|
[1] Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Han, J., & Zhou, C. (2003). In2O3 nanowires as chemical sensors. Applied Physics Letters, 82(10), 1613-1615. [2] Kreuzer, L. B., & Patel, C. K. N. (1971). Nitric oxide air pollution: detection by optoacoustic spectroscopy. Science, 173(3991), 45-47. [3] Frandsen, U., Lopez-Figueroa, M., & Hellsten, Y. (1996). Localization of nitric oxide synthase in human skeletal muscle. Biochemical and Biophysical Research Communications, 227(1), 88-93. [4] Kharitonov, S. A., Yates, D., Robbins, R. A., Barnes, P. J., Logan-Sinclair, R., & Shinebourne, E. A. (1994). Increased nitric oxide in exhaled air of asthmatic patients. The Lancet, 343(8890), 133-135. [5] Maziak, W., Loukides, S., Culpitt, S., Sullivan, P., Kharitonov, S. A., & Barnes, P. J. (1998). Exhaled nitric oxide in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 157(3), 998-1002. [6] Parthangal, P. M., Cavicchi, R. E., & Zachariah, M. R. (2006). A universal approach to electrically connecting nanowire arrays using nanoparticles—application to a novel gas sensor architecture. Nanotechnology, 17(15), 3786. [7] Kuang, Q., Lao, C. S., Li, Z., Liu, Y. Z., Xie, Z. X., Zheng, L. S., & Wang, Z. L. (2008). Enhancing the photon-and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. The Journal of Physical Chemistry C, 112(30), 11539-11544. [8] Chang, S. J., Hsueh, T. J., Chen, I. C., & Huang, B. R. (2008). Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology, 19(17), 175502. [9] Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., & Wang, D. (2007). ZnO nanowire UV photodetectors with high internal gain. Nano Letters, 7(4), 1003-1009. [10] Verma, V. P., Das, S., Hwang, S., Choi, H., Jeon, M., & Choi, W. (2010). Nitric oxide gas sensing at room temperature by functionalized single zinc oxide nanowire. Materials Science and Engineering: B, 171(1), 45-49. [11] Shaalan, N. M., Yamazaki, T., & Kikuta, T. (2012). NO2 response enhancement and anomalous behavior of n-type SnO2 nanowires functionalized by Pd nanodots. Sensors and Actuators B: Chemical, 166, 671-677. [12] Somacescu, S., Dinescu, A., Stanoiu, A., Simion, C. E., & Moreno, J. M. C. (2012). Hydrothermal synthesis of ZnO–Eu2O3 binary oxide with straight strips morphology and sensitivity to NO2 gas. Materials Letters, 89, 219-222. [13] Chang, B. Y., Wang, C. Y., Lai, H. F., Wu, R. J., & Chavali, M. (2014). Evaluation of Pt/In2O3–WO3 nano powder ultra-trace level NO gas sensor. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 1056-1064.
[14] Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter, 16(25), R829. [15] Guo, M., Diao, P., & Cai, S. (2005). Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry, 178(6), 1864-1873. [16] Liu, B., & Zeng, H. C. (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 125(15), 4430-4431. [17] Vayssieres, L. (2003). Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 15(5), 464-466. [18] Vayssieres, L., Keis, K., Lindquist, S. E., & Hagfeldt, A. (2001). Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. The Journal of Physical Chemistry B, 105(17), 3350-3352. [19] Zhang, R., & Kerr, L. L. (2007). A simple method for systematically controlling ZnO crystal size and growth orientation. Journal of Solid State Chemistry,180(3), 988-994. [20] Wagner, R. S., & Ellis, W. C. (1964). Vapor‐liquid‐solid mechanism of single crystal growth. Applied Physics Letters, 4(5), 89-90. [21] Wu, Y., & Yang, P. (2001). Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society, 123(13), 3165-3166. [22] Ho, S. T., Chen, K. C., Chen, H. A., Lin, H. Y., Cheng, C. Y., & Lin, H. N. (2007). Catalyst-free surface-roughness-assisted growth of large-scale vertically aligned zinc oxide nanowires by thermal evaporation. Chemistry of materials, 19(16), 4083-4086. [23] Ho, S. T., Wang, C. Y., Liu, H. L., & Lin, H. N. (2008). Catalyst-free selective-area growth of vertically aligned zinc oxide nanowires. Chemical Physics Letters, 463(1), 141-144. [24] Barnes, T. M., Leaf, J., Fry, C., & Wolden, C. A. (2005). Room temperature chemical vapor deposition of c-axis ZnO. Journal of Crystal Growth, 274(3), 412-417. [25] Cheng, A. J., Tzeng, Y., Zhou, Y., Park, M., Wu, T. H., Shannon, C., & Lee, W. (2008). Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication. Applied Physics Letters, 92(9), 092113. [26] Barankin, M. D., Gonzalez Ii, E., Ladwig, A. M., & Hicks, R. F. (2007). Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Solar Energy Materials and Solar Cells, 91(10), 924-930. [27] Schmidt-Mende, L., & MacManus-Driscoll, J. L. (2007). ZnO–nanostructures, defects, and devices. Materials Today, 10(5), 40-48. [28] Park, W. I., Jun, Y. H., Jung, S. W., & Yi, G. C. (2003). Excitonic emissions observed in ZnO single crystal nanorods. Applied Physics Letters, 82(6), 964-966. [29] Ahn, C. H., Kim, Y. Y., Kim, D. C., Mohanta, S. K., & Cho, H. K. (2009). A comparative analysis of deep level emission in ZnO layers deposited by various methods. Journal of Applied Physics, 105(1), 13502. [30] Wang, J. X., Sun, X. W., Wei, A., Lei, Y., Cai, X. P., Li, C. M., & Dong, Z. L. (2006). Zinc oxide nanocomb biosensor for glucose detection. Applied Physics Letters, 88(23), 3106. [31] Umar, A., Rahman, M. M., Vaseem, M., & Hahn, Y. B. (2009). Ultra-sensitive cholesterol biosensor based on low temperature grown ZnO nanoparticles. Electrochemistry Communications, 11(1), 118-121. [32] Lang, Y., Gao, H., Jiang, W., Xu, L., & Hou, H. (2012). Photoresponse and decay mechanism of an individual ZnO nanowire UV sensor. Sensors and Actuators A: Physical, 174, 43-46. [33] Li, Y., Della Valle, F., Simonnet, M., Yamada, I., & Delaunay, J. J. (2008). High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology, 20(4), 045501. [34] Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., & Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84(18), 3654-3656. [35] Liao, L., Lu, H. B., Li, J. C., He, H., Wang, D. F., Fu, D. J., & Zhang, W. F. (2007). Size dependence of gas sensitivity of ZnO nanorods. The Journal of Physical Chemistry C, 111(5), 1900-1903. [36] Choi, S. W., & Kim, S. S. (2012). Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization. Sensors and Actuators B: Chemical, 168, 8-13. [37] Barsan, N., & Weimar, U. (2001). Conduction model of metal oxide gas sensors. Journal of Electroceramics, 7(3), 143-167. [38] Manno, D., Micocci, G., Serra, A., Di Giulio, M., & Tepore, A. (2000). Structural and electrical properties of In2O3–SeO2 mixed oxide thin films for gas sensing applications. Journal of Applied Physics, 88(11), 6571-6577. [39] Le Hung, N., Ahn, E., Jung, H., Kim, H., Hong, S. K., & Kim, D. (2010, January). NO gas sensing properties of ZnO wire-like thin films synthesized by thermal oxidation of sputtered Zn metallic films in air. In 2010 3rd International Nanoelectronics Conference (INEC) (pp. 448-449). IEEE. [40] Liu, C. C., Li, J. H., Chang, C. C., Chao, Y. C., Meng, H. F., Horng, S. F., & Meng, T. C. (2009). Selective real-time nitric oxide detection by functionalized zinc oxide. Journal of Physics D: Applied Physics, 42(15), 155105. [41] Williams, F. J., Palermo, A., Tikhov, M. S., & Lambert, R. M. (1999). First Demonstration of in Situ Electrochemical Control of a Base Metal Catalyst: Spectroscopic and Kinetic Study of the CO + NO Reaction over Na-Promoted Cu. The Journal of Physical Chemistry B, 103(45), 9960-9966. [42] Zhang, G., & Liu, M. (2000). Effect of particle size and dopant on properties of SnO2 based gas sensors. Sensors and Actuators B: Chemical, 69(1), 144-152. [43] Chang, Y. H., Chiang, M. Y., Chang, J. H., & Lin, H. N. (2015). Enhanced visible light photocatalysis of cuprous oxide nanoparticle modified zinc oxide nanowires. Materials Letters, 138, 85-88. [44] 陳信宏. (2013). 具有極高靈敏度之單根氧化鋅奈米線一氧化氮氣體感測器.國立清華大學碩士學位論文
[45] Ponnuvelu, D. V., Pullithadathil, B., Prasad, A. K., Dhara, S., Ashok, A., Mohamed, K., & Raj, B. (2015). Rapid synthesis and characterization of hybrid ZnO/Au core–shell nanorods for high performance, low temperature NO2 gas sensor applications. Applied Surface Science, 355, 726-735. [46] Sonker, R. K., Sabhajeet, S. R., Singh, S., & Yadav, B. C. (2015). Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Materials Letters, 152, 189-191. [47] Ahn, M. W., Park, K. S., Heo, J. H., Kim, D. W., Choi, K. J., & Park, J. G. (2009). On chip fabrication of ZnO nanowire gas sensor with high gas sensitivity. Sensors and Actuators B: Chemical, 138(1), 168-173. [48] Zhu, Y., Wang, Y., Duan, G., Zhang, H., Li, Y., Liu, G., & Cai, W. (2015). In situ growth of porous ZnO nanosheet built network film as high performance gas sensor. Sensors and Actuators B: Chemical, 221, 350-356. [49] Gogurla, N., Sinha, A. K., Santra, S., Manna, S., & Ray, S. K. (2014). Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Scientific Reports, 4, 6483. [50] Park, S., An, S., Mun, Y., & Lee, C. (2013). UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. ACS Applied Materials & Interfaces, 5(10), 4285-4292. [51] Liao, J. C., Li, Z. G., Wang, G. J., Chen, C. H., Lv, S. S., & Li, M. Y. (2016). ZnO Nanorods/Porous Silicon Nanowires Hybrid Structures as Highly-Sensitive NO2 Gas Sensors at Room Temperature. Physical Chemistry Chemical Physics, , 18, 4835-4841. [52] Lu, G., Xu, J., Sun, J., Yu, Y., Zhang, Y., & Liu, F. (2012). UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors and Actuators B: Chemical, 162(1), 82-88.
|