帳號:guest(18.116.40.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃棨暐
作者(外文):Huang, Chi Wei
論文名稱(中文):以冷凍鑄造及高分子聚合法合成多功能具多階層孔洞之矽藻土基複合材料
論文名稱(外文):Synthesis of Multi-functional Hierarchically Porous Diatomite-based Composites by Freeze Casting and Polymerization
指導教授(中文):陳柏宇
指導教授(外文):Chen, Po Yu
口試委員(中文):林澤勝
吳志明
口試委員(外文):Lin, Tzer Shen
Wu, Jyh Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031594
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:117
中文關鍵詞:矽藻土冷凍鑄造法仿生有機/無機複合材料多孔材料多階層結構機械性質
外文關鍵詞:Diatomitefreeze castingbio-inspirationorganic/inorganic compositesscaffoldshierarchical porous structuremechanical property
相關次數:
  • 推薦推薦:0
  • 點閱點閱:310
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
孔洞材料依據孔洞大小、排列、孔隙率和材料選擇不同而有不同應用,主要之工程限制為高孔隙率對應之機械性質弱化。自然界中有許多生物材料,如鳥喙、羽毛及骨骼等,具多階層孔洞結構且有序排列之有機/無機之複合材料,歷經數十億年的演化,往往發展出最佳化之設計。
本研究旨在研究並模仿生物材料之合成策略,以天然矽藻土為原料,透過冷凍鑄造技術(Freeze Casting)和燒結之陶瓷製程製備具微奈米多階層孔洞之孔洞材料,並探討漿料調配、燒結溫度、冷卻速率和固含量等條件對微結構與機械性質之影響,壓應力測試與正規化結果可證實此仿生策略提供了有效合成具高孔隙及高強度多孔材料之設計。藉矽藻土之高化學穩定性,進一步以溶膠-凝膠法填入二氧化矽氣凝膠(Aerogel)、高分子聚合法填入聚二甲基矽氧烷,產生功能性複合材料。此外,為避免因第二相材料填入造成孔隙率縮減,利用水溶性高分子和後交聯處理,發展出創新之單步驟合成陶瓷基有機/無機複合材料之技術,機械性質和保水力可藉由分別引入聚乙烯醇和天然海藻酸強化。
本研究合成之非等向性複合材料,提供了極佳的縱向高抗壓縮強度和徑向熱絕緣性質,能應用於綠能建材或封裝材料,此研究提出合成有機無機複合孔洞材料之創新方法,可望運用於其他材料系統,發展具多功能性之孔洞材料。
Porous materials are widely applied in various fields due to their diverse characteristics depending on the size, arrangement and shape of the pores, as well as the porosity and composition of the solid materials. The limitations are mainly due to the weak structure and mechanical property due to its high porosity. After million years of evolution, natural biological composites, such as bird beaks, feathers and bones, have developed optimal designs combining lightweight and superior mechanical strength.
Based on bioinspired strategies and using natural diatomites as raw materials, hierarchically-structured porous scaffolds were synthesized by freeze casting technique and sintering process. The effect of parameters, such as slurry preparation, sintering temperature, cooling rate and solid content, on microstructural and mechanical properties were discussed. The normalized compressive strength indicated that this bioinspired strategy provided an efficient design for scaffolds with superior strength and high porosity. Owing to the chemical stability of diatomite, silica aerogel and PDMS were successfully infiltrated into the freeze-casted diatomite, and formed functional composites. Moreover, in order to avoid the porosity reduction caused by second phase infiltration, a novel one-step synthesis of ceramic-based organic/inorganic composites was developed. The mechanical strength and water retention of composite can be enhanced by introducing PVA and alginate, respectively.
The anisotropic composites synthesized in this study, provide extraordinary axial compressive strength and radial thermal insulation properties and can be a promising materials for green building or package applications. The novel synthesis proposed in this study can be adapted to other material systems and develop multifunctional porous materials.
List of Tables VII
Figure Caption IX
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Porous Materials 4
2.1.1 Introduction 4
2.1.2 Macroporous Materials 4
2.1.3 Processing Routes for Macroporous Materials 5
2.2 Bioinspired Strategies 8
2.2.1 Characteristics of Biological Materials 8
2.2.2 Biomineralization 10
2.2.3 Structure and mechanical properties of natural materials 11
2.2.4 Fabrication of bioinspired structural materials 14
2.3 Diatomite 17
2.3.1 Introduction 17
2.3.2 Characteristics and Applications 18
2.4 Freeze Casting 20
2.4.1 Introduction 20
2.4.2 Process Procedure 20
2.4.3 Principles of Freeze Casting 23
2.4.4 Developments and Applications 25
Chapter 3 Experimental Methods 44
3.1 Synthesis of Porous Materials 44
3.1.1 Preparation of Freeze-Casted Diatomite 44
3.1.2 Synthesis of Diatomite/Silica Aerogel Composites 46
3.1.3 Synthesis of Diatomite/PDMS Composites 46
3.1.5 Synthesis of Diatomite/Alginate Composites 47
3.2 Characterizations and Measurements 48
3.2.1 Structural and Elemental Analysis 48
3.2.2 TGA and DTA Analyses 48
3.2.3 FTIR Analysis 48
3.2.4 Mechanical Property Tests 49
3.2.5 Water Absorption/Retention and Moisture Uptake 49
3.2.6 Thermal Conductivity Measurements 50
3.2.7 Density and Porosity Measurements 50
Chapter 4 Results and Discussion 53
4.1 Diatomite Scaffolds and Composites 53
4.1.1 Optimization 53
4.1.2 Evaluation of Mechanical Properties 57
4.1.3 Diatomite Scaffold-Derived Composites 58
4.2 Synthesis of Diatomite/Polymer Composites by Freeze Casting and Post-Treatments 61
4.2.1 Morphologies and Physical Properties 61
4.2.2 Mechanical Properties 63
4.2.3 Functionalities 63
4.2.4 Thermal properties 64
4.2.5 Water Absorption/Retention 66
Chapter 5 Conclusions 102
Chapter 6 Future Work 106
6.1 Fire Retardant/Resistant Materials 106
6.1.1 Introduction 106
6.1.2 Evaluation Methods 106
6.2 Sound Absorbing Materials 108
References 111
[1] J. Aizenberg and P. Fratzl, "Biological and Biomimetic Materials," Advanced Materials, vol. 21, pp. 387-388, 2009.
[2] P. Fratzl and R. Weinkamer, "Nature’s hierarchical materials," Progress in Materials Science, vol. 52, pp. 1263-1334, 2007.
[3] U. G. Wegst, H. Bai, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "Bioinspired structural materials," Nat Mater, vol. 14, pp. 23-36, Jan 2015.
[4] U. G. K. Wegst and M. F. Ashby, "The mechanical efficiency of natural materials," Philosophical Magazine, vol. 84, pp. 2167-2186, 2004.
[5] S. Deville, "Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues," Advanced Engineering Materials, vol. 10, pp. 155-169, 2008.
[6] S. Deville, "Freeze-Casting of Porous Biomaterials: Structure, Properties and Opportunities," Materials, vol. 3, pp. 1913-1927, 2010.
[7] M. E. Davis, "Ordered porous materials for emerging applications," Nature, vol. 417, pp. 813-821, 2002.
[8] K. S. W. Sing, "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)," in Pure and Applied Chemistry vol. 57, ed, 1985, p. 603.
[9] A. R. Studart, U. T. Gonzenbach, E. Tervoort, and L. J. Gauckler, "Processing Routes to Macroporous Ceramics: A Review," Journal of the American Ceramic Society, vol. 89, pp. 1771-1789, 2006.
[10] M. M. W. L. J. Gauckler, C. Conti, and M. Jacobduliere, "Ceramic Foam for Molten-Metal Filtration," J. Metals, vol. 37, pp. 47-50, 1985.
[11] a. P. C. M. Scheffler, "Cellular Ceramics: Structure Manufacturing, Properties and Applications," Weinheim, Wiley-VCH, p. 645, 2005.
[12] J.-H. Eom, Y.-W. Kim, and S. Raju, "Processing and properties of macroporous silicon carbide ceramics: A review," Journal of Asian Ceramic Societies, vol. 1, pp. 220-242, 2013.
[13] R. A. White, E.W. White, and J.N. Weber, "REPLAMINEFORM - NEW PROCESS FOR PREPARING POROUS CERAMIC, METAL, AND POLYMER PROSTHETIC MATERIALS," Science, vol. 176(4037), p. 922, 1972.
[14] M. I. Toshitaka Ota, Haruyuki Takase, Mikihiro Kobayashi, Noboru Kinoshita, and H. M. Tunehisa Hirashita, and Yasuo Hikichi, "Porous Titania Ceramic Prepared by Mimicking Silicified Wood," Journal of the American Ceramic Society, vol. 83(6), pp. 1521-1523, 2000.
[15] V. J. M. T. J. FITZGERALD, A. MORTENSEN "Processing of microcellular SiC foams," JOURNAL OF MATERIALS SCIENCE, vol. 30, pp. 1037 - 1045, 1995.
[16] I. S. Hao Wang, Xiaodong Li, Dongpyo Kim, "Fabrication of Porous SiC Ceramics with Special Morphologies by Sacrificing Template Method," vol. 11, p. 265, 2004.
[17] J. Djuve, R.J. Pugh, and J. Sjoblom, "Foaming and dynamic surface tension of aqueous polymer/surfactants solutions 1: ethyl(hydroxyethyl) cellulose and sodium dodecyl sulphate," Colloids and Surfaces a-Physicochemical and Engineering Aspects, pp. 189-202, 2001.
[18] P. Y. Chen, A. Y. Lin, Y. S. Lin, Y. Seki, A. G. Stokes, J. Peyras, et al., "Structure and mechanical properties of selected biological materials," J Mech Behav Biomed Mater, vol. 1, pp. 208-26, Jul 2008.
[19] P.-Y. Chen, J. McKittrick, and M. A. Meyers, "Biological materials: Functional adaptations and bioinspired designs," Progress in Materials Science, vol. 57, pp. 1492-1704, 2012.
[20] M. A. Meyers, P. Y. Chen, M. I. Lopez, Y. Seki, and A. Y. Lin, "Biological materials: a materials science approach," J Mech Behav Biomed Mater, vol. 4, pp. 626-57, Jul 2011.
[21] X. Wang, H. C. Schroder, and W. E. Muller, "Enzyme-based biosilica and biocalcite: biomaterials for the future in regenerative medicine," Trends Biotechnol, vol. 32, pp. 441-7, Sep 2014.
[22] M. A. Meyers, P. Y. Chen, M. I. Lopez, Y. Seki, and A. Y. M. Lin, "Biological materials: A materials science approach," Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, pp. 626-657, Jul 2011.
[23] S. Weiner and H. D. Wagner, "The material bone: Structure mechanical function relations," Annual Review of Materials Science, vol. 28, pp. 271-298, 1998.
[24] J. McKittrick, P. Y. Chen, L. Tombolato, E. E. Novitskaya, M. W. Trim, G. A. Hirata, et al., "Energy absorbent natural materials and bioinspired design strategies: A review," Materials Science & Engineering C-Materials for Biological Applications, vol. 30, pp. 331-342, Apr 2010.
[25] R. O. Ritchie, "The conflicts between strength and toughness," Nature Materials, vol. 10, pp. 817-822, Nov 2011.
[26] R. O. Ritchie, "Mechanisms of fatigue-crack propagation in ductile and brittle solids," International Journal of Fracture, vol. 100, pp. 55-83, 1999 1999.
[27] E. Novitskaya, P. Y. Chen, S. Lee, A. Castro-Cesena, G. Hirata, V. A. Lubarda, et al., "Anisotropy in the compressive mechanical properties of bovine cortical bone and the mineral and protein constituents," Acta Biomaterialia, vol. 7, pp. 3170-3177, Aug 2011.
[28] J. McKittrick, P. Y. Chen, L. Tombolato, E. E. Novitskaya, M. W. Trim, G. A. Hirata, et al., "Energy absorbent natural materials and bioinspired design strategies: A review," Materials Science and Engineering: C, vol. 30, pp. 331-342, 2010.
[29] M. A. Meyers, P.-Y. Chen, A. Y.-M. Lin, and Y. Seki, "Biological materials: Structure and mechanical properties," Progress in Materials Science, vol. 53, pp. 1-206, 2008.
[30] Z.-H. X. a. R. W. Xiaodong Li, "In Situ Observation of Nanograin Rotation and Deformation in Nacre," Nano Lett., pp. 2301 - 2306, 2006.
[31] C. Ortiz and M. C. Boyce, "Bioinspired Structural Materials," Science, vol. 319, pp. 1053-1054, 2008-02-22 00:00:00 2008.
[32] T. Kato, "Polymer/Calcium Carbonate Layered Thin-Film Composites," Advanced Materials, vol. 12, pp. 1543-1546, 2000.
[33] P. Podsiadlo, A. K. Kaushik, E. M. Arruda, A. M. Waas, B. S. Shim, J. Xu, et al., "Ultrastrong and Stiff Layered Polymer Nanocomposites," Science, vol. 318, pp. 80-83, 2007-10-05 00:00:00 2007.
[34] Z. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, "Nanostructured artificial nacre," Nat Mater, vol. 2, pp. 413-418, 06//print 2003.
[35] Y.-Q. Li, T. Yu, T.-Y. Yang, L.-X. Zheng, and K. Liao, "Bio-Inspired Nacre-like Composite Films Based on Graphene with Superior Mechanical, Electrical, and Biocompatible Properties," Advanced Materials, vol. 24, pp. 3426-3431, 2012.
[36] A. Sellinger, P. M. Weiss, A. Nguyen, Y. Lu, R. A. Assink, W. Gong, et al., "Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre," Nature, vol. 394, pp. 256-260, 07/16/print 1998.
[37] L. Chen, R. Ballarini, H. Kahn, and A. H. Heuer, "Bioinspired micro-composite structure," Journal of Materials Research, vol. 22, pp. 124-131, 2007.
[38] S. Deville, E. Saiz, R. K. Nalla, and A. P. Tomsia, "Freezing as a Path to Build Complex Composites," Science, vol. 311, pp. 515-518, 2006-01-27 00:00:00 2006.
[39] E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "Tough, Bio-Inspired Hybrid Materials," Science, vol. 322, pp. 1516-1520, 2008-12-05 00:00:00 2008.
[40] S. Roy, B. Butz, and A. Wanner, "Damage evolution and domain-level anisotropy in metal/ceramic composites exhibiting lamellar microstructures," Acta Materialia, vol. 58, pp. 2300-2312, 4// 2010.
[41] J. A. Lewis, J. E. Smay, J. Stuecker, and J. Cesarano, "Direct Ink Writing of Three-Dimensional Ceramic Structures," Journal of the American Ceramic Society, vol. 89, pp. 3599-3609, 2006.
[42] K. A. M. Seerden, N. Reis, J. R. G. Evans, P. S. Grant, J. W. Halloran, and B. Derby, "Ink-Jet Printing of Wax-Based Alumina Suspensions," Journal of the American Ceramic Society, vol. 84, pp. 2514-2520, 2001.
[43] E. B. Duoss, M. Twardowski, and J. A. Lewis, "Sol-Gel Inks for Direct-Write Assembly of Functional Oxides," Advanced Materials, vol. 19, pp. 3485-3489, 2007.
[44] T. A. Pham, D. P. Kim, T. W. Lim, S. H. Park, D. Y. Yang, and K. S. Lee, "Three-Dimensional SiCN Ceramic Microstructures via Nano-Stereolithography of Inorganic Polymer Photoresists," Advanced Functional Materials, vol. 16, pp. 1235-1241, 2006.
[45] M. Mott, J.-H. Song, and J. R. G. Evans, "Microengineering of Ceramics by Direct Ink-Jet Printing," Journal of the American Ceramic Society, vol. 82, pp. 1653-1658, 1999.
[46] M. Maier, D. Siegel, K. D. Thoben, N. Niebuhr, and C. Hamm, "Transfer of Natural Micro Structures to Bionic Lightweight Design Proposals," Journal of Bionic Engineering, vol. 10, pp. 469-478, 2013/10/01 2013.
[47] L. E. Antonides, "Diatomite," U.S. Geological Survey Publications, 1997.
[48] P. S. Vassileva, M. S. Apostolova, A. K. Detcheva, and E. H. Ivanova, "Bulgarian natural diatomites: modification and characterization," Chemical Papers, vol. 67, pp. 342-349, Mar 2013.
[49] Y. X. Yang, R. S. Chen, and A. B. Dai, "A study on structure of local diatomites," Acta Chimica Sinica, vol. 54, pp. 57-64, 1996 1996.
[50] W. Quarles. (1992). DIATOMACEOUS EARTH FOR PEST CONTROL. Available: http://howtousediatomaceousearth.com/wp-content/uploads/2010/12/The-IPM-Practitioner.pdf
[51] H. Checkoway, N. J. Heyer, N. S. Seixas, E. A. E. Welp, P. A. Demers, J. M. Hughes, et al., "Dose-response associations of silica with nonmalignant respiratory disease and lung cancer mortality in the diatomaceous earth industry," American Journal of Epidemiology, vol. 145, pp. 680-688, Apr 1997.
[52] G. Sheng, H. Dong, and Y. Li, "Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters," Journal of Environmental Radioactivity, vol. 113, pp. 108-115, Nov 2012.
[53] J.-H. Ha, E. Oh, and I.-H. Song, "The fabrication and characterization of sintered diatomite for potential microfiltration applications," Ceramics International, vol. 39, pp. 7641-7648, 2013.
[54] H. Hadjar, B. Hamdi, M. Jaber, J. Brendie, Z. Kessaissia, H. Balard, et al., "Elaboration and characterisation of new mesoporous materials from diatomite and charcoal," Microporous and Mesoporous Materials, vol. 107, pp. 219-226, Jan 15 2008.
[55] S. Deville, E. Saiz, and A. P. Tomsia, "Freeze casting of hydroxyapatite scaffolds for bone tissue engineering," Biomaterials, vol. 27, pp. 5480-5489, Nov 2006.
[56] C. Korber, G. Rau, M. D. Cosman, and E. G. Cravalho, "INTERACTION OF PARTICLES AND A MOVING ICE-LIQUID INTERFACE," Journal of Crystal Growth, vol. 72, pp. 649-662, 1985 1985.
[57] R. Asthana and S. N. Tewari, "THE ENGULFMENT OF FOREIGN PARTICLES BY A FREEZING INTERFACE," Journal of Materials Science, vol. 28, pp. 5414-5425, Oct 15 1993.
[58] D. R. Uhlmann, B. Chalmers, and K. A. Jackson, "INTERACTION BETWEEN PARTICLES + SOLID-LIQUID INTERFACE," Journal of Applied Physics, vol. 35, pp. 2986-&, 1964 1964.
[59] H. F. Zhang, I. Hussain, M. Brust, M. F. Butler, S. P. Rannard, and A. I. Cooper, "Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles," Nature Materials, vol. 4, pp. 787-793, Oct 2005.
[60] G. F. Bolling and J. Cissé, "A theory for the interaction of particles with a solidifying front," Journal of Crystal Growth, vol. 10, pp. 56-66, 6// 1971.
[61] D. M. Stefanescu, B. K. Dhindaw, S. A. Kacar, and A. Moitra, "Behavior of ceramic particles at the solid- liquid metal interface in metal matrix composites," Metallurgical Transactions A, vol. 19, pp. 2847-2855, 1988/11/01 1988.
[62] U. G. K. Wegst, M. Schecter, A. E. Donius, and P. M. Hunger, "Biomaterials by freeze casting," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 368, pp. 2099-2121, Apr 2010.
[63] W. A. Maxwell, A. C. Francisco, and R. S. Gurnick, Preliminary investigation of the "freeze-casting" method for forming refractory powders. Washington, DC: National Advisory Committee for Aeronautics, 1954.
[64] H. Schoof, J. Apel, I. Heschel, and G. Rau, "Control of pore structure and size in freeze-dried collagen sponges," Journal of Biomedical Materials Research, vol. 58, pp. 352-357, Aug 2001.
[65] S. Blindow, M. Pulkin, D. Koch, G. Grathwohl, and K. Rezwan, "Hydroxyapatite/SiO2 Composites via Freeze Casting for Bone Tissue Engineering," Advanced Engineering Materials, vol. 11, pp. 875-884, Nov 2009.
[66] M. M. Porter, J. McKittrick, and M. A. Meyers, "Biomimetic Materials by Freeze Casting," Jom, vol. 65, pp. 720-727, Jun 2013.
[67] Y. Chino and D. C. Dunand, "Directionally freeze-cast titanium foam with aligned, elongated pores," Acta Materialia, vol. 56, pp. 105-113, Jan 2008.
[68] D. Driscoll, A. J. Weisenstein, and S. W. Sofie, "Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates," Materials Letters, vol. 65, pp. 3433-3435, Dec 2011.
[69] S.-W. Yook, B.-H. Yoon, H.-E. Kim, Y.-H. Koh, and Y.-S. Kim, "Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries," Materials Letters, vol. 62, pp. 4506-4508, Dec 15 2008.
[70] Y. F. Tang, K. Zhao, L. Hu, and Z. X. Wu, "Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure," Ceramics International, vol. 39, pp. 9703-9707, Dec 2013.
[71] S. W. Yook, H. D. Jung, C. H. Park, K. H. Shin, Y. H. Koh, Y. Estrin, et al., "Reverse freeze casting: A new method for fabricating highly porous titanium scaffolds, with aligned large pores," Acta Biomaterialia, vol. 8, pp. 2401-2410, Jul 2012.
[72] M. M. Porter, M. Yeh, J. Strawson, T. Goehring, S. Lujan, P. Siripasopsotorn, et al., "Magnetic freeze casting inspired by nature," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 556, pp. 741-750, Oct 30 2012.
[73] A. Ojuva, M. Jarvelainen, M. Bauer, L. Keskinen, M. Valkonen, F. Akhtar, et al., "Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting," Journal of the European Ceramic Society, vol. 35, pp. 2607-2618, Sep 2015.
[74] L. L. da Silva and F. Galembeck, "Morphology of latex and nanocomposite adsorbents prepared by freeze-casting," Journal of Materials Chemistry A, vol. 3, pp. 7263-7272, 2015 2015.
[75] Z. Q. Liu, D. Jiao, M. A. Meyers, and Z. F. Zhang, "Structure and mechanical properties of naturally occurring lightweight foam-filled cylinder - The peacock's tail coverts shaft and its components," Acta Biomaterialia, vol. 17, pp. 137-151, Apr 2015.
[76] J. W. C. Dunlop and P. Fratzl, "Biological Composites," Annual Review of Materials Research, vol. 40, pp. 1-24, 2010.
[77] H. L. Carlo, R. B. Fonseca, L. d. S. Goncalves, L. Correr-Sobrinho, C. J. Soares, and M. A. Coelho Sinhoreti, "Analysis of Filler Particle Levels and Sizes in Dental Alginates," Materials Research-Ibero-American Journal of Materials, vol. 13, pp. 261-264, Apr-Jun 2010.
[78] C. S. Gaddis and K. H. Sandhage, "Freestanding microscale 3D polymeric structures with biologically-derived shapes and nanoscale features," Journal of Materials Research, vol. 19, pp. 2541-2545, Sep 2004.
[79] K. Araki and J. W. Halloran, "New Freeze-Casting Technique for Ceramics with Sublimable Vehicles," Journal of the American Ceramic Society, vol. 87, pp. 1859-1863, 2004.
[80] K. Lu, C. S. Kessler, and R. M. Davis, "Optimization of a Nanoparticle Suspension for Freeze Casting," Journal of the American Ceramic Society, vol. 89, pp. 2459-2465, 2006.
[81] T. Moritz and H.-J. Richter, "Ice-mould freeze casting of porous ceramic components," Journal of the European Ceramic Society, vol. 27, pp. 4595-4601, // 2007.
[82] A. P. Rao, G. M. Pajonk, and A. V. Rao, "Effect of preparation conditions on the physical and hydrophobic properties of two step processed ambient pressure dried silica aerogels," Journal of Materials Science, vol. 40, pp. 3481-3489, 2005.
[83] S. M. Sylvain Deville, Jordi Seuba, "A meta-analysis of the mechanical properties of icetemplated ceramics and metals."
[84] F. Akhtar, Y. Rehman, and L. Bergström, "A study of the sintering of diatomaceous earth to produce porous ceramic monoliths with bimodal porosity and high strength," Powder Technology, vol. 201, pp. 253-257, 2010.
[85] S. Deville, S. Meille, and J. Seuba, "A meta-analysis of the mechanical properties of ice-templated ceramics and metals," Science and Technology of Advanced Materials, vol. 16, p. 043501, 2015/07/16 2015.
[86] T. A. Turner, "Fire-resistant building component," ed: Google Patents, 1995.
[87] A. A. Shekov, A. N. Egorov, and V. V. Annenkov, "Effect of diatomite on combustion of poly(vinyl chloride) plastisols," Polymer Science Series A, vol. 49, pp. 722-728, 2007.
[88] J. Lindholm, A. Brink, and M. Hupa, "CONE CALORIMETER–A TOOL FOR MEASURING HEAT RELEASE RATE."
[89] M. J. Crocker and J. P. Arenas, "Use of Sound-Absorbing Materials," in Handbook of Noise and Vibration Control, ed: John Wiley & Sons, Inc., 2008, pp. 696-713.
[90] J. P. Arenas and M. J. Crocker, "Recent Trends in Porous Sound-Absorbing Materials."
[91] J. Chen and X. Gao, "Review on the Fundamentals of Polymer Combustion and Flammability Characteristics for Hybrid Propulsion," Journal of Polymer and Biopolymer Physics Chemistry, vol. 2, pp. 78-83, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *