帳號:guest(18.118.253.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃騰輝
作者(外文):Huang,Teng Huei
論文名稱(中文):磷酸鋰鐵粉末製程增量及性質改善研究
論文名稱(外文):The study of produce incremental and properties improvement of LiFePO4 powders
指導教授(中文):周麗新
指導教授(外文):Chou,Li Hsin
口試委員(中文):周元昉
張延瑜
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031599
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:97
中文關鍵詞:鋰離子電池磷酸鋰鐵陰極材料
外文關鍵詞:lithium ion batteryLiFePO4cathode material
相關次數:
  • 推薦推薦:0
  • 點閱點閱:214
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究主要是探討(1)前驅物及球磨製程增量、(2) 蔗糖及聚苯乙烯二不同碳源包覆對磷酸鋰鐵/碳之影響。我們以簡單且容易大量製作的方式合成出具片狀形貌之磷酸亞鐵前驅物,並搭配磷酸鋰及碳源進行球磨混合,再於氮氣氣氛下經熱處理後得到仍維持片狀形貌之磷酸鋰鐵/碳。
在增量製程的部分,我們藉由各種分析方法來探討此增量製程製作出粉末的性質,實驗結果顯示此增量製程對粉末的結構及外觀形貌並無影響,且可以一次製作出約110克的磷酸亞鐵及15克的磷酸鋰鐵/碳。
在不同碳源的部分,相較於蔗糖,使用聚苯乙烯作為碳源所製作的磷酸鋰鐵/碳,包覆碳膜較薄且較均勻,拉曼光譜的ID/IG也較高,所以應有較佳的電子導電率。
由電池測試結果可知此增量製程搭配蔗糖作為碳源所製作的電池,在0.1 C充、放電速率下,放電電容可達接近理論值170 mAh/g的167.6 mAh/g。在較高的0.5 C及1 C充、放電速率下,蔗糖及聚苯乙烯碳源製作電池的放電電容降幅分別為11.7%、90%及9.8%、15%,比較90%及15%的降幅,顯示聚苯乙烯碳源製作電池在1 C高充、放電速率下有明顯優勢。
The aim of this thesis was to study (1) the incremental procedure of the precursor and the ball-milling process, and (2) using sucrose or polystyrene as carbon source to produce LiFePO4/C powders. We use a simple and easy for mass production process to synthesize the iron phosphate precursor with plate-like morphology and followed with ball-milling with lithium phosphate and carbon source as extra additives. After heat treatment under N2 atmosphere, we obtained the LiFePO4/C powders with the same plate-like morphology.
As to the incremental procedure, we explored the properties of the produced powders by various analytical methods. The experimental results showed that this incremental procedure had no influence on the powders’ structure and morphology. We could obtain about 110 g and 15 g of iron phosphate precursor and LiFePO4/C powders respectively for each batch.
Compared with sucrose source, the carbon layer of LiFePO4/C powders produced with polystyrene was thinner and more uniform and possessed higher ID/IG Raman peak ratio, so as to have better electronic conductivity.
The discharge specific capacity of the cell with LiFePO4/C powders produced by the incremental procedure with sucrose was 167.6 mAh/g, which is close to the theoretical value 170 mAh/g, at 0.1 C charge-discharge rates. At higher 0.5 C and 1 C rates, the discharge specific capacity declining rate of the cell produced with polystyrene or sucrose source was 11.7%, 90% and 9.8%, 15%, respectively. Comparing the 90% declining rate with 15%, the cell produced with the polystyrene source was significantly superior at higher 1 C rates.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 鋰離子二次電池之工作原理 3
第二章 文獻回顧 5
2.1 常見的陰極材料介紹 5
2.1.1 LiCoO2 6
2.1.2 LiNiO2 7
2.1.3 LiMn2O4 8
2.2 磷酸鋰鐵的發現 9
2.3 磷酸鋰鐵的結構 10
2.4 磷酸鋰鐵的充放電機制 12
2.5 常見的磷酸鋰鐵製備方法 14
2.5.1 固態反應法(Solid state reaction) 14
2.5.2 溶膠-凝膠法(Sol-gel) 16
2.5.3 共沉澱法(Co-precipitation) 17
2.5.4 溶劑熱法(solvothermal synthsis) 18
2.5.5 微波加熱法(Microwave-heating) 22
2.5.6 碳熱還原法(Carbothermal reduction) 23
2.6 磷酸鋰鐵的改善方法 25
2.6.1 表面披覆導電層 25
2.6.2摻雜金屬離子 31
2.6.3 縮小顆粒尺寸 33
2.7 研究動機 37
第三章 實驗方法 38
3.1 實驗藥品 38
3.2 實驗儀器設備 39
3.3 實驗步驟 40
3.3.1實驗流程圖 40
3.3.2 前驅物之合成 40
3.3.3 製備LiFePO4/C 41
3.4 極片製備及電池組裝 41
3.4.1 極片製作 41
3.4.2 鈕扣型電池組裝 42
3.5 材料分析 42
3.5.1 X光繞射儀(XRD) 42
3.5.2 掃描電子顯微鏡(SEM) 43
3.5.3穿透式電子顯微鏡(TEM) 43
3.5.4 拉曼光譜儀(Raman) 44
3.5.5 感應耦合電漿放射光譜儀(ICP-OES) 44
3.5.6熱重分析儀(TGA) 45
第四章 結果與討論 46
4.1 增量製程對前驅物的影響 46
4.1.1 X光繞射儀分析 47
4.1.2 感應耦合電漿放射光譜儀分析 48
4.1.3 熱重分析 48
4.1.4 掃描式電子顯微鏡分析 50
4.2 球磨製程對LiFePO4/C的影響 53
4.2.1 不同鋯球大小之影響 54
4.2.2 球磨增量製程之影響 58
4.3 不同碳源對LiFePO4/C的影響 71
4.3.1 不同鋯球大小之影響 71
4.3.2 不同聚苯乙烯添加量之影響 76
4.3.3 電池充放電測試結果 85
第五章 結論 89
參考文獻 91

[1] Y. Wang, G. Cao, Adv. Mater. 20 (2008) 2251-2269.
[2] M. Shi, L. B. Kong, J. B. Liu, K. Yan, J. J. Li, Y. H. Dai, Ionics 22 (2016) 185-192.
[3] 李文雄, 科學發展 326 (2003) 32-35.
[4] J. Hajek, French Patent 10 (1949)
[5] M. Armand, D. W. Murphy, J. Broadhead, B. C. H. Steele, Materials for advanced batteries (1980) 145-161.
[6] J. M. Tarascon, M. Armand, Nature 414 (2001) 359-367.
[7] T. Nagaura, K. Tozawa, Prog. Batteries Solar Cells 9 (1990) 209-217.
[8] 陳柏延, 新新季刊 41 (2013) 218-221.
[9] L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang, J. B. Goodenough, Energy Environ. Sci. 4 (2011) 269-284.
[10] S. B. Chikkannanavar, D. M. Bernardi, L. Liu, J. Power Sources 248 (2014) 91-100.
[11] K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mat. Res. Bull. 15 (1980) 783-789.
[12] M. Thackeray, Nat. Mater. 1 (2002) 81-82.
[13] G. G. Amatucci, J. M. Tarascon, L. C. Klein, Solid State Ionics 83 (1996) 167-173.
[14] J. Cho, Y. J. Kim, T. J. Kim, B. Park, Angew. Chem. Int. Ed. 40 (2001) 3367-3369.
[15] J. Schoonman, H. L. Tuller, E. M. Kelder, J. Power Sources 81 (1999) 44-48.
[16] 黃可龍, 王兆翔, 劉素琴, 鋰離子電池原理與技術 五南圖書. (2010)
[17] M. M. Thackeray, J. Electrochem. Soc. 142 (1995) 2558-2563.
[18] R. J. Gummow, A. De Kock, H. M. Thackeray, Solid State Ionics 69 (1994) 59-67.
[19] S. B. Park, S. M. Lee, H. C. Shin, W. I. Cho, H. Jang, J. Power Sources 166 (2007) 219-225.
[20] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188-1194.
[21] A. Yamada, S. C. Chung, K. Hinokuma, J. Electrochem. Soc. 148 (2001) A224-A229.
[22] Y. Sakurai, H. Arai, J. Yamaki, Solid State Ionics 113 (1998) 29-34.
[23] A. K. Padhi, K. S. Nanjundaswamy, C. Masquellier, S. Okada, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1609-1613.
[24] D. Jugovic, D. Uskokovic, J. Power Sources, 190 (2009) 538-544.
[25] A. S. Andersson, L. Häggström, B. Kalska, J. O. Thomas, Solid State Ionics 130 (2000) 41-52.
[26] J. Wang, X. Sun, Energy Environ. Sci. 5 (2012) 5163-5185.
[27] D. Morgan, A. Van der Ven, G. Ceder, Electrochem. Solid-State Lett. 7 (2004) A30-A32.
[28] R. Malik, M. Bazant, G. Ceder, Nano Lett. 10 (2010) 4123-4127.
[29] Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv, G. Y. Li, Synth. Met. 162 (2012) 1315-1326.
[30] H. C. Kang, D. K. Jun, B. Jin, E. M. Jin, K. H. Park, H. B. Gu, K. W. Kim, J. Power Sources 179 (2008) 340-346.
[31] Y. Gu, X. Zhang, S. Lu, D. Jiang, A. Wu, Solid State Ionics 269 (2015) 30-36.
[32] W. Peng, L. Jiao, H. Gao, Z. Qi, Q. Wang, H. Du, Y. Si, Y. Wang, H. Yuan, J. Power Sources 196 (2011) 2841-2847.
[33] D. Jugović, M. Mitrić, M. Kuzmanović, N. Cvjetićanin, S. Škapin, B. Cekić, V. Ivanovski, D. Uskoković, J. Power Sources 196 (2011) 4613-4618.
[34] S. Wang, H. Yang, L. Feng, S. Sun, J. Guo, Y. Yang, J. Power Sources 233 (2013) 43-46.
[35] Q. Wang, W. Zhang, Z. Yang, S. Weng, Z. Jin, J. Power Sources 196 (2011) 10176-10182.
[36] B. Pei, H. Yao, W. Zhang, Z. Yang, J. Power Sources 220 (2012) 317-323.
[37] L. Wang, W. T. Sun, X. Y. Tang, X. K. Huang, X. M. He, J. J. Li, J. Power Sources 244 (2013) 94-100.
[38] J. Li, L. Zhang, L. F. Zhang, W. W. Hao, H. B. Wang, Q. T. Qu, H. H. Zheng, J. Power Sources 249 (2014) 311-319.
[39] M. S. Song, Y. M. Kang, J. H. Kim, H. S. Kim, D. Y. Kim, H. S. Kwon, J. Y. Lee, J. Power Sources 166 (2007) 260-265.
[40] J. Lim, J. Gim, J. Song, D. T. Nguyen, S. Kim, J. Jo, V. Mathew, J. Kim, J. Power Sources 304 (2016) 354-359.
[41] J. Barker, M. Y. Saidi, J. L. Swoyer, J. Electrochem. Soc. 150 (2003) A684-A688.
[42] B. Q. Zhu, X. H. Li, Yh. X. Wang, H. J. Guo, Mater. Chem. Phys. 98 (2006) 373-376.
[43] H. P. Liu, Z. C. Wang, X. H. Li, H. J. Guo, W. J. Peng, Y. H. Zhang, Q. Y. Hu, J. Power Sources 184 (2008) 469-472.
[44] S. Uchida, M. Yamagata, M. Ishikawa, J. Power Sources 243 (2013) 481-487.
[45] N. Ravet, J. B. Goodenough, S. Besner, Electrochemical Society FallMeeting, Honolulu, Hawaii (1999).
[46] N. Ravet, Y. Chouinard, J. F. Magnan, S. Besner, M. Gauthier, M. Armand, J. Power Sources 97 (2001) 503-507.
[47] H. Huang, S. C. Yin, L. F. Nazar, Electrochem. Solid State Lett. 4 (2001) A170-A172.
[48] Z. Chen, J. R. Dahn, J. Electrochem. Soc. 149 (2002) A1184-A1189.
[49] M. M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Electrochem. Solid State Lett. 6 (2003) A207-A209.
[50] Y. Hu, M. M. Doeff, R. Kostecki, R. Finones, J. Electrochem. Soc. 151 (2004) A1279-A1285.
[51] S. T. Yang, N. H. Zhao, H. Y. Dong, J. X. Yang, H. Y. Yue, Electrochim. Acta 51 (2005) 166-171.
[52] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J. Jamnik, J. Electrochem. Soc. 152 (2005) A607-A610.
[53] L. Wang, H. Wang, Z. Liu, C. Xiao, S. Dong, P. Han, Z. Zhang, X. Zhang, C. Bi, G. Cui, Solid State Ionics 181 (2010) 1685-1689.
[54] Y. Tang, F. Huang, H. Bi, Z. Liu, D. Wan, J. Power Sources 203 (2012) 130-134.
[55] H. Zhang, D. Liu, X. Z. Qian, C. J. Zhao, Y. L. Xu, J. Power Sources 249 (2014) 431-434.
[56] H. Liu, C. Li, Q. Cao, J. Solid State Electrochem. 12 (2008) 1017-1020.
[57] N. Meethong, Y. H. Kao, S. A. Speakman, Y. M. Chiang, Adv. Funct. Mater 19 (2009) 1060-1070.
[58] S. Y. Chung, J. T. Bloking, Y. M. Chiang, Nat. Mater. 2 (2002) 123-128.
[59] G. X. Wang, S. Bewlay, S. A. Needham, H. K. Liu, R. S. Liu, V. A. Drozd, J. F. Lee, J. M. Chen, J. Electrochem. Soc. 153 (2006) A25-A31.
[60] T. H. Teng, M. R. Yang, S. H. Wu, Y. P. Chiang, Solid State Commun. 142 (2007) 389-392.
[61] G. Li, H. Azuma, M. Tohda, J. Electrochem. Soc. 149 (2002) A743-A747.
[62] G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou, J. H. Ahn, Electrochim. Acta 50 (2004) 443-447.
[63] X. G. Yin, K. L. Huang, S. Q. Liu, H. Y. Wang, H. Wang, J. Power Sources 195 (2010) 4308-4312.
[64] M. Gaberscek, R. Dominko, J. Jamnik, Electrochem. Commun. 9 (2007) 2778-2783.
[65] Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. 14 (2014) 2849-2853.
[66] K. Saravanan, M. V. Reddy, P. Balaya, H. Gong, B. V. R. Chowdari, J. J. Vittal, J. Mater. Chem. 19 (2009) 605-610.
[67] C. Nan, J. Lu, C. Chen, Q. Peng, Y. Li, J. Mater. Chem. 21 (2011) 9994-9996.
[68] R. Mei, X. Song, Y. Yang, Z. An, J. Zhang, RSC Adv. 4 (2014) 5746-5752.
[69] W. Li, Z. Wei, L. Huang, D. Zhu, Y. Chen, J. Alloys Compd. 651 (2015) 34-41.
[70] Z. P. Ma, Y. P. Fan, G. J. Shao, G. L. Wang, J. J. Song, T. T. Liu,
ACS Appl. Mater. Interfaces 7 (2015) 2937-2943.
[71] A. C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095-14107.
[72] 潘俊羽, 清華大學碩士論文 (2013)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *