|
[1] V. G. Veselago, The electrodynamics of substances with simultaneously negative val-ues of ε and μ, Soviet Physics USPEKHI, 10 (1968) 509-514. [2] S. Shu, Y. Zhan, C. Lee, J. Lu, Y.Y. Li, Wide angle and narrow-band asymmetric absorption in visible and near-infrared regime through lossy Bragg stacks, Scientific Reports, 6 (2016) 27061. [3] J.B. Pendry, Negative Refraction Makes a Perfect Lens, Physical Review Letters, 85 (2000) 3966-3969. [4] K.L. Tsakmakidis, A.D. Boardman, O. Hess, /`Trapped rainbow/' storage of light in metamaterials, Nature, 450 (2007) 397-401. [5] T.-Y. Huang, T.-C. Yang, T.-J. Yen, Slowing light by exciting the fundamental degeneracy oscillatory mode in a negative refractive waveguide, Applied Physics Letters, 102 (2013) 111102. [6] Y. Lai, H. Chen, Z.-Q. Zhang, C.T. Chan, Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell, Physical Review Letters, 102 (2009) 093901. [7] Z. Wang, T.S. Luk, Y. Tan, D. Ji, M. Zhou, Q. Gan, Z. Yu, Tunneling-enabled spectrally selective thermal emitter based on flat metallic films, Applied Physics Letters, 106 (2015) 101104. [8] B.J. O’Regan, Y. Wang, T.F. Krauss, Silicon photonic crystal thermal emitter at near-infrared wavelengths, Scientific Reports, 5 (2015) 13415. [9] A. Narayanaswamy, G. Chen, Surface modes for near field thermophotovoltaics, Applied Physics Letters, 82 (2003) 3544-3546.65 [10] E. Rephaeli, S. Fan, Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit, Opt. Express, 17 (2009) 15145-15159. [11] A. Lenert, D.M. Bierman, Y. Nam, W.R. Chan, I. Celanovic, M. Soljacic, E.N. Wang, A nanophotonic solar thermophotovoltaic device, Nat Nano, 9 (2014) 126-130. [12] A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature, 515 (2014) 540-544. [13] E. Rephaeli, A. Raman, S. Fan, Ultrabroadband Photonic Structures To Achieve High-Performance Daytime Radiative Cooling, Nano Letters, 13 (2013) 1457-1461. [14] S.Y. Lin, J. Moreno, J.G. Fleming, Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation, Applied Physics Letters, 83 (2003) 380-382. [15] M. Laroche, C. Arnold, F. Marquier, R. Carminati, J.J. Greffet, S. Collin, N. Bardou, J.L. Pelouard, Highly directional radiation generated by a tungsten thermal source, Opt. Lett., 30 (2005) 2623-2625. [16] M.U. Pralle, N. Moelders, M.P. McNeal, I. Puscasu, A.C. Greenwald, J.T. Daly, E.A. Johnson, T. George, D.S. Choi, I. El-Kady, R. Biswas, Photonic crystal enhanced narrow-band infrared emitters, Applied Physics Letters, 81 (2002) 4685-4687. [17] M. Laroche, R. Carminati, J.J. Greffet, Coherent Thermal Antenna Using a Photonic Crystal Slab, Physical Review Letters, 96 (2006) 123903. [18] P. Nagpal, S.E. Han, A. Stein, D.J. Norris, Efficient Low-Temperature Thermophotovoltaic Emitters from Metallic Photonic Crystals, Nano Letters, 8 (2008) 3238-3243. [19] J.A. Schuller, T. Taubner, M.L. Brongersma, Optical antenna thermal emitters, Nat Photon, 3 (2009) 658-661.66 [20] M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, Conversion of broadband to narrowband thermal emission through energy recycling, Nat Photon, 6 (2012) 535-539. [21] B.J. Lee, C.J. Fu, Z.M. Zhang, Coherent thermal emission from one-dimensional photonic crystals, Applied Physics Letters, 87 (2005) 071904. [22] R. Biswas, D. Zhou, I. Puscasu, E. Johnson, A. Taylor, W. Zhao, Sharp thermal emission and absorption from conformally coated metallic photonic crystal with triangular lattice, Applied Physics Letters, 93 (2008) 063307. [23] I. Celanovic, N. Jovanovic, J. Kassakian, Two-dimensional tungsten photonic crystals as selective thermal emitters, Applied Physics Letters, 92 (2008) 193101. [24] M.-L. Hsieh, J. Bur, Y.-S. Kim, S.-Y. Lin, Direct observation of quasi-coherent thermal emission by a three-dimensional metallic photonic crystal, Opt. Lett., 38 (2013) 911-913. [25] X. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, W.J. Padilla, Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters, Physical Review Letters, 107 (2011) 045901. [26] V. Rinnerbauer, Y.X. Yeng, W.R. Chan, J.J. Senkevich, J.D. Joannopoulos, M. Soljačić, I. Celanovic, High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals, Opt. Express, 21 (2013) 11482-11491. [27] C.-M. Wang, D.P. Tsai, Lambertian thermal emitter based on plasmonic enhanced absorption, Opt. Express, 24 (2016) 18382-18387. [28] P. Moitra, B.A. Slovick, W. li, I.I. Kravchencko, D.P. Briggs, S. Krishnamurthy, J. Valentine, Large-Scale All-Dielectric Metamaterial Perfect Reflectors, ACS Photonics, 2 (2015) 692-698.67 [29] A.A. Basharin, M. Kafesaki, E.N. Economou, C.M. Soukoulis, V.A. Fedotov, V. Savinov, N.I. Zheludev, Dielectric Metamaterials with Toroidal Dipolar Response, Physical Review X, 5 (2015) 011036. [30] B.-I. Popa, S.A. Cummer, Compact Dielectric Particles as a Building Block for Low-Loss Magnetic Metamaterials, Physical Review Letters, 100 (2008) 207401. [31] P. Moitra, Y. Yang, Z. Anderson, I.I. Kravchenko, D.P. Briggs, J. Valentine, Realization of an all-dielectric zero-index optical metamaterial, Nat Photon, 7 (2013) 791-795. [32] Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk/'yanchuk, Directional visible light scattering by silicon nanoparticles, Nat Commun, 4 (2013) 1527. [33] A. García-Etxarri, R. Gómez-Medina, L.S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, J.J. Sáenz, Strong magnetic response of submicron Silicon particles in the infrared, Opt. Express, 19 (2011) 4815-4826. [34] X. Ji, X. Zhao, P. Jing, F. Xing, Y. Huang, Narrow-band midinfrared thermal emitter based on photonic crystal for NDIR gas sensor, in: Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, 2010, pp. 1459-1461. [35] J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, Y. Chen, Coherent emission of light by thermal sources, Nature, 416 (2002) 61-64. [36] J. Le Gall, M. Olivier, J.J. Greffet, Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton, Physical Review B, 55 (1997) 10105-10114. [37] S.-Y. Lin, J.G. Fleming, E. Chow, J. Bur, K.K. Choi, A. Goldberg, Enhancement and suppression of thermal emission by a three-dimensional photonic crystal, Physical Review B, 62 (2000) R2243-R2246.68 [38] J.G. Fleming, S.Y. Lin, I. El-Kady, R. Biswas, K.M. Ho, All-metallic three-dimensional photonic crystals with a large infrared bandgap, Nature, 417 (2002) 52-55. [39] D.L.C. Chan, M. Soljačić, J.D. Joannopoulos, Thermal emission and design in 2D-periodic metallic photonic crystal slabs, Opt. Express, 14 (2006) 8785-8796. [40] J. Liu, U. Guler, A. Lagutchev, A. Kildishev, O. Malis, A. Boltasseva, V.M. Shalaev, Quasi-coherent thermal emitter based on refractory plasmonic materials, Opt. Mater. Express, 5 (2015) 2721-2728. [41] T. Karakouz, A.B. Tesler, T. Sannomiya, Y. Feldman, A. Vaskevich, I. Rubinstein, Mechanism of morphology transformation during annealing of nanostructured gold films on glass, Physical chemistry chemical physics : PCCP, 15 (2013) 4656-4665. [42] W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber, Advanced Materials, 26 (2014) 7959-7965. [43] U. Guler, V.M. Shalaev, A. Boltasseva, Nanoparticle plasmonics: going practical with transition metal nitrides, Materials Today, 18 (2015) 227-237. [44] C.-M. Wang, D.-Y. Feng, Omnidirectional thermal emitter based on plasmonic nanoantenna arrays, Opt. Express, 22 (2014) 1313-1318. [45] C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials, Nat Photon, 5 (2011) 523-530. [46] A. Boltasseva, H.A. Atwater, Low-Loss Plasmonic Metamaterials, Science, 331 (2011) 290-291. [47] N.I. Zheludev, The Road Ahead for Metamaterials, Science, 328 (2010) 582-583. [48] Q. Zhao, B. Du, L. Kang, H. Zhao, Q. Xie, B. Li, X. Zhang, J. Zhou, L. Li, Y. Meng, Tunable negative permeability in an isotropic dielectric composite, Applied Physics Letters, 92 (2008) 051106.69 [49] K. Bi, Y. Guo, X. Liu, Q. Zhao, J. Xiao, M. Lei, J. Zhou, Magnetically tunable Mie resonance-based dielectric metamaterials, Scientific Reports, 4 (2014) 7001. [50] B. Slovick, Z.G. Yu, M. Berding, S. Krishnamurthy, Perfect dielectric-metamaterial reflector, Physical Review B, 88 (2013) 165116. [51] L. Shi, J.T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B.A. Korgel, F. Meseguer, Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region, Nat Commun, 4 (2013) 1904. [52] A. Krasnok, S. Makarov, M. Petrov, R. Savelev, P. Belov, Y. Kivshar, Towards all-dielectric metamaterials and nanophotonics, in, 2015, pp. 950203-950203-950217. [53] T. Moore, ABSORPTION AND SCATTERING OF LIGHT BY SMALL PARTICLES by C.F. Bohren and D.R. Huffman, Wiley Science Paperback Series, Chichester, UK, 1998, xiv+530 pp., List of references, index (£34.95; pbk), Robotica, 16 (1998) 703-703. [54] A.I. Kuznetsov, A.E. Miroshnichenko, Y.H. Fu, J. Zhang, B. Luk’yanchuk, Magnetic light, Scientific Reports, 2 (2012) 492. [55] K. Vynck, D. Felbacq, E. Centeno, A.I. Căbuz, D. Cassagne, B. Guizal, All-Dielectric Rod-Type Metamaterials at Optical Frequencies, Physical Review Letters, 102 (2009) 133901. [56] Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mie resonance-based dielectric metamaterials, Materials Today, 12 (2009) 60-69. [57] A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Optical response features of Si-nanoparticle arrays, Physical Review B, 82 (2010) 045404. [58] J.C. Ginn, I. Brener, D.W. Peters, J.R. Wendt, J.O. Stevens, P.F. Hines, L.I. Basilio, L.K. Warne, J.F. Ihlefeld, P.G. Clem, M.B. Sinclair, Realizing Optical Magnetism from Dielectric Metamaterials, Physical Review Letters, 108 (2012) 097402.70 [59] C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix, IEEE Transactions on Antennas and Propagation, 51 (2003) 2596-2603. [60] J.A. Schuller, R. Zia, T. Taubner, M.L. Brongersma, Dielectric Metamaterials Based on Electric and Magnetic Resonances of Silicon Carbide Particles, Physical Review Letters, 99 (2007) 107401. [61] L. Peng, L. Ran, H. Chen, H. Zhang, J.A. Kong, T.M. Grzegorczyk, Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators, Physical Review Letters, 98 (2007) 157403. [62] I. Staude, A.E. Miroshnichenko, M. Decker, N.T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T.S. Luk, D.N. Neshev, I. Brener, Y. Kivshar, Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks, ACS Nano, 7 (2013) 7824-7832. [63] P. Moitra, B.A. Slovick, Z. Gang Yu, S. Krishnamurthy, J. Valentine, Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector, Applied Physics Letters, 104 (2014) 171102. [64] S. Liu, M.B. Sinclair, T.S. Mahony, Y.C. Jun, S. Campione, J. Ginn, D.A. Bender, J.R. Wendt, J.F. Ihlefeld, P.G. Clem, J.B. Wright, I. Brener, Optical magnetic mirrors without metals, Optica, 1 (2014) 250-256. [65] F. Marquier, K. Joulain, J.P. Mulet, R. Carminati, J.J. Greffet, Y. Chen, Coherent spontaneous emission of light by thermal sources, Physical Review B, 69 (2004) 155412. |