帳號:guest(3.145.57.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柯賢文
作者(外文):Ke, Hsien Wen
論文名稱(中文):氧化亞銅奈米顆粒修飾氧化鋅奈米線於大氣環境中之一氧化氮氣體感測應用
論文名稱(外文):Application of ZnO Nanowires Modified with Cuprous Oxide Nanoparticles in Nitric Oxide Gas Sensing under Ambient Environment
指導教授(中文):林鶴南
指導教授(外文):Lin, Heh Nan
口試委員(中文):李紫原
林樹均
口試委員(外文):Lee, Chi Young
Lin, Su Jien
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031597
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:87
中文關鍵詞:氧化鋅氧化亞銅一氧化氮氣體感測
外文關鍵詞:ZnOCu2ONO gas sensing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:46
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本實驗以氧化亞銅奈米顆粒修飾氧化鋅奈米線為基礎,並利用黃光微影技術製作電阻式一氧化氮氣體感測器。先將氧化鋅奈米線經由水溶液法長在經黃光微影做的鈦金屬電極矽基板上,再經由光還原法將氧化亞銅奈米顆粒修飾於氧化鋅奈米線上。為了使氧化鋅和氧化亞銅的結晶性變好,還會進行退火處理。其感測原理是由於一氧化氮為氧化性氣體,吸附在元件表面時會造成導電性下降。藉由偵測電流的變化,則可以計算感測器的響應。  
  藉由掃描式電子顯微鏡與穿透式電子顯微鏡觀察氧化鋅奈米線和氧化亞銅奈米顆粒的表面形貌並確認其結構,其中又以10-4 M硫酸銅溶液光還原2小時可以得到最佳的氧化亞銅奈米顆粒修飾濃度,推測有最佳的氣體感測;從螢光光譜圖的分析,能看出修飾過後的氧化鋅奈米線在紫外光放光波段強度下降,綠光波段強度上升,由此推斷氧化亞銅奈米顆粒能有效使電子電洞對的再結合率降低,以及增加氧空缺的數目。
  在大氣環境下,利用紫外光激活模式進行濃度1 ppm一氧化氮的感測結果中,未修飾的氧化鋅奈米線的響應為的25%,而修飾後氧化鋅奈米線感測元件響應為357%,是未修飾氧化鋅奈米線的14倍。在60 ppb一氧化氮氣體感測中響應也達到8%。另外,我們利用紫外光回復模式進行濃度1 ppm一氧化氮的感測,修飾後氧化鋅奈米線感測元件響應為28%,對60 ppb一氧化氮的響應也有4%。本實驗成功地以簡單的光還原方法製備出響應較好的NO氣體感測器,並顯示對低濃度的一氧化氮感測有很大的潛力。
In this work, nitric oxide (NO) gas sensors based on the ZnO nanowires (NWs) modified with Cu2O nanoparticles (NPs) are reported. The ZnO NWs are grown on Ti electrodes substrates of 300 nm thick created by photolithography using a solution method and then modified with Cu2O NPs by photoreduction. To facilitate crystallization, the ZnO NWs and Cu2O NPs are also subjected to thermal annealing. The sensing principle is due to the fact that NO is an oxidizing gas and the adsorption of gas molecules on the NWs surface causes the NWs conductance to decrease. By monitoring changes in the sensor current, we can calculate the response of the gas sensor.
The results of scanning electron microscopy show the morphologies and structures of nanowires and nanoparticles. The ZnO NWs modified with the best concentration of Cu2O NPs show the best NO gas sensing under the condition of two hours photoreduction with 10-4 M copper sulfate. The ultraviolet emissions of the modified ZnO NWs decrease and the green emissions of the modified ZnO NWs increase in the photoluminescence spectra, revealing that the recombination of electron-hole pairs is reduced and the number of O vacancies (Vo) is increased by Cu2O NPs.
The results of 1 ppm NO gas sensing by using UV activation under ambient environment show the response of the unmodified ZnO NWs sensor is 25%, whereas the response of the Cu2O NPs modified ZnO NWs sensor is 357%, which is 14.28 times as high as that of the unmodified ZnO NWs sensor. A response of 8% has also been achieved at 60 ppb NO. On the other hand, the results of 1 ppm NO gas sensing by using UV recovery show the response of the Cu2O NPs modified ZnO NWs sensor is 28%. A response of 4% has also been achieved at 60 ppb NO. A high-efficiency NO gas sensor is successfully fabricated by a simple photoreduction method, and shows a good potential of the Cu2O NPs modified ZnO NWs for low concentration NO gas sensing.
中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
Chapter 1 緒論 1
1.1 前言 2
1.2 研究動機 3
Chapter 2 文獻回顧 5
2.1 氧化鋅奈米線概論 6
2.1.1 晶體結構 6
2.1.2 成長機制與方法 7
2.1.3 氧空缺本質摻雜形成n-type半導體 10
2.1.4 氧化鋅光學性質 11
2.2 氣體感測原理 13
2.2.1 氧空缺與氣體吸附作用 13
2.2.2 氧化鋅對一氧化氮的反應機制 16
2.3 感測元件紫外光激活回復特性 17
2.4 以複合材料結構提高氣體感測響應 20
2.5光還原法 22
Chapter 3 實驗製程與量測 24
3.1 感測元件製作流程 25
3.1.1定義電極圖樣 25
3.1.2鈦電極蒸鍍 26
3.1.3去除光阻 26
3.1.4 氧化鋅奈米線成長 27
3.1.5 製作氧化亞銅奈米顆粒修飾氧化鋅奈米線 29
3.1.6 元件組裝 30
3.2分析儀器與樣品準備 31
3.2.1掃描式電子顯微鏡 31
3.2.2穿透式電子顯微鏡 31
3.2.3螢光光譜儀 31
3.3一氧化氮氣體感測 32
3.3.1 氣體感測系統架構 32
3.3.2 一氧化氮濃度計算 33
3.3.3 氣體感測操作流程 34
Chapter 4 實驗結果與討論 36
4.1氧化鋅奈米線形貌及光學特性 37
4.1.1表面形貌及結構分析 38
4.1.2光致發光性質 45
4.2 NO氣體的感測結果 50
4.2.1紫外光激活(UV activation)模式 51
4.2.2紫外光回復(UV recovery)模式 63
4.2.3實驗數據與文獻比較 66
Chapter 5 結論 68
參考文獻 71
[1] Li, C., Zhang, D., Liu, X., Han, S., Tang, T., Han, J., & Zhou, C. (2003). In2O3 nanowires as chemical sensors. Applied Physics Letters, 82(10), 1613-1615.
[2] Kreuzer, L. B., & Patel, C. K. N. (1971). Nitric oxide air pollution: detection by optoacoustic spectroscopy. Science, 173(3991), 45-47.
[3] Frandsen, U., Lopez-Figueroa, M., & Hellsten, Y. (1996). Localization of nitric oxide synthase in human skeletal muscle. Biochemical and Biophysical Research Communications, 227(1), 88-93.
[4] Kharitonov, S. A., Yates, D., Robbins, R. A., Barnes, P. J., Logan-Sinclair, R., & Shinebourne, E. A. (1994). Increased nitric oxide in exhaled air of asthmatic patients. The Lancet, 343(8890), 133-135.
[5] Maziak, W., Loukides, S., Culpitt, S., Sullivan, P., Kharitonov, S. A., & Barnes, P. J. (1998). Exhaled nitric oxide in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 157(3), 998-1002.
[6] Parthangal, P. M., Cavicchi, R. E., & Zachariah, M. R. (2006). A universal approach to electrically connecting nanowire arrays using nanoparticles—application to a novel gas sensor architecture. Nanotechnology, 17(15), 3786.
[7] Kuang, Q., Lao, C. S., Li, Z., Liu, Y. Z., Xie, Z. X., Zheng, L. S., & Wang, Z. L. (2008). Enhancing the photon-and gas-sensing properties of a single SnO2 nanowire based nanodevice by nanoparticle surface functionalization. The Journal of Physical Chemistry C, 112(30), 11539-11544.
[8] Chang, S. J., Hsueh, T. J., Chen, I. C., & Huang, B. R. (2008). Highly sensitive ZnO nanowire CO sensors with the adsorption of Au nanoparticles. Nanotechnology, 19(17), 175502.
[9] Soci, C., Zhang, A., Xiang, B., Dayeh, S. A., Aplin, D. P. R., Park, J., & Wang, D. (2007). ZnO nanowire UV photodetectors with high internal gain. Nano Letters, 7(4), 1003-1009.
[10] Verma, V. P., Das, S., Hwang, S., Choi, H., Jeon, M., & Choi, W. (2010). Nitric oxide gas sensing at room temperature by functionalized single zinc oxide nanowire. Materials Science and Engineering: B, 171(1), 45-49.
[11] Shaalan, N. M., Yamazaki, T., & Kikuta, T. (2012). NO2 response enhancement and anomalous behavior of n-type SnO2 nanowires functionalized by Pd nanodots. Sensors and Actuators B: Chemical, 166, 671-677.
[12] Somacescu, S., Dinescu, A., Stanoiu, A., Simion, C. E., & Moreno, J. M. C. (2012). Hydrothermal synthesis of ZnO–Eu2O3 binary oxide with straight strips morphology and sensitivity to NO2 gas. Materials Letters, 89, 219-222.
[13] Chang, B. Y., Wang, C. Y., Lai, H. F., Wu, R. J., & Chavali, M. (2014). Evaluation of Pt/In2O3–WO3 nano powder ultra-trace level NO gas sensor. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 1056-1064.

[14] Wang, Z. L. (2004). Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter, 16(25), R829.
[15] Guo, M., Diao, P., & Cai, S. (2005). Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry, 178(6), 1864-1873.
[16] Liu, B., & Zeng, H. C. (2003). Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. Journal of the American Chemical Society, 125(15), 4430-4431.
[17] Vayssieres, L. (2003). Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Advanced Materials, 15(5), 464-466.
[18] Vayssieres, L., Keis, K., Lindquist, S. E., & Hagfeldt, A. (2001). Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. The Journal of Physical Chemistry B, 105(17), 3350-3352.
[19] Zhang, R., & Kerr, L. L. (2007). A simple method for systematically controlling ZnO crystal size and growth orientation. Journal of Solid State Chemistry,180(3), 988-994.
[20] Wagner, R. S., & Ellis, W. C. (1964). Vapor‐liquid‐solid mechanism of single crystal growth. Applied Physics Letters, 4(5), 89-90.
[21] Wu, Y., & Yang, P. (2001). Direct observation of vapor-liquid-solid nanowire growth. Journal of the American Chemical Society, 123(13), 3165-3166.
[22] Ho, S. T., Chen, K. C., Chen, H. A., Lin, H. Y., Cheng, C. Y., & Lin, H. N. (2007). Catalyst-free surface-roughness-assisted growth of large-scale vertically aligned zinc oxide nanowires by thermal evaporation. Chemistry of materials, 19(16), 4083-4086.
[23] Ho, S. T., Wang, C. Y., Liu, H. L., & Lin, H. N. (2008). Catalyst-free selective-area growth of vertically aligned zinc oxide nanowires. Chemical Physics Letters, 463(1), 141-144.
[24] Barnes, T. M., Leaf, J., Fry, C., & Wolden, C. A. (2005). Room temperature chemical vapor deposition of c-axis ZnO. Journal of Crystal Growth, 274(3), 412-417.
[25] Cheng, A. J., Tzeng, Y., Zhou, Y., Park, M., Wu, T. H., Shannon, C., & Lee, W. (2008). Thermal chemical vapor deposition growth of zinc oxide nanostructures for dye-sensitized solar cell fabrication. Applied Physics Letters, 92(9), 092113.
[26] Barankin, M. D., Gonzalez Ii, E., Ladwig, A. M., & Hicks, R. F. (2007). Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Solar Energy Materials and Solar Cells, 91(10), 924-930.
[27] Schmidt-Mende, L., & MacManus-Driscoll, J. L. (2007). ZnO–nanostructures, defects, and devices. Materials Today, 10(5), 40-48.
[28] Park, W. I., Jun, Y. H., Jung, S. W., & Yi, G. C. (2003). Excitonic emissions observed in ZnO single crystal nanorods. Applied Physics Letters, 82(6), 964-966.
[29] Ahn, C. H., Kim, Y. Y., Kim, D. C., Mohanta, S. K., & Cho, H. K. (2009). A comparative analysis of deep level emission in ZnO layers deposited by various methods. Journal of Applied Physics, 105(1), 13502.
[30] Wang, J. X., Sun, X. W., Wei, A., Lei, Y., Cai, X. P., Li, C. M., & Dong, Z. L. (2006). Zinc oxide nanocomb biosensor for glucose detection. Applied Physics Letters, 88(23), 3106.
[31] Umar, A., Rahman, M. M., Vaseem, M., & Hahn, Y. B. (2009). Ultra-sensitive cholesterol biosensor based on low temperature grown ZnO nanoparticles. Electrochemistry Communications, 11(1), 118-121.
[32] Lang, Y., Gao, H., Jiang, W., Xu, L., & Hou, H. (2012). Photoresponse and decay mechanism of an individual ZnO nanowire UV sensor. Sensors and Actuators A: Physical, 174, 43-46.
[33] Li, Y., Della Valle, F., Simonnet, M., Yamada, I., & Delaunay, J. J. (2008). High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology, 20(4), 045501.
[34] Wan, Q., Li, Q. H., Chen, Y. J., Wang, T. H., He, X. L., Li, J. P., & Lin, C. L. (2004). Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Applied Physics Letters, 84(18), 3654-3656.
[35] Liao, L., Lu, H. B., Li, J. C., He, H., Wang, D. F., Fu, D. J., & Zhang, W. F. (2007). Size dependence of gas sensitivity of ZnO nanorods. The Journal of Physical Chemistry C, 111(5), 1900-1903.
[36] Choi, S. W., & Kim, S. S. (2012). Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization. Sensors and Actuators B: Chemical, 168, 8-13.
[37] Barsan, N., & Weimar, U. (2001). Conduction model of metal oxide gas sensors. Journal of Electroceramics, 7(3), 143-167.
[38] Manno, D., Micocci, G., Serra, A., Di Giulio, M., & Tepore, A. (2000). Structural and electrical properties of In2O3–SeO2 mixed oxide thin films for gas sensing applications. Journal of Applied Physics, 88(11), 6571-6577.
[39] Le Hung, N., Ahn, E., Jung, H., Kim, H., Hong, S. K., & Kim, D. (2010, January). NO gas sensing properties of ZnO wire-like thin films synthesized by thermal oxidation of sputtered Zn metallic films in air. In 2010 3rd International Nanoelectronics Conference (INEC) (pp. 448-449). IEEE.
[40] Liu, C. C., Li, J. H., Chang, C. C., Chao, Y. C., Meng, H. F., Horng, S. F., & Meng, T. C. (2009). Selective real-time nitric oxide detection by functionalized zinc oxide. Journal of Physics D: Applied Physics, 42(15), 155105.
[41] Williams, F. J., Palermo, A., Tikhov, M. S., & Lambert, R. M. (1999). First Demonstration of in Situ Electrochemical Control of a Base Metal Catalyst: Spectroscopic and Kinetic Study of the CO + NO Reaction over Na-Promoted Cu. The Journal of Physical Chemistry B, 103(45), 9960-9966.
[42] Zhang, G., & Liu, M. (2000). Effect of particle size and dopant on properties of SnO2 based gas sensors. Sensors and Actuators B: Chemical, 69(1), 144-152.
[43] Chang, Y. H., Chiang, M. Y., Chang, J. H., & Lin, H. N. (2015). Enhanced visible light photocatalysis of cuprous oxide nanoparticle modified zinc oxide nanowires. Materials Letters, 138, 85-88.
[44] 陳信宏. (2013). 具有極高靈敏度之單根氧化鋅奈米線一氧化氮氣體感測器.國立清華大學碩士學位論文

[45] Ponnuvelu, D. V., Pullithadathil, B., Prasad, A. K., Dhara, S., Ashok, A., Mohamed, K., & Raj, B. (2015). Rapid synthesis and characterization of hybrid ZnO/Au core–shell nanorods for high performance, low temperature NO2 gas sensor applications. Applied Surface Science, 355, 726-735.
[46] Sonker, R. K., Sabhajeet, S. R., Singh, S., & Yadav, B. C. (2015). Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Materials Letters, 152, 189-191.
[47] Ahn, M. W., Park, K. S., Heo, J. H., Kim, D. W., Choi, K. J., & Park, J. G. (2009). On chip fabrication of ZnO nanowire gas sensor with high gas sensitivity. Sensors and Actuators B: Chemical, 138(1), 168-173.
[48] Zhu, Y., Wang, Y., Duan, G., Zhang, H., Li, Y., Liu, G., & Cai, W. (2015). In situ growth of porous ZnO nanosheet built network film as high performance gas sensor. Sensors and Actuators B: Chemical, 221, 350-356.
[49] Gogurla, N., Sinha, A. K., Santra, S., Manna, S., & Ray, S. K. (2014). Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices. Scientific Reports, 4, 6483.
[50] Park, S., An, S., Mun, Y., & Lee, C. (2013). UV-enhanced NO2 gas sensing properties of SnO2-core/ZnO-shell nanowires at room temperature. ACS Applied Materials & Interfaces, 5(10), 4285-4292.
[51] Liao, J. C., Li, Z. G., Wang, G. J., Chen, C. H., Lv, S. S., & Li, M. Y. (2016). ZnO Nanorods/Porous Silicon Nanowires Hybrid Structures as Highly-Sensitive NO2 Gas Sensors at Room Temperature. Physical Chemistry Chemical Physics, , 18, 4835-4841.
[52] Lu, G., Xu, J., Sun, J., Yu, Y., Zhang, Y., & Liu, F. (2012). UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sensors and Actuators B: Chemical, 162(1), 82-88.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *