帳號:guest(3.145.70.154)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蓋威宇
作者(外文):Kai, Wei Yu
論文名稱(中文):NiTi記憶合金之NiTi2偏析物與Ni2Ti4Ox氧化物之關連性及對機械性質之影響研究
論文名稱(外文):The influence of NiTi2 segregation on mechanical property of NiTi shape memory alloy and the correlation between NiTi2 and Ni2Ti4Ox oxides
指導教授(中文):葉安洲
指導教授(外文):Yeh, An Chou
口試委員(中文):黃金川
Frederick E. Wang
口試委員(外文):Huang, Chin Chuan
Frederick E. Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031701
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:57
中文關鍵詞:鎳鈦形狀記憶合金偏析氧化物
外文關鍵詞:NiTi shape memory alloysegregationoxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:263
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
Ni-Ti記憶合金亦稱做Nitinol合金,主要用於醫療產品上的應用,如牙齒矯正線、心導管支架等。首先本研究以金屬中心所提供不同製程下之Nitinol合金及線材,分析其各階段製程下之微結構,以此為基礎並探討微結構與對機械性質之影響,如:成型性影響與裂紋生成原因,並針對分析結果配合不同文獻比較與探討其中之關聯,其次則是注重其NiTi2與Ni2Ti4O氧化物形成機制與關連性。
首先於製程微結構分析中結果顯示:第一真空感應熔煉(VIM)與真空電弧熔煉(VAM)之Nitinol鑄錠內部產生NiTi2之偏析物並延晶界分布,且將因鑄錠內部之內應力產生延晶界裂痕,第二此NiTi2偏析物於熱機加工製程中產生裂痕並造成鑄錠之破裂,第三於終端產品中可發現此偏析物之均勻分布並存在著微小裂痕,因此此NiTi2脆硬相之存在將造成Nitinol製程良率與產品機械性質性質之下降。所以如何控制並了解其形成機制與對機械特性之影響是本研究重點之一。
其次本研究利用1273K分別固溶處理24、36與48小時,由實驗結果可發現延晶界分布之脆硬相能有效的被降低;然而其中卻維持大約1%左右之Ni2Ti4O之氧化物存在,於TEM分析中可以發現此Ni2Ti4O之氧化物,其電子繞射分析之lattice constant與NiTi2差異並不明顯,因此推斷Ni2Ti4O氧化物之生成與NiTi2之偏析物將有密切的關聯性,所以本研究利用Material Studio 7.0 軟體針對其中之NiTi2偏析相與Ni2Ti4O氧化物,進行第一原理計算與探討其形成能量與兩相之間的關聯性,發現NiTi2偏析物之生成焓為隨著氧的參雜而降低,並最終形成穩定之Ni2Ti4O氧化物,因此也可證明隨著氧的參雜將造成驅動力使NiTi2偏析物相變成更穩定之Ni2Ti4O。
Ni-Ti shape memory alloy also called Nitinol is majorly used in applications of medical products such as orthodontic wire, stent, etc. In the present study, the microstructure analysis of the Nitinol ingot and samples from different mechanical process supplied by Metal Industries Research & Development Centre was conduct. Based on the results of analysis and the paper review, the investigation on the connection between the microstructure and mechanical properties e.g., the formability of Nitinol and the origin of cracks were done. And the correlation between the NiTi2 segregation and Ni2Ti4Ox oxides was probed then to realize the mechanism of formation.
The microstructures analysis of Nitinol ingots from vacuum induction melting (VIM) and vacuum arc melting (VAM) shows that NiTi2 segregation formed along the grain boundary. And the internal stress in VIM ingots will cause crack along the distribution of NiTi2 segregation. The NiTi2 segregation in VAM ingots would also induce crack during the thermomechanical process and may cause the rupture in final. In the products, the NiTi2 segregation distributed uniformly and the small crack may exist in it. Therefore the existence of this brittle phase will decrease the yield rate of Nitinol and may cause the mechanical properties go down due to the small cracks in the product.
Then the solution heat treatment at 1273K for 24, 36 and 48 h was conducted on VIM samples and shows that the amount of NiTi2 segregation can be decreased effectively. However, there still existed about 1% NiTi2 even though sustained for a longer time. Moreover, the NiTi2 segregation left behind may solute oxygen and become the Ni2Ti4Ox. Therefore the Material Studio 7.0 software was used to investigate the correlation between the NiTi2 and Ni2Ti4Ox by calculating the formation enthalpy of both phases based on first principle simulation. The result shows that the formation enthalpy decreases as increasing the amount of oxygen mixed in NiTi2 phase. It means that the oxygen mixed in NiTi2 phase will cause the phase transform into Ni2Ti4Ox which is more stable than former.
Abstract................................................I
摘要 ..................................................II
List of Figures .......................................VI
List of Tables ......................................VIII
I. Introduction ........................................1
II. Literature review ..................................3
2.1. The shape memory properties of Nitinol ............3
2.2 .The medical application of Nitinol ................5
2.3 .The problem of fabrication process ................6
2.4 .The influence on the fatigue life of medical products ...............................................7
2.5. The correlation between the surface treatment and biocompatibility of medical product ...................10
2.6. First principle simulation .......................12
2.7. The formation enthalpy of intermetallic compound..14
III. Experimental method ..............................15
3.1. Experimental procedure ...........................15
3.2. The samples melted by arc melting ................16
3.3. The samples fabricated by thermomechanical process .......................................................16
3.4. Solution heat treatment ..........................17
3.5. The analysis by optical metallography ............17
3.6. The analysis by X-ray diffractometer .............17
3.7. The analysis by scanning electron microscope .....17
3.8. The analysis by electron probe microanalyzer .....18
3.9. The analysis by transmission electron microscope .18
3.10. First principle simulation ......................19
IV. Results and discussion ............................20
4.1. The microstructure analysis of VIM ingot and the samples after solution heat treatment .................20
4.2. The first principle simulation ...................35
4.3. The microstructure analysis of VAM ingot and the samples after thermomechanical process ................43
V. Conclusion .........................................51
Reference .............................................53
1. Otsuka, K. and K. Shimizu, Pseudoelasticity and shape memory effects in alloys. International Metals Reviews, 1986. 31(1): p. 93-114.
2. Otsuka, K. and X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in materials science, 2005. 50(5): p. 511-678.
3. Huang, X., G.J. Ackland, and K.M. Rabe, Crystal structures and shape-memory behaviour of NiTi. Nature materials, 2003. 2(5): p. 307-311.
4. Van Humbeeck, J., Non-medical applications of shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 134-148.
5. Janke, L., et al., Applications of shape memory alloys in civil engineering structures - Overview, limits and new ideas. Materials and Structures, 2005. 38(279): p. 578-592.
6. Hartl, D.J. and D.C. Lagoudas, Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007. 221(4): p. 535-552.
7. Duerig, T., A. Pelton, and D. Stockel, An overview of nitinol medical applications. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 273: p. 149-160.
8. Elahinia, M.H., et al., Manufacturing and processing of NiTi implants: A review. Progress in Materials Science, 2012. 57(5): p. 911-946.
9. Schetky, L.M. and M. Wu. Issues in the further development of Nitinol properties and processing for medical device applications. in Medical Device Materials: Proceedings from the Materials & Processes for Medical Devices Conference 2003, 8-10 September 2003, Anaheim, California. 2004. ASM International.
10. Morgan, N., et al. Carbon and oxygen levels in nitinol alloys and the implications for medical device manufacture and durability. in Proceedings of the International Conference on Shape Memory and Superelastic Technologies. 2006. ASM International.
11. Shugo, Y., S. Hanada, and T. Honma, Effect of oxygen content on the martensite transformation and determination of defect structure in TiNi alloys. Bull. Res. Inst. Miner. Dressing Metall., 1985. 41(1): p. 23-34.
12. Frenzel, J., et al., Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Materialia, 2010. 58(9): p. 3444-3458.
13. Toro, A., et al., Characterization of Non-Metallic Inclusions in Superelastic NiTi Tubes. Journal of Materials Engineering and Performance, 2009. 18(5-6): p. 448-458.
14. Steegmuller, R., et al., Analysis of New Nitinol Ingot Qualities. Journal of Materials Engineering and Performance, 2014. 23(7): p. 2450-2456.
15. Rahim, M., et al., Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Materialia, 2013. 61(10): p. 3667-3686.
16. Robertson, S.W., A.R. Pelton, and R.O. Ritchie, Mechanical fatigue and fracture of Nitinol. International Materials Reviews, 2012. 57(1): p. 1-36.
17. Mentz, J., et al., Powder metallurgical processing of NiTi shape memory alloys with elevated transformation temperatures. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 491(1-2): p. 270-278.
18. Nevitt, M.V., Stabilization of certain Ti2Ni-type phases by oxygen. Trans. Met. Sos. AIME, 1960. 218(2): p. 327-331.
19. Ren, X., et al., A comparative study of elastic constants of Ti-Ni-based alloys prior to martensitic transformation. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2001. 312(1-2): p. 196-206.
20. Mao, S., et al., EBSD studies of the stress-induced B2–B19′ martensitic transformation in NiTi tubes under uniaxial tension and compression. Acta Materialia, 2010. 58(9): p. 3357-3366.
21. Miyazaki, S., et al., Characteristics of Deformation and Transformation Pseudoelasticity in Ti-Ni Alloys. Journal De Physique, 1982. 43(Nc-4): p. 255-260.
22. Li, B.Y., L.J. Rong, and Y.Y. Li, Porous NiTi alloy prepared from elemental powder sintering. Journal of Materials Research, 1998. 13(10): p. 2847-2851.
23. Zanotti, C., et al., Porous Ni-Ti ignition and combustion synthesis. Intermetallics, 2007. 15(3): p. 404-412.
24. Li, B.Y., et al., A recent development in producing porous Ni-Ti shape memory alloys. Intermetallics, 2000. 8(8): p. 881-884.
25. Zhao, Y., et al., Compression behavior of porous NiTi shape memory alloy. Acta Materialia, 2005. 53(2): p. 337-343.
26. Pelton, A.R., et al., Fatigue and durability of Nitinol stents. Journal of the Mechanical Behavior of Biomedical Materials, 2008. 1(2): p. 153-164.
27. Eggeler, G., et al., Structural and functional fatigue of NiTi shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004. 378(1-2): p. 24-33.
28. Hornbogen, E., Thermo-mechanical fatigue of shape memory alloys. Journal of Materials Science, 2004. 39(2): p. 385-399.
29. Gall, K. and H. Maier, Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Materialia, 2002. 50(18): p. 4643-4657.
30. Miyazaki, S., et al., Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1986. 17(1): p. 115-120.
31. Xie, Z.L., Y. Liu, and J. Van Humbeeck, Microstructure of NiTi shape memory alloy due to tension-compression cyclic deformation. Acta Materialia, 1998. 46(6): p. 1989-2000.
32. Simon, T., et al., On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Materialia, 2010. 58(5): p. 1850-1860.
33. Maletta, C., et al., Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading. International Journal of Fatigue, 2014. 66: p. 78-85.
34. 守護嘉朗, 花田修治, and 本間敏夫, < 報文> TiNi 合金のマルテンサイト変態に及ぼす酸素の影響ならびに欠陥構造の同定. 1985.
35. Gall, K., et al., Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008. 486(1-2): p. 389-403.
36. Frick, C.P., et al., Thermal processing of polycrystalline NiTi shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005. 405(1-2): p. 34-49.
37. Frick, C.P., et al., Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape-memory alloys. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2004. 35A(7): p. 2013-2025.
38. Vojtech, D., et al., Structural and mechanical stability of the nano-crystalline Ni-Ti (50.9 at.% Ni) shape memory alloy during short-term heat treatments. Intermetallics, 2014. 49: p. 7-13.
39. Li, Y.F., et al., Thermo-mechanical cyclic transformation behavior of Ti-Ni shape memory alloy wire. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2009. 509(1-2): p. 8-13.
40. Frotscher, M., et al., Microstructure and structural fatigue of ultra-fine grained NiTi-stents. Materials Science and Engineering: A, 2009. 503(1): p. 96-98.
41. Clarke, B., et al., Influence of nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. Journal of Biomedical Materials Research Part A, 2006. 79(1): p. 61-70.
42. Pelton, A., et al., Rotary-bending fatigue characteristics of medical-grade Nitinol wire. journal of the mechanical behavior of biomedical materials, 2013. 27: p. 19-32.
43. Ahadi, A. and Q. Sun, Stress hysteresis and temperature dependence of phase transition stress in nanostructured NiTi—Effects of grain size. Appl. Phys. Lett, 2013. 103(2).
44. Ahadi, A. and Q. Sun, Grain size dependence of fracture toughness and crack-growth resistance of superelastic NiTi. Scripta Materialia, 2016. 113: p. 171-175.
45. Nishida, M., C.M. Wayman, and T. Honma, Precipitation Processes in near-Equiatomic Tini Shape Memory Alloys. Metallurgical Transactions a-Physical Metallurgy and Materials Science, 1986. 17(9): p. 1505-1515.
46. Hassel, A., Surface treatment of NiTi for medical applications. Minimally Invasive Therapy & Allied Technologies, 2004. 13(4): p. 240-247.
47. Firstov, G., et al., Surface oxidation of NiTi shape memory alloy. Biomaterials, 2002. 23(24): p. 4863-4871.
48. Shabalovskaya, S., J. Anderegg, and J. Van Humbeeck, Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomaterialia, 2008. 4(3): p. 447-467.
49. Smouse, H.B., A. Nikanorov, and D. LaFlash, Biomechanical forces in the femoropopliteal arterial segment. Endovascular Today, 2005. 4(6): p. 60-66.
50. Wagner, M., et al., Structural fatigue of pseudoelastic NiTi shape memory wires. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004. 378(1-2): p. 105-109.
51. Tobushi, H., et al., Rotating-bending fatigue of a TiNi shape-memory alloy wire. Mechanics of Materials, 1997. 26(1): p. 35-42.
52. Chen, J.H., W. Sun, and G.Z. Wang, Investigation on the fracture Behavior of shape memory alloy NiTi. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2005. 36A(4): p. 941-955.
53. Gollerthan, S., et al., Fracture mechanics and microstructure in NiTi shape memory alloys. Acta Materialia, 2009. 57(4): p. 1015-1025.
54. Wever, D., et al., Electrochemical and surface characterization of a nickel–titanium alloy. Biomaterials, 1998. 19(7): p. 761-769.
55. Trepanier, C., R. Venugopalan, and A.R. Pelton, Corrosion resistance and biocompatibility of passivated NiTi, in Shape Memory Implants. 2000, Springer. p. 35-45.
56. Shabalovskaya, S.A., Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-medical materials and engineering, 2001. 12(1): p. 69-109.
57. Cisse, O., et al., Effect of surface treatment of NiTi alloy on its corrosion behavior in Hanks’ solution. Journal of biomedical materials research, 2002. 61(3): p. 339-345.
58. Shabalovskaya, S., et al., Surface conditions of Nitinol wires, tubing, and as‐cast alloys. The effect of chemical etching, aging in boiling water, and heat treatment. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003. 65(1): p. 193-203.
59. Trepanier, C., et al., Effect of modification of oxide layer on NiTi stent corrosion resistance. Journal of biomedical materials research, 1998. 43(4): p. 433-440.
60. Thierry, B., et al., Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. Journal of biomedical materials research, 2000. 51(4): p. 685-693.
61. Michiardi, A., et al., New oxidation treatment of NiTi shape memory alloys to obtain Ni‐free surfaces and to improve biocompatibility. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006. 77(2): p. 249-256.
62. Thomas, L.H. The calculation of atomic fields. in Mathematical Proceedings of the Cambridge Philosophical Society. 1927. Cambridge Univ Press.
63. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
64. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
65. Segall, M., et al., First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002. 14(11): p. 2717.
66. Chelikowsky, J.R., Microscopic basis of Miedema's theory of alloy formation. Physical Review B, 1982. 25(10): p. 6506.
67. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
68. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical review B, 1976. 13(12): p. 5188.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *