuka, K. and K. Shimizu, Pseudoelasticity and shape memory effects in alloys. International Metals Reviews, 1986. 31(1): p. 93-114. 2. Otsuka, K. and X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in materials science, 2005. 50(5): p. 511-678. 3. Huang, X., G.J. Ackland, and K.M. Rabe, Crystal structures and shape-memory behaviour of NiTi. Nature materials, 2003. 2(5): p. 307-311. 4. Van Humbeeck, J., Non-medical applications of shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 134-148. 5. Janke, L., et al., Applications of shape memory alloys in civil engineering structures - Overview, limits and new ideas. Materials and Structures, 2005. 38(279): p. 578-592. 6. Hartl, D.J. and D.C. Lagoudas, Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007. 221(4): p. 535-552. 7. Duerig, T., A. Pelton, and D. Stockel, An overview of nitinol medical applications. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 149-160. 8. Elahinia, M.H., et al., Manufacturing and processing of NiTi implants: A review. Progress in Materials Science, 2012. 57(5): p. 911-946. 9. Schetky, L.M. and M. Wu. Issues in the further development of Nitinol properties and processing for medical device applications. in Medical Device Materials: Proceedings from the Materials & Processes for Medical Devices Conference 2003, 8-10 September 2003, Anaheim, California. 2004. ASM International. 10. Morgan, N., et al. Carbon and oxygen levels in nitinol alloys and the implications for medical device manufacture and durability. in Proceedings of the International Conference on Shape Memory and Superelastic Technologies. 2006. ASM International. 11. Shugo, Y., S. Hanada, and T. Honma, Effect of oxygen content on the martensite transformation and determination of defect structure in TiNi alloys. Bull. Res. Inst. Miner. Dressing Metall., 1985. 41(1): p. 23-34. 12. Frenzel, J., et al., Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, 2010. 58(9): p. 3444-3458. 13. Toro, A., et al., Characterization of Non-Metallic Inclusions in Superelastic NiTi Tubes. Journal of Materials Engineering and Performance, 2009. 18(5-6): p. 448-458. 14. Steegmuller, R., et al., Analysis of New Nitinol Ingot Qualities. Journal of Materials Engineering and Performance, 2014. 23(7): p. 2450-2456. 15. Rahim, M., et al., Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Materialia, 2013. 61(10): p. 3667-3686. 16. Robertson, S.W., A.R. Pelton, and R.O. Ritchie, Mechanical fatigue and fracture of Nitinol. International Materials Reviews, 2012. 57(1): p. 1-36. 17. Mentz, J., et al., Powder metallurgical processing of NiTi shape memory alloys with elevated transformation temperatures. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 491(1-2): p. 270-278. 18. Nevitt, M.V., Stabilization of certain Ti2Ni-type phases by oxygen. Trans. Met. Sos. AIME, 1960. 218(2): p. 327-331. 19. Ren, X., et al., A comparative study of elastic constants of Ti-Ni-based alloys prior to martensitic transformation. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001. 312(1-2): p. 196-206. 20. Mao, S., et al., EBSD studies of the stress-induced B2–B19′ martensitic transformation in NiTi tubes under uniaxial tension and compression. Acta Materialia, 2010. 58(9): p. 3357-3366. 21. Miyazaki, S., et al., Characteristics of Deformation and Transformation Pseudoelasticity in Ti-Ni Alloys. Journal De Physique, 1982. 43(Nc-4): p. 255-260. 22. Li, B.Y., L.J. Rong, and Y.Y. Li, Porous NiTi alloy prepared from elemental powder sintering. Journal of Materials Research, 1998. 13(10): p. 2847-2851. 23. Zanotti, C., et al., Porous Ni-Ti ignition and combustion synthesis. Intermetallics, 2007. 15(3): p. 404-412. 24. Li, B.Y., et al., A recent development in producing porous Ni-Ti shape memory alloys. Intermetallics, 2000. 8(8): p. 881-884. 25. Zhao, Y., et al., Compression behavior of porous NiTi shape memory alloy. Acta Materialia, 2005. 53(2): p. 337-343. 26. Pelton, A.R., et al., Fatigue and durability of Nitinol stents. Journal of the Mechanical Behavior of Biomedical Materials, 2008. 1(2): p. 153-164. 27. Eggeler, G., et al., Structural and functional fatigue of NiTi shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004. 378(1-2): p. 24-33. 28. Hornbogen, E., Thermo-mechanical fatigue of shape memory alloys. Journal of Materials Science, 2004. 39(2): p. 385-399. 29. Gall, K. and H. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Materialia, 2002. 50(18): p. 4643-4657. 30. Miyazaki, S., et al., Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1986. 17(1): p. 115-120. 31. Xie, Z.L., Y. Liu, and J. Van Humbeeck, Microstructure of NiTi shape memory alloy due to tension-compression cyclic deformation. Acta Materialia, 1998. 46(6): p. 1989-2000. 32. Simon, T., et al., On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Materialia, 2010. 58(5): p. 1850-1860. 33. Maletta, C., et al., Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading. International Journal of Fatigue, 2014. 66: p. 78-85. 34. 守護嘉朗, 花田修治, and 本間敏夫, < 報文> TiNi 合金のマルテンサイト変態に及ぼす酸素の影響ならびに欠陥構造の同定. 1985. 35. Gall, K., et al., Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 486(1-2): p. 389-403. 36. Frick, C.P., et al., Thermal processing of polycrystalline NiTi shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 405(1-2): p. 34-49. 37. Frick, C.P., et al., Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape-memory alloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2004. 35A(7): p. 2013-2025. 38. Vojtech, D., et al., Structural and mechanical stability of the nano-crystalline Ni-Ti (50.9 at.% Ni) shape memory alloy during short-term heat treatments. Intermetallics, 2014. 49: p. 7-13. 39. Li, Y.F., et al., Thermo-mechanical cyclic transformation behavior of Ti-Ni shape memory alloy wire. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009. 509(1-2): p. 8-13. 40. Frotscher, M., et al., Microstructure and structural fatigue of ultra-fine grained NiTi-stents. Materials Science and Engineering: A, 2009. 503(1): p. 96-98. 41. Clarke, B., et al., Influence of nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. Journal of Biomedical Materials Research Part A, 2006. 79(1): p. 61-70. 42. Pelton, A., et al., Rotary-bending fatigue characteristics of medical-grade Nitinol wire. journal of the mechanical behavior of biomedical materials, 2013. 27: p. 19-32. 43. Ahadi, A. and Q. Sun, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size. Appl. Phys. Lett, 2013. 103(2). 44. Ahadi, A. and Q. Sun, Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi. Scripta Materialia, 2016. 113: p. 171-175. 45. Nishida, M., C.M. Wayman, and T. Honma, Precipitation Processes in near-Equiatomic Tini Shape Memory Alloys. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1986. 17(9): p. 1505-1515. 46. Hassel, A., Surface treatment of NiTi for medical applications. Minimally Invasive Therapy & Allied Technologies, 2004. 13(4): p. 240-247. 47. Firstov, G., et al., Surface oxidation of NiTi shape memory alloy. Biomaterials, 2002. 23(24): p. 4863-4871. 48. Shabalovskaya, S., J. Anderegg, and J. Van Humbeeck, Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomaterialia, 2008. 4(3): p. 447-467. 49. Smouse, H.B., A. Nikanorov, and D. LaFlash, Biomechanical forces in the femoropopliteal arterial segment. Endovascular Today, 2005. 4(6): p. 60-66. 50. Wagner, M., et al., Structural fatigue of pseudoelastic NiTi shape memory wires. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004. 378(1-2): p. 105-109. 51. Tobushi, H., et al., Rotating-bending fatigue of a TiNi shape-memory alloy wire. Mechanics of Materials, 1997. 26(1): p. 35-42. 52. Chen, J.H., W. Sun, and G.Z. Wang, Investigation on the fracture Behavior of shape memory alloy NiTi. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2005. 36A(4): p. 941-955. 53. Gollerthan, S., et al., Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Materialia, 2009. 57(4): p. 1015-1025. 54. Wever, D., et al., Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials, 1998. 19(7): p. 761-769. 55. Trepanier, C., R. Venugopalan, and A.R. Pelton, Corrosion resistance and biocompatibility of passivated NiTi, in Shape Memory Implants. 2000, Springer. p. 35-45. 56. Shabalovskaya, S.A., Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-medical materials and engineering, 2001. 12(1): p. 69-109. 57. Cisse, O., et al., Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. Journal of biomedical materials research, 2002. 61(3): p. 339-345. 58. Shabalovskaya, S., et al., Surface conditions of Nitinol wires, tubing, and as‐cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003. 65(1): p. 193-203. 59. Trepanier, C., et al., Effect of modification of oxide layer on NiTi stent corrosion resistance. Journal of biomedical materials research, 1998. 43(4): p. 433-440. 60. Thierry, B., et al., Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. Journal of biomedical materials research, 2000. 51(4): p. 685-693. 61. Michiardi, A., et al., New oxidation treatment of NiTi shape memory alloys to obtain Ni‐free surfaces and to improve biocompatibility. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006. 77(2): p. 249-256. 62. Thomas, L.H. The calculation of atomic fields. in Mathematical Proceedings of the Cambridge Philosophical Society. 1927. Cambridge Univ Press. 63. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864. 64. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133. 65. Segall, M., et al., First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002. 14(11): p. 2717. 66. Chelikowsky, J.R., Microscopic basis of Miedema's theory of alloy formation. Physical Review B, 1982. 25(10): p. 6506. 67. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865. 68. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical review B, 1976. 13(12): p. 5188.
|