|
[1] J. Aizenberg and P. Fratzl, "Biological and Biomimetic Materials," Advanced Materials, vol. 21, pp. 387-388, 2009. [2] P. Fratzl and R. Weinkamer, "Nature’s hierarchical materials," Progress in Materials Science, vol. 52, pp. 1263-1334, 2007. [3] U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "Bioinspired structural materials," Nat Mater, vol. 14, pp. 23-36, Jan 2015. [4] U. G. K. Wegst and M. F. Ashby, "The mechanical efficiency of natural materials," Philosophical Magazine, vol. 84, pp. 2167-2186, 2004. [5] S. Deville, "Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues," Advanced Engineering Materials, vol. 10, pp. 155-169, 2008. [6] S. Deville, "Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities," Materials, vol. 3, pp. 1913-1927, 2010. [7] M. E. Davis, "Ordered porous materials for emerging applications," Nature, vol. 417, pp. 813-821, 2002. [8] K. S. W. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)," in Pure and Applied Chemistry vol. 57, ed, 1985, p. 603. [9] A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Processing Routes to Macroporous Ceramics: A Review," Journal of the American Ceramic Society, vol. 89, pp. 1771-1789, 2006. [10] M. M. W. L. J. Gauckler, C. Conti, and M. Jacobduliere, "Ceramic Foam for Molten-Metal Filtration," J. Metals, vol. 37, pp. 47-50, 1985. [11] a. P. C. M. Scheffler, "Cellular Ceramics: Structure Manufacturing, Properties and Applications," Weinheim, Wiley-VCH, p. 645, 2005. [12] J.-H. Eom, Y.-W. Kim, and S. Raju, "Processing and properties of macroporous silicon carbide ceramics: A review," Journal of Asian Ceramic Societies, vol. 1, pp. 220-242, 2013. [13] R. A. White, E.W. White, and J.N. Weber, "REPLAMINEFORM - NEW PROCESS FOR PREPARING POROUS CERAMIC, METAL, AND POLYMER PROSTHETIC MATERIALS," Science, vol. 176(4037), p. 922, 1972. [14] M. I. Toshitaka Ota, Haruyuki Takase, Mikihiro Kobayashi, Noboru Kinoshita, and H. M. Tunehisa Hirashita, and Yasuo Hikichi, "Porous Titania Ceramic Prepared by Mimicking Silicified Wood," Journal of the American Ceramic Society, vol. 83(6), pp. 1521-1523, 2000. [15] V. J. M. T. J. FITZGERALD, A. MORTENSEN "Processing of microcellular SiC foams," JOURNAL OF MATERIALS SCIENCE, vol. 30, pp. 1037 - 1045, 1995. [16] I. S. Hao Wang, Xiaodong Li, Dongpyo Kim, "Fabrication of Porous SiC Ceramics with Special Morphologies by Sacrificing Template Method," vol. 11, p. 265, 2004. [17] J. Djuve, R.J. Pugh, and J. Sjoblom, "Foaming and dynamic surface tension of aqueous polymer/surfactants solutions 1: ethyl(hydroxyethyl) cellulose and sodium dodecyl sulphate," Colloids and Surfaces a-Physicochemical and Engineering Aspects, pp. 189-202, 2001. [18] P. Y. Chen, A. Y. Lin, Y. S. Lin, Y. Seki, A. G. Stokes, J. Peyras, et al., "Structure and mechanical properties of selected biological materials," J Mech Behav Biomed Mater, vol. 1, pp. 208-26, Jul 2008. [19] P.-Y. Chen, J. McKittrick, and M. A. Meyers, "Biological materials: Functional adaptations and bioinspired designs," Progress in Materials Science, vol. 57, pp. 1492-1704, 2012. [20] M. A. Meyers, P. Y. Chen, M. I. Lopez, Y. Seki, and A. Y. Lin, "Biological materials: a materials science approach," J Mech Behav Biomed Mater, vol. 4, pp. 626-57, Jul 2011. [21] X. Wang, H. C. Schroder, and W. E. Muller, "Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine," Trends Biotechnol, vol. 32, pp. 441-7, Sep 2014. [22] M. A. Meyers, P. Y. Chen, M. I. Lopez, Y. Seki, and A. Y. M. Lin, "Biological materials: A materials science approach," Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, pp. 626-657, Jul 2011. [23] S. Weiner and H. D. Wagner, "The material bone: Structure mechanical function relations," Annual Review of Materials Science, vol. 28, pp. 271-298, 1998. [24] J. McKittrick, P. Y. Chen, L. Tombolato, E. E. Novitskaya, M. W. Trim, G. A. Hirata, et al., "Energy absorbent natural materials and bioinspired design strategies: A review," Materials Science & Engineering C-Materials for Biological Applications, vol. 30, pp. 331-342, Apr 2010. [25] R. O. Ritchie, "The conflicts between strength and toughness," Nature Materials, vol. 10, pp. 817-822, Nov 2011. [26] R. O. Ritchie, "Mechanisms of fatigue-crack propagation in ductile and brittle solids," International Journal of Fracture, vol. 100, pp. 55-83, 1999 1999. [27] E. Novitskaya, P. Y. Chen, S. Lee, A. Castro-Cesena, G. Hirata, V. A. Lubarda, et al., "Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents," Acta Biomaterialia, vol. 7, pp. 3170-3177, Aug 2011. [28] J. McKittrick, P. Y. Chen, L. Tombolato, E. E. Novitskaya, M. W. Trim, G. A. Hirata, et al., "Energy absorbent natural materials and bioinspired design strategies: A review," Materials Science and Engineering: C, vol. 30, pp. 331-342, 2010. [29] M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki, "Biological materials: Structure and mechanical properties," Progress in Materials Science, vol. 53, pp. 1-206, 2008. [30] Z.-H. X. a. R. W. Xiaodong Li, "In Situ Observation of Nanograin Rotation and Deformation in Nacre," Nano Lett., pp. 2301 - 2306, 2006. [31] C. Ortiz and M. C. Boyce, "Bioinspired Structural Materials," Science, vol. 319, pp. 1053-1054, 2008-02-22 00:00:00 2008. [32] T. Kato, "Polymer/Calcium Carbonate Layered Thin-Film Composites," Advanced Materials, vol. 12, pp. 1543-1546, 2000. [33] P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, et al., "Ultrastrong and Stiff Layered Polymer Nanocomposites," Science, vol. 318, pp. 80-83, 2007-10-05 00:00:00 2007. [34] Z. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, "Nanostructured artificial nacre," Nat Mater, vol. 2, pp. 413-418, 06//print 2003. [35] Y.-Q. Li, T. Yu, T.-Y. Yang, L.-X. Zheng, and K. Liao, "Bio-Inspired Nacre-like Composite Films Based on Graphene with Superior Mechanical, Electrical, and Biocompatible Properties," Advanced Materials, vol. 24, pp. 3426-3431, 2012. [36] A. Sellinger, P. M. Weiss, A. Nguyen, Y. Lu, R. A. Assink, W. Gong, et al., "Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre," Nature, vol. 394, pp. 256-260, 07/16/print 1998. [37] L. Chen, R. Ballarini, H. Kahn, and A. H. Heuer, "Bioinspired micro-composite structure," Journal of Materials Research, vol. 22, pp. 124-131, 2007. [38] S. Deville, E. Saiz, R. K. Nalla, and A. P. Tomsia, "Freezing as a Path to Build Complex Composites," Science, vol. 311, pp. 515-518, 2006-01-27 00:00:00 2006. [39] E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "Tough, Bio-Inspired Hybrid Materials," Science, vol. 322, pp. 1516-1520, 2008-12-05 00:00:00 2008. [40] S. Roy, B. Butz, and A. Wanner, "Damage evolution and domain-level anisotropy in metal/ceramic composites exhibiting lamellar microstructures," Acta Materialia, vol. 58, pp. 2300-2312, 4// 2010. [41] J. A. Lewis, J. E. Smay, J. Stuecker, and J. Cesarano, "Direct Ink Writing of Three-Dimensional Ceramic Structures," Journal of the American Ceramic Society, vol. 89, pp. 3599-3609, 2006. [42] K. A. M. Seerden, N. Reis, J. R. G. Evans, P. S. Grant, J. W. Halloran, and B. Derby, "Ink-Jet Printing of Wax-Based Alumina Suspensions," Journal of the American Ceramic Society, vol. 84, pp. 2514-2520, 2001. [43] E. B. Duoss, M. Twardowski, and J. A. Lewis, "Sol-Gel Inks for Direct-Write Assembly of Functional Oxides," Advanced Materials, vol. 19, pp. 3485-3489, 2007. [44] T. A. Pham, D. P. Kim, T. W. Lim, S. H. Park, D. Y. Yang, and K. S. Lee, "Three-Dimensional SiCN Ceramic Microstructures via Nano-Stereolithography of Inorganic Polymer Photoresists," Advanced Functional Materials, vol. 16, pp. 1235-1241, 2006. [45] M. Mott, J.-H. Song, and J. R. G. Evans, "Microengineering of Ceramics by Direct Ink-Jet Printing," Journal of the American Ceramic Society, vol. 82, pp. 1653-1658, 1999. [46] M. Maier, D. Siegel, K. D. Thoben, N. Niebuhr, and C. Hamm, "Transfer of Natural Micro Structures to Bionic Lightweight Design Proposals," Journal of Bionic Engineering, vol. 10, pp. 469-478, 2013/10/01 2013. [47] L. E. Antonides, "Diatomite," U.S. Geological Survey Publications, 1997. [48] P. S. Vassileva, M. S. Apostolova, A. K. Detcheva, and E. H. Ivanova, "Bulgarian natural diatomites: modification and characterization," Chemical Papers, vol. 67, pp. 342-349, Mar 2013. [49] Y. X. Yang, R. S. Chen, and A. B. Dai, "A study on structure of local diatomites," Acta Chimica Sinica, vol. 54, pp. 57-64, 1996 1996. [50] W. Quarles. (1992). DIATOMACEOUS EARTH FOR PEST CONTROL. Available: http://howtousediatomaceousearth.com/wp-content/uploads/2010/12/The-IPM-Practitioner.pdf [51] H. Checkoway, N. J. Heyer, N. S. Seixas, E. A. E. Welp, P. A. Demers, J. M. Hughes, et al., "Dose-response associations of silica with nonmalignant respiratory disease and lung cancer mortality in the diatomaceous earth industry," American Journal of Epidemiology, vol. 145, pp. 680-688, Apr 1997. [52] G. Sheng, H. Dong, and Y. Li, "Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters," Journal of Environmental Radioactivity, vol. 113, pp. 108-115, Nov 2012. [53] J.-H. Ha, E. Oh, and I.-H. Song, "The fabrication and characterization of sintered diatomite for potential microfiltration applications," Ceramics International, vol. 39, pp. 7641-7648, 2013. [54] H. Hadjar, B. Hamdi, M. Jaber, J. Brendie, Z. Kessaissia, H. Balard, et al., "Elaboration and characterisation of new mesoporous materials from diatomite and charcoal," Microporous and Mesoporous Materials, vol. 107, pp. 219-226, Jan 15 2008. [55] S. Deville, E. Saiz, and A. P. Tomsia, "Freeze casting of hydroxyapatite scaffolds for bone tissue engineering," Biomaterials, vol. 27, pp. 5480-5489, Nov 2006. [56] C. Korber, G. Rau, M. D. Cosman, and E. G. Cravalho, "INTERACTION OF PARTICLES AND A MOVING ICE-LIQUID INTERFACE," Journal of Crystal Growth, vol. 72, pp. 649-662, 1985 1985. [57] R. Asthana and S. N. Tewari, "THE ENGULFMENT OF FOREIGN PARTICLES BY A FREEZING INTERFACE," Journal of Materials Science, vol. 28, pp. 5414-5425, Oct 15 1993. [58] D. R. Uhlmann, B. Chalmers, and K. A. Jackson, "INTERACTION BETWEEN PARTICLES + SOLID-LIQUID INTERFACE," Journal of Applied Physics, vol. 35, pp. 2986-&, 1964 1964. [59] H. F. Zhang, I. Hussain, M. Brust, M. F. Butler, S. P. Rannard, and A. I. Cooper, "Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles," Nature Materials, vol. 4, pp. 787-793, Oct 2005. [60] G. F. Bolling and J. Cissé, "A theory for the interaction of particles with a solidifying front," Journal of Crystal Growth, vol. 10, pp. 56-66, 6// 1971. [61] D. M. Stefanescu, B. K. Dhindaw, S. A. Kacar, and A. Moitra, "Behavior of ceramic particles at the solid- liquid metal interface in metal matrix composites," Metallurgical Transactions A, vol. 19, pp. 2847-2855, 1988/11/01 1988. [62] U. G. K. Wegst, M. Schecter, A. E. Donius, and P. M. Hunger, "Biomaterials by freeze casting," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 368, pp. 2099-2121, Apr 2010. [63] W. A. Maxwell, A. C. Francisco, and R. S. Gurnick, Preliminary investigation of the "freeze-casting" method for forming refractory powders. Washington, DC: National Advisory Committee for Aeronautics, 1954. [64] H. Schoof, J. Apel, I. Heschel, and G. Rau, "Control of pore structure and size in freeze-dried collagen sponges," Journal of Biomedical Materials Research, vol. 58, pp. 352-357, Aug 2001. [65] S. Blindow, M. Pulkin, D. Koch, G. Grathwohl, and K. Rezwan, "Hydroxyapatite/SiO2 Composites via Freeze Casting for Bone Tissue Engineering," Advanced Engineering Materials, vol. 11, pp. 875-884, Nov 2009. [66] M. M. Porter, J. McKittrick, and M. A. Meyers, "Biomimetic Materials by Freeze Casting," Jom, vol. 65, pp. 720-727, Jun 2013. [67] Y. Chino and D. C. Dunand, "Directionally freeze-cast titanium foam with aligned, elongated pores," Acta Materialia, vol. 56, pp. 105-113, Jan 2008. [68] D. Driscoll, A. J. Weisenstein, and S. W. Sofie, "Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates," Materials Letters, vol. 65, pp. 3433-3435, Dec 2011. [69] S.-W. Yook, B.-H. Yoon, H.-E. Kim, Y.-H. Koh, and Y.-S. Kim, "Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries," Materials Letters, vol. 62, pp. 4506-4508, Dec 15 2008. [70] Y. F. Tang, K. Zhao, L. Hu, and Z. X. Wu, "Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure," Ceramics International, vol. 39, pp. 9703-9707, Dec 2013. [71] S. W. Yook, H. D. Jung, C. H. Park, K. H. Shin, Y. H. Koh, Y. Estrin, et al., "Reverse freeze casting: A new method for fabricating highly porous titanium scaffolds, with aligned large pores," Acta Biomaterialia, vol. 8, pp. 2401-2410, Jul 2012. [72] M. M. Porter, M. Yeh, J. Strawson, T. Goehring, S. Lujan, P. Siripasopsotorn, et al., "Magnetic freeze casting inspired by nature," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 556, pp. 741-750, Oct 30 2012. [73] A. Ojuva, M. Jarvelainen, M. Bauer, L. Keskinen, M. Valkonen, F. Akhtar, et al., "Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting," Journal of the European Ceramic Society, vol. 35, pp. 2607-2618, Sep 2015. [74] L. L. da Silva and F. Galembeck, "Morphology of latex and nanocomposite adsorbents prepared by freeze-casting," Journal of Materials Chemistry A, vol. 3, pp. 7263-7272, 2015 2015. [75] Z. Q. Liu, D. Jiao, M. A. Meyers, and Z. F. Zhang, "Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder - The peacock's tail coverts shaft and its components," Acta Biomaterialia, vol. 17, pp. 137-151, Apr 2015. [76] J. W. C. Dunlop and P. Fratzl, "Biological Composites," Annual Review of Materials Research, vol. 40, pp. 1-24, 2010. [77] H. L. Carlo, R. B. Fonseca, L. d. S. Goncalves, L. Correr-Sobrinho, C. J. Soares, and M. A. Coelho Sinhoreti, "Analysis of Filler Particle Levels and Sizes in Dental Alginates," Materials Research-Ibero-American Journal of Materials, vol. 13, pp. 261-264, Apr-Jun 2010. [78] C. S. Gaddis and K. H. Sandhage, "Freestanding microscale 3D polymeric structures with biologically-derived shapes and nanoscale features," Journal of Materials Research, vol. 19, pp. 2541-2545, Sep 2004. [79] K. Araki and J. W. Halloran, "New Freeze-Casting Technique for Ceramics with Sublimable Vehicles," Journal of the American Ceramic Society, vol. 87, pp. 1859-1863, 2004. [80] K. Lu, C. S. Kessler, and R. M. Davis, "Optimization of a Nanoparticle Suspension for Freeze Casting," Journal of the American Ceramic Society, vol. 89, pp. 2459-2465, 2006. [81] T. Moritz and H.-J. Richter, "Ice-mould freeze casting of porous ceramic components," Journal of the European Ceramic Society, vol. 27, pp. 4595-4601, // 2007. [82] A. P. Rao, G. M. Pajonk, and A. V. Rao, "Effect of preparation conditions on the physical and hydrophobic properties of two step processed ambient pressure dried silica aerogels," Journal of Materials Science, vol. 40, pp. 3481-3489, 2005. [83] S. M. Sylvain Deville, Jordi Seuba, "A meta-analysis of the mechanical properties of icetemplated ceramics and metals." [84] F. Akhtar, Y. Rehman, and L. Bergström, "A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength," Powder Technology, vol. 201, pp. 253-257, 2010. [85] S. Deville, S. Meille, and J. Seuba, "A meta-analysis of the mechanical properties of ice-templated ceramics and metals," Science and Technology of Advanced Materials, vol. 16, p. 043501, 2015/07/16 2015. [86] T. A. Turner, "Fire-resistant building component," ed: Google Patents, 1995. [87] A. A. Shekov, A. N. Egorov, and V. V. Annenkov, "Effect of diatomite on combustion of poly(vinyl chloride) plastisols," Polymer Science Series A, vol. 49, pp. 722-728, 2007. [88] J. Lindholm, A. Brink, and M. Hupa, "CONE CALORIMETER–A TOOL FOR MEASURING HEAT RELEASE RATE." [89] M. J. Crocker and J. P. Arenas, "Use of Sound-Absorbing Materials," in Handbook of Noise and Vibration Control, ed: John Wiley & Sons, Inc., 2008, pp. 696-713. [90] J. P. Arenas and M. J. Crocker, "Recent Trends in Porous Sound-Absorbing Materials." [91] J. Chen and X. Gao, "Review on the Fundamentals of Polymer Combustion and Flammability Characteristics for Hybrid Propulsion," Journal of Polymer and Biopolymer Physics Chemistry, vol. 2, pp. 78-83, 2014.
|