帳號:guest(18.117.185.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):翁宏哲
作者(外文):Weng Hung Che
論文名稱(中文):電弧汽化法製作氧化鋁粉末之探討
論文名稱(外文):Study on the Production of Alumina Powder by Arc-evaporation Method
指導教授(中文):葉均蔚
謝光前
指導教授(外文):J.W.Yeh
口試委員(中文):孫道中
李英杰
楊智超
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031591
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:117
中文關鍵詞:氧化鋁
外文關鍵詞:Al2O3
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究的目標為利用電弧汽化法製備奈米級氧化鋁粉末,為取代目前工業上所使用的化學法與物理法以降低生產成本,氣相的鋁與氧氣反應快速,能快速氧化釋放其氧化熱,而鋁蒸氣的製造需高溫能量來源,其能量來源可為熱電漿、電阻熱及電弧等[38-40]。以電弧作熱源為例,2006年C. Chazelas等人利用電漿轉移弧汽化鋁塊材[38],但其實驗無法持續加熱鋁塊塊材,造成能量損失,並無法大量生產。
本實驗以自行設計的粉末製備機利用電弧汽化法,將送入的鋁線經局部高溫汽化後與周圍氣體反應生成粉末,在鋁線持續送入當作電弧反應的陰陽極,使得反應能夠連續進行,並大量的生產。收集反應後生成之粉末去分析,了解到本實驗製備出的粉末為奈米級球形氧化鋁粉末,粉末粒徑約在15-200 nm之間,而大部分的粉末為γ- Al2O3。
將電弧法製備之氧化鋁粉末以及市售氧化鋁粉末3 μm (BUEHLER)、0.3 μm (GREATEN)、00.5 μm (BUEHLER)以1390 ℃持溫燒結4小時燒結後,比較其性質,自製粉末之機械性質能與00.5 μm (BUEHLER) 相當。
Aluminum-oxidation-energy powered engine has attracted our interest in replacing conventional engine powered by liquid fuel. This attraction is due to the high energy density and the reduction of carbon dioxide emission in the combustion of aluminum wires. During this process, we find that the arc-evaporation method can produce alumina nanopowder. Besides, the arc-evaporation method can reduce the production cost in comparison with traditional process.
We design a new equipment to produce alumina nanopowder by the arc-evaporation method. First, it uses the heat which is produced by the arc-evaporation method to evaporate aluminum wire. And the aluminum gas reacts with oxygen to form alumina powder. Then, we analyze the collected powder, finding that the spherical particles produced from the combustion of aluminum wires are several hundreds of nanometers in diameters. Most of the powder is gamma-alumina.
Abstract I
摘要 III
目錄 VI
圖目錄 X
表目錄 XVII
壹、 前言 1
貳、 文獻回顧 3
2.1 氧化鋁的基本介紹 3
2.1.1 氧化鋁背景簡介 3
2.1.2 氧化鋁的結構與性質 3
2.2 氧化鋁粉末之製備方法 11
2.2.1 機械球磨法 14
2.2.2 氣相反應法 15
2.2.3 沉澱法 16
2.2.4 溶膠凝膠法 17
2.2.5 燃燒法 18
2.3 電弧消耗線材 20
2.3.1 電弧放電特性與起弧方式 20
2.3.1.1 電弧放電特性 20
2.3.1.2 電弧的伏安特性 24
2.3.1.3 起弧方式 27
2.3.2 電流對液滴傳遞方式的影響 28
2.4 鋁的氧化機制 35
2.4.1 鋁蒸氣的氧化機制 35
2.4.2 鋁顆粒及鋁液滴的氧化機制 38
參、 實驗方法 44
3.1 實驗流程 44
3.1.1 實驗手法及細節 45
3.1.1.1 粉末製備機台 45
3.1.2 粉末燒結及性質測量 46
3.1.2.1 濕式球磨 46
3.1.2.2 過篩及生胚成型 46
3.1.2.3 試片燒結 46
3.1.2.4 燒結試片緻密度量測 47
3.1.2.5 燒結試片硬度及韌性量測 48
3.1.2.6 熱傳導係數量測 49
3.1.3 實驗儀器 50
3.1.3.1 電弧反應粉末製備機 50
3.1.3.2 氬焊機 52
3.2 性質測量及其他分析 53
3.2.1 X光繞射分析儀(XRD) 53
3.2.2 掃描式電子顯微鏡(SEM) 53
3.2.3 雷射粒徑分析儀 54
肆、 結果與討論 55
4.1 粉末製備之參數 55
4.1.1 送線速度調整 55
4.1.2 高週波起弧 57
4.1.3 氣體流率調整 57
4.2 粉末製備機電極之設計 58
4.2.1 V型長筒石墨杯及石墨杯外罩設計 60
4.2.2 V型石墨杯口徑加大型設計 64
4.2.3 上電極氣氛保護罩設計 68
4.2.4 V型石墨杯長度加長型設計 72
4.2.5 氧化鋯電流集中設計 76
4.2.6 石墨杯電流集中設計 80
4.2.7 上下電極石墨杯電流集中設計 84
4.3 電弧反應製成粉末之分析 88
4.3.1 粉末之XRD分析 90
4.3.2 粉末之SEM以及粒徑分析 91
4.4 粉末燒結之分析 104
4.4.1 硬度、韌性、理論密度及導熱度測量 105
4.4.2 X光繞射分析儀(XRD) 109
伍、 結論 110
陸、 研究貢獻 112
柒、 未來研究方向 113
捌、 參考文獻 114
[1] F. Yen, R. Yang, and P. Yu, "以單水鋁石 (Boehmite) 製造 a-氧化鋁微粒粉末的研究," 2010.
[2] I. Levin and D. Brandon, "Metastable alumina polymorphs: crystal structures and transition sequences,"vol. 81, pp. 1995-2012, 1998.
[3] 田明原 and 施尔畏, "纳米陶瓷与纳米陶瓷粉末,"vol. 13, pp. 129-137, 1998.
[4] 林昌羿, "金屬氧化熱推進引擎之固態燃料線與噴火嘴開發研究," 國立清華大學材料科學與工程學研究所, 2013.
[5] 王建舜, "鋁線氧化熱推進引擎之鋁線汽化、燃燒、生成物及機制," 國立清華大學材料科學與工程學研究所, 2012.
[6] 李彥均, "鋁線氧化熱推進引擎之噴火嘴開發及氧化熱推動力之量測分析," 國立清華大學材料科學與工程學研究所, 2014.
[7] 汪建民, "陶瓷技術手冊," 粉末冶金協會出版, 1999.
[8] 廖原章, "次微米級氫氧化鋁粉末之製備及其熱性質分析之研究," 廖原章, 2005.
[9] O. Al’myasheva, E. Korytkova, A. Maslov, and V. Gusarov, "Preparation of nanocrystalline alumina under hydrothermal conditions,"vol. 41, pp. 460-467, 2005.
[10] S. Wilson and J. Mc Connell, "A kinetic study of the system γ-AlOOHAl2O3,"vol. 34, pp. 315-322, 1980.
[11] D. Hart, "Alumina Science and Technology Handbook Chemicals," 1990.
[12] 謝沐辰, "以油酸分散氫氧化鋁膠製造 α 相氧化鋁粉末程序之研究," pp. 1-58, 2004.
[13] 工業技術研究院工業材料研究所 and 經濟部中小企業處, "精密陶瓷科技," 編者, 1987.
[14] Y.-M. Chiang, W. D. Kingery, and D. P. Birnie, "Physical ceramics: principles for ceramic science and engineering," J. Wiley, 1997.
[15] 楊宸宇, "奈米級 α 相氧化鋁粉末燒結之研究," (成功大學資源工程學系學位論文, 2007.
[16] 蔡信行 and 孫光中, "奈米科技導論: 基本原理及應用," 新文京開發出版股份有限公司, 2009.
[17] 張安華, "實用奈米技術," 新文京開發, 2005.
[18] J. Ding, T. Tsuzuki, and P. G. McCormick, "Ultrafine alumina particles prepared by mechanochemical/thermal processing,"vol. 79, pp. 2956-2958, 1996.
[19] P. Billik, T. Turanyi, G. Plesch, and B. Horváth, "Mechanically activated basic polyaluminium chloride as precursor for low-temperature α-Al 2 O 3 formation,"vol. 57, pp. 619-621, 2007.
[20] B. R. Huang, "Synthesis of uniform and large-area polycrystalline diamond films using microwave plasma chemical vapor deposition system,"vol. 9, pp. 259-272, 1999.
[21] C. To, L. Cheung, Y. Li, K. Chung, D. H. Ong, and D. H. Ng, "Synthesis of ultra thin α-alumina nanobelts from aluminum powder by chemical vapor deposition,"vol. 27, pp. 2629-2634, 2007.
[22] S. Rajendran, "Production of ultrafine alpha alumina powders and fabrication of fine grained strong ceramics,"vol. 29, pp. 5664-5672, 1994.
[23] P. K. Sharma, M. Jilavi, D. Burgard, R. Nass, and H. Schmidt, "Hydrothermal Synthesis of Nanosize alpha‐Al2O3 from Seeded Aluminum Hydroxide,"vol. 81, pp. 2732-2734, 1998.
[24] H. Gocmez and O. Özcan, "Low temperature synthesis of nanocrystalline α-Al 2 O 3 by a tartaric acid gel method,"vol. 475, pp. 20-22, 2008.
[25] J. Li, Y. Pan, C. Xiang, Q. Ge, and J. Guo, "Low temperature synthesis of ultrafine α-Al 2 O 3 powder by a simple aqueous sol–gel process,"vol. 32, pp. 587-591, 2006.
[26] A. Tok, F. Boey, and X. Zhao, "Novel synthesis of Al 2 O 3 nano-particles by flame spray pyrolysis,"vol. 178, pp. 270-273, 2006.
[27] A. Andreasen, "Hydrogen storage materials with focus on main group I-II elements," Materials Research Department Technical University of Denmark, 2005.
[28] Y. P. Raizer, Gas Discharge Physics: Springer-Verlag, 1991.
[29] 徐初雄、陳寶齡, "初級電焊工," pp. 59-97, 2001.
[30] 周長彬、蘇程昱、蔡丕椿、郭央諶, "銲接學," ed: 全華, 2008.
[31] 鄭宜庭、黃石生, 弧焊電源: 機械工業出版社, 1987.
[32] S. Rhee and E. Kannateyasibu, "ANALYSIS OF ARC PRESSURE EFFECT ON METAL TRANSFER IN GAS-METAL ARC-WELDING,"vol. 70, pp. 5068-5075, Nov 1991.
[33] J. C. Amson, "LORENTZ FORCE IN MOLTEN TIP OF AN ARC ELECTRODE,"vol. 16, pp. 1169-&, 1965.
[34] C. J. Allum, "METAL TRANSFER IN ARC-WELDING AS A VARICOSE INSTABILITY .1. VARICOSE INSTABILITIES IN A CURRENT-CARRYING LIQUID CYLINDER WITH SURFACE-CHARGE,"vol. 18, pp. 1431-1446, 1985 1985.
[35] C. J. Allum, "METAL TRANSFER IN ARC-WELDING AS A VARICOSE INSTABILITY .2. DEVELOPMENT OF MODEL FOR ARC-WELDING,"vol. 18, pp. 1447-1468, 1985 1985.
[36] A. Y. Park, S. R. Kim, M. A. Hammad, and C. D. Yoo, "Modification of pinch instability theory for analysis of spray mode in GMAW,"vol. 42, Nov 2009.
[37] A. Scotti, V. Ponomarev, and W. Lucas, "A scientific application oriented classification for metal transfer modes in GMA welding,"vol. 212, pp. 1406-1413, Jun 2012.
[38] C. Chazelas, J. F. Coudert, J. Jarrige, and P. Fauchais, "Synthesis of ultra fine particles by plasma transferred arc: Influence of anode material on particle properties,"vol. 26, pp. 3499-3507, 2006.
[39] S. M. Oh and D. W. Park, "Preparation of ultra-fine alumina powders by D. C. plasma jet,"vol. 17, pp. 299-303, May 2000.
[40] S. Ishihara, H. Suematsu, T. Nakayama, T. Suzuki, and K. Niihara, "Synthesis of nanosized alumina powders by pulsed wire discharge in air flow atmosphere,"vol. 38, pp. 4477-4484, Aug 2012.
[41] W. M. T. AG. (1988). The CSIRO thermochemistry system.
[42] M. K. King, "Aluminum combustion in a solid rocket motor environment,"vol. 32, pp. 2107-2114, 2009 2009.
[43] E. B. Washburn, J. A. Webb, and M. W. Beckstead, "The simulation of the combustion of micrometer-sized aluminum particles with oxygen and carbon dioxide,"vol. 157, pp. 540-545, Mar 2010.
[44] S. Gallier, F. Sibe, and O. Orlandi, "Combustion response of an aluminum droplet burning in air,"vol. 33, pp. 1949-1956, 2011.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *