|
1. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191. 2. Mak, K.F., et al., Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nano, 2012. 7(8): p. 494-498. 3. Zhu, B., et al., Anomalously robust valley polarization and valley coherence in bilayer WS2. Proceedings of the National Academy of Sciences, 2014. 111(32): p. 11606-11611. 4. Ballif, C., et al., Preparation and characterization of highly oriented, photoconducting WS2 thin films. Applied Physics A, 1996. 62(6): p. 543-546. 5. Gutiérrez, H.R., et al., Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Letters, 2013. 13(8): p. 3447-3454. 6. Frey, G.L., et al., Optical Properties of MS2 (M = Mo, W) Inorganic Fullerenelike and Nanotube Material Optical Absorption and Resonance Raman Measurements. Journal of Materials Research, 1998. 13(09): p. 2412-2417. 7. Mak, K.F., et al., Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805. 8. Yin, Z., et al., Single-Layer MoS2 Phototransistors. ACS Nano, 2012. 6(1): p. 74-80. 9. Lee, H.S., et al., MoS2 Nanosheet Phototransistors with Thickness-Modulated Optical Energy Gap. Nano Letters, 2012. 12(7): p. 3695-3700. 10. Wu, C.-C., et al., Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. The Journal of Physical Chemistry Letters, 2013. 4(15): p. 2508-2513. 11. Castellanos-Gomez, A., et al., Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor. Nano Letters, 2012. 12(6): p. 3187-3192. 12. RadisavljevicB, et al., Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150. 13. Splendiani, A., et al., Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275. 14. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700. 15. Tsai, H.-L., et al., Exfoliated−Restacked Phase of WS2. Chemistry of Materials, 1997. 9(4): p. 879-882. 16. Kai, X., et al., Atomic-layer triangular WSe 2 sheets: synthesis and layer-dependent photoluminescence property. Nanotechnology, 2013. 24(46): p. 465705. 17. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325. 18. Kobayashi, Y., et al., Growth and Optical Properties of High-Quality Monolayer WS2 on Graphite. ACS Nano, 2015. 9(4): p. 4056-4063. 19. Rong, Y., et al., Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale, 2014. 6(20): p. 12096-12103. 20. Gao, Y., et al., Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat Commun, 2015. 6. 21. Thangaraja, A., et al., An effective approach to synthesize monolayer tungsten disulphide crystals using tungsten halide precursor. Applied Physics Letters, 2016. 108(5): p. 053104. 22. Okada, M., et al., Direct Chemical Vapor Deposition Growth of WS2 Atomic Layers on Hexagonal Boron Nitride. ACS Nano, 2014. 8(8): p. 8273-8277. 23. Chen, L., et al., Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. ACS Nano, 2015. 9(8): p. 8368-8375. 24. Ling, X., et al., Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters, 2014. 14(2): p. 464-472. 25. Liu, B., et al., Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. ACS Nano, 2015. 9(6): p. 6119-6127. 26. Fu, Q., et al., Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Advances, 2015. 5(21): p. 15795-15799. 27. Zhang, Y., et al., Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano, 2013. 7(10): p. 8963-8971. 28. McCreary, K.M., et al., Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence. Scientific Reports, 2016. 6: p. 19159. 29. Huang, J.-K., et al., Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano, 2014. 8(1): p. 923-930. 30. Sarma, P.V., et al., Controllable growth of few-layer spiral WS2. RSC Advances, 2016. 6(1): p. 376-382. 31. Berkdemir, A., et al., Identification of individual and few layers of WS2 using Raman Spectroscopy. Scientific Reports, 2013. 3: p. 1755. 32. Cong, C., et al., Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition. Advanced Optical Materials, 2014. 2(2): p. 131-136. 33. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano, 2012. 7(11): p. 699-712. 34. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat Nano, 2013. 8(7): p. 497-501. 35. Li, H.-M., et al., Metal-Semiconductor Barrier Modulation for High Photoresponse in Transition Metal Dichalcogenide Field Effect Transistors. Scientific Reports, 2014. 4: p. 4041. 36. Mathieu, H.J., Auger Electron Spectroscopy, in Surface Analysis – The Principal Techniques. 2009, John Wiley & Sons, Ltd. p. 9-45. 37. Duan, X., et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat Nano, 2014. 9(12): p. 1024-1030.
|