帳號:guest(3.12.148.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳俊鈞
作者(外文):Chen, Jyun Jyun
論文名稱(中文):二維半導體材料之掃描穿隧顯微術分析
論文名稱(外文):Scanning Tunneling Microscope Imaging of Two-Dimensional Semiconductors
指導教授(中文):李奕賢
指導教授(外文):Lee, Yi Hsien
口試委員(中文):陳力俊
張嘉升
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031603
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:91
中文關鍵詞:二維材料掃描穿隧顯微術
外文關鍵詞:two-dimensional materialSTM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:654
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
自單層石墨烯被發現以來,二維材料在研究和發展上,獲得了顯著地關注。其中,具半導體性的過渡金屬二硫屬化物(TMD),於單層時因其直接能隙、優異的電子遷移率(mobility)及開關電流比(on/off ratio)等物理特性,適用於各類光電元件、感測器等應用,有機會成為下世代之半導體或光電產業的主流材料。隨著元件尺度微小化,材料本質缺陷亦顯著影響其物理性質,因此,材料之微區分析技術逐漸成為關鍵議題。
本研究以不同二維晶體堆疊產生的各類型莫列波紋(Moire ́ pattern)為重點。實驗中成功藉由水轉移技術成功將CVD合成之TMD材料轉移至HOPG基板,進行STM分析,並深入探討材料之晶體結構、缺陷類型及分布;並以理論模型,計算各種材料堆疊及其Moire ́週期與角度的關係。此外,藉由外加偏壓的調控,觀察其相同Moire ́週期下原子影像之變化。
Since graphene was discovered, researches on two-dimensional materials has attracted a great deal of attention. Among them, transition metal dichalcogenides (TMD) semiconductors seem to be candidates for diverse applications of optoelectronic and sensors, due to their unique properties of direct bandgap, high mobility and high on/off ratio. As devices scaling down, properties of materials are significantly affected by intrinsic defects, atomic-resolved analysis thus becomes critical issues.
In this work, Moire ́ pattern resulted from different stacking of two-dimensional TMD materials has been emphasized. Monolayer TMD has been successfully transferred to the substrate (HOPG) by water-mediated transferring technique and analyzed with Scanning Tunneling Microscope (STM), for further characterization of the atomic structures and defects within materials.
Using the model of vector relation in reciprocal space, we combined the theoretical results with experimental results to calculate the relation between the periods acquired from Moire ́ pattern and misorientation angle of vertical-stacked heterostructure.
摘要 I
誌謝 III
目錄 IV
圖目錄 VI
表目錄 XI
第一章 緒論 1
第二章 文獻回顧 4
2-1 二維材料及過渡金屬硫族化合物(TMD) 4
2-1-1 成分與結構 4
2-1-2 能帶結構與能谷電子學 5
2-1-3 光學性質 7
2-1-4 製備方法 8
2-2 二維材料之掃描穿隧電子顯微術(STM) 10
2-2-1 單一二維材料之STM分析 10
2-2-2 二維材料異質結構之STM分析 13
第三章 實驗原理與方法 40
3-1 掃描穿隧電子顯微鏡簡介 40
3-1-1 STM構造 40
3-1-2 STM影像擷取 42
3-1-3 量子穿隧效應與穿隧電流 43
3-1-4 掃描穿隧電子能譜(STS) 46
3-2 超高真空系統簡介 47
3-2-1 真空幫浦及氣壓量測儀介紹 49
3-2-2 超高真空系統運作及維持 52
3-3 二維材料之基本分析 54
3-3-1 原子力顯微鏡 (Atomic Force Microscope) 54
3-3-2 拉曼(Raman)光譜與分子震動特性 54
3-3-3 光致螢光(Photoluminescence) 56
3-4 試片製備及探針製作 58
3-4-1 試片製備 58
3-4-2 STM探針製作 59
第四章 結果與討論 70
4-1 單一材料之STM分析 70
4-1-1 二維晶體之STM原子影像 70
4-1-2 STS能帶結構 71
4-2 Moire pattern影像分析 73
4-2-1 二維材料Moire pattern之理論模型與分析 73
4-2-2 異質結構之Moire pattern影像分析 77
4-2-3 偏壓對表面結構之影響 80
第五章 結論與未來展望 88
參考文獻 90
[1] K. S. Novoselov et al., Electric field effect in atomically thin carbon films. Science 306,666-669 (2004)
[2] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, "Graphene photonics and optoelectronics," Nature Photonics, vol. 4, no. 9, pp. 611–622, Aug. 2010.
[3] F. Schwierz, "Graphene transistors," Nature Nanotechnology, vol. 5, no. 7, pp. 487–496, May 2010.
[4] K. S. Kim et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, no. 7230, pp. 706–710, Jan. 2009.
[5] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, no. 1, pp. 109–162, Jan. 2009.
[6] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer moS2 transistors," Nature Nanotechnology, vol. 6, no. 3, pp. 147–150, Jan. 2011.
[7] Y. Zhao et al., "Interlayer breathing and shear modes in Few-Trilayer moS 2 and WSe 2," Nano Letters, vol. 13, no. 3, pp. 1007–1015, Mar. 2013.
[8] J. A. Wilson and A. D. Yoffe, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Advances in Physics, vol. 18, no. 73, pp. 193–335, May 1969.
[9] A. Splendiani et al., "Emerging photoluminescence in Monolayer moS 2," Nano Letters, vol. 10, no. 4, pp. 1271–1275, Apr. 2010.
[10] T. Li and G. Galli, "Electronic properties of moS2Nanoparticles," The Journal of Physical Chemistry C, vol. 111, no. 44, pp. 16192–16196, Nov. 2007.
[11] K. F. Mak, K. He, J. Shan, and T. F. Heinz, "Control of valley polarization in monolayer moS2 by optical helicity," Nature Nanotechnology, vol. 7, no. 8, pp. 494–498, Jun. 2012.
[12] H. Zeng et al., "Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides," Scientific Reports, vol. 3, Apr. 2013.
[13] Wu, S. (2013). Electrical tuning of valley magnetic moment through symmetry control in bilayer moS2. Nature Physics, 9(3), 149–153. doi:10.1038/nphys2524
[14] Zhu, B. (2014). The study of spin-valley coupling in Atomically thin group VI transition metal Dichalcogenides. Advanced Materials, 26(31), 5504–5507. doi:10.1002/adma.201305367
[15] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnology, vol. 7, no. 11, pp. 699–712, Nov. 2012.
[16] Splendiani, A., & Wang, F. (2010). Emerging photoluminescence in Monolayer moS 2. Nano Letters, 10(4), 1271–1275. doi:10.1021/nl903868w
[17] Zeng, Z., & Zhang, H. (2011). Single-layer Semiconducting Nanosheets: High-yield preparation and device fabrication. Angewandte Chemie, 123(47), 11289–11293. doi:10.1002/ange.201106004
[18] Lee, Y.-H., Zhang, X.-Q., Chang, C.-S., & Lin, T.-W. (2012). Synthesis of large-area moS 2 atomic layers with chemical vapor deposition. Advanced Materials, 24(17), 2320–2325. doi:10.1002/adma.201104798
[19] Feng, Q., & Xie, L. (2014). Growth of large-area 2D moS 2(1- x ) se 2 x semiconductor alloys. Advanced Materials, 26(17), 2648–2653. doi:10.1002/adma.201306095
[20] Stolyarova, E., & Flynn, G. W. (2007). High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proceedings of the National Academy of Sciences, 104(22), 9209–9212. doi:10.1073/pnas.0703337104
[21] Magonov S, WhangboM(1996) Surface Analysis with STM, AFM: Experimentaland Theoretical Aspects of Image Analysis
[22] Sinitsyna OV, Yaminsky IV (2006) Uspekhi Khimii 75:27–35
[23] Lahiri, J., & Batzill, M. (2010). An extended defect in graphene as a metallic wire. Nature Nanotechnology, 5(5), 326–329. doi:10.1038/nnano.2010.53
[24] Terrones, H. et al. New metallic allotropes of planar and tubular carbon.Phys. Rev. Lett. 84, 1716–1719 (2000).
[25] Wong, D., Watanabe, K., Zettl, A., Wang, F., & Crommie, M. F. (2015). Characterization and manipulation of individual defects in insulating hexagonal boron nitride using scanning tunnelling microscopy. Nature Nanotechnology, 10(11), 949–953. doi:10. 1038/ nnano. 2015. 188
[26] Das Sarma, S., Adam, S., Hwang, E. H. & Rossi, E. Electronic transport in twodimensionalgraphene. Rev. Mod. Phys. 83, 407–470 (2011).
[27] Lu, J., Castro Neto, A. H., & Loh, K. P. (2014). Lattice relaxation at the interface of Two-Dimensional crystals: Graphene and hexagonal Boron-Nitride. Nano Letters, 14(9), 5133–5139. doi:10.1021/nl501900x
[28] Gao, Y., Zhang, Y., & Liu, Z. (2013). Toward single-layer uniform hexagonal Boron Nitride–Graphene Patchworks with Zigzag linking edges. Nano Letters, 13(7), 3439–3443. doi:10.1021/nl4021123
[29] Yang, W., Shi, D., & Zhang, G. (2013). Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Materials, 12(9), 792–797. doi:10.1038/nmat3695
[30] Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nature Phys. 8, 382_386 (2012).
[31] Pan, Y., & Gao, H.-J. (2014). Construction of 2D atomic crystals on transition metal surfaces: Graphene, Silicene, and Hafnene. Small, 10(11), 2215–2225. doi:10.1002/smll.201303698
[32] Voloshina, E. N., & Dedkov, Y. S. (2013). Electronic structure and imaging contrast of graphene moiré on metals. Scientific Reports, 3, . doi:10.1038/srep01072
[33] Gao, M., Pan, Y., & Gao, H. . (2011). Epitaxial growth and structural property of graphene on Pt(111). Applied Physics Letters, 98(3), 033101. doi:10.1063/1.3543624
[34] Meng, L., & Gao, H. . (2012). Silicon intercalation at the interface of graphene and Ir(111). Applied Physics Letters, 100(8), 083101. doi:10.1063/1.3687688
[35] Preobrajenski, A. B., & Mårtensson, N. (2008). Controlling graphene corrugation on lattice-mismatched substrates. Physical Review B, 78(7), . doi:10.1103/physrevb.78.073401
[36] Terrones, H., López-Urías, F., & Terrones, M. (2013). Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides.Scientific Reports, 3, . doi:10.1038/srep01549
[37] Shi, J., Xu, N., & Liu, Z. (2015). All chemical vapor deposition synthesis and intrinsic Bandgap observation of moS 2 /Graphene Heterostructures. Advanced Materials, 27(44), 7086–7092. doi:10.1002/adma.201503342
[38] Komsa, H.-P., & Krasheninnikov, A. V. (2012). Two-Dimensional transition metal Dichalcogenides under electron irradiation: Defect production and Doping. Physical Review Letters, 109(3), . doi:10.1103/physrevlett.109.035503
[39] Lu, C.-P., & Andrei, E. Y. (2014). Bandgap, mid-gap states, and Gating effects in moS 2. Nano Letters, 14(8), 4628–4633. doi:10.1021/nl501659n
[40] Kobayashi, Y., Maniwa, Y., & Miyata, Y. (2015). Growth and optical properties of high-quality Monolayer WS 2 on graphite. ACS Nano, 9(4), 4056–4063. doi:10.1021/acsnano.5b00103
[41] Huang, Y. L., & Wee, A. T. S. (2015). Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nature Communications, 6, 6298. doi:10.1038/ncomms7298
[42] Azizi, A., Yakobson, B. I., & Alem, N. (2014). Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nature Communications, 5, 4867. doi:10.1038/ncomms5867
[43] Lu, C.-I., Li, L.-J., & Lin, M.-T. (2015). Graphite edge controlled registration of monolayer moS2 crystal orientation. Applied Physics Letters, 106(18), 181904. doi:10.1063/1.4919923
[44] Kibsgaard, J., & Besenbacher, F. (2006). Cluster−Support interactions and morphology of moS2Nanoclusters in a graphite-supported Hydrotreating model catalyst. Journal of the American Chemical Society, 128(42), 13950–13958. doi:10.1021/ja0651106
[45] Ugeda, M. M., & Crommie, M. F. (2014). Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nature Materials,13(12), 1091–1095. doi:10.1038/nmat4061
[46] Dendzik, M., & Hofmann, P. (2015). Growth and electronic structure of epitaxial single-layer WS 2 on au(111). Physical Review B, 92(24), . doi:10.1103/physrevb.92.245442
[47] Horcas, I., & Baro, A. M. (2007). WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Review of Scientific Instruments, 78(1), 013705. doi:10.1063/1.2432410
[48] Schutte, W. J., De Boer, J. L., & Jellinek, F. (1987). Crystal structures of tungsten disulfide and diselenide. Journal of Solid State Chemistry, 70(2), 207–209. doi:10.1016/0022-4596(87)90057-0
[49] Füchtbauer, H. G., & Lauritsen, J. V. (2013). Morphology and atomic-scale structure of single-layer WS2 nanoclusters. Physical Chemistry Chemical Physics, 15(38), 15971. doi:10.1039/c3cp51758f
[50] Sørensen, S. G., & Lauritsen, J. V. (2014). Structure and electronic properties of in situ synthesized single-layer moS 2 on a gold surface. ACS Nano, 8(7), 6788–6796. doi:10.1021/nn502812n
[51] Grey, F.; Bohr, J. A Symmetry Principle for Epitaxial Rotation.Europhys. Lett. 1992, 18, 717–722
[52] Barth, J. V.; Brune, H.; Ertl, G.; Behm, R. Scanning TunnelingMicroscopy Observations on the Reconstructed Au(111)Surface: Atomic Structure, Long-Range Superstructure,Rotational Domains, and Surface Defects. Phys. Rev. B:Condens. Matter Mater. Phys. 1990, 42, 9307–9317
[53] Ye, M., & Yap, Y. (2015). Recent advancement on the optical properties of Two-Dimensional Molybdenum disulfide (moS2) thin films. Photonics, 2(1), 288–307. doi:10.3390/photonics2010288
[54] Zhang, X., & Tan, P.-H. (2016). Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 8(12), 6435–6450. doi:10.1039/c5nr07205k
[55] Zhang, X., & Tan, P.-H. (2015). Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev.,44(9), 2757–2785. doi:10.1039/c4cs00282b
[56] R. Coehoorn, C. Haas, and R. A. de Groot, "Electronic structure of MoSe 2 , moS 2 , and WSe 2 . II. The nature of the optical band gaps," Physical Review B, vol. 35, no. 12, pp. 6203–6206, Apr. 1987
[57] Iwami, M., Uehara, Y., & Ushioda, S. (1998). Preparation of silver tips for scanning tunneling microscopy imaging. Review of Scientific Instruments, 69(11), 4010. doi:10.1063/1.1149215
[58] Wong, H. S., & Durkan, C. (2010). Unraveling the rotational disorder of graphene layers in graphite. Physical Review B, 81(4), . doi:10.1103/physrevb.81.045403
[59] Zhang, C., Li, L.-J., & Shih, C.-K. (2014). Direct imaging of band profile in single layer moS2on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending.Nano Letters, 14(5), 2443–2447. doi:10.1021/nl501133c
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *