帳號:guest(18.226.159.73)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾家佑
作者(外文):Tseng, Chia Yu
論文名稱(中文):奈米碳管製備之電發熱磁磚
論文名稱(外文):Preparation of electrical resistive tiles by carbon nanotube composites
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen Kuang
口試委員(中文):林樹均
呂昇益
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031576
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:70
中文關鍵詞:奈米碳管電阻加熱
外文關鍵詞:carbon nanotubesresistive heating
相關次數:
  • 推薦推薦:0
  • 點閱點閱:342
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗是以環氧樹脂當作基材,多壁奈米碳管(MWCNTs)和氧化鋁(Al2O3)作為填充材,利用三軸滾輪機以機械剪切力混合均勻後,在110℃、1000 psi的環境下熱壓成型固化五小時所製成的複合材料。本實驗選用兩種氧化鋁粉,一般氧化鋁以及球狀氧化鋁,並選擇添加多壁奈米碳管1wt %至5 wt %的樣品進行SEM、拉曼、電性量測、熱傳導係數量測、溫升測試以及抗彎試驗來分析材料的性質。實驗結果顯示,加入多壁奈米碳管和氧化鋁後,原本為電與熱的不良導體的環氧樹脂,其電性和熱傳導性質會大幅提升,使其可以藉由通電利用電阻加熱,結果顯示MWCNTs/Al2O3/Epoxy複合材料通以4W的電後,溫度可在10分鐘之內達到60℃,而通以6W的電後,溫度達到60℃不用5分鐘,這種穩定加熱的性質,再加上環氧樹脂本身優異的機械強度,未來可望應用在電地暖此種需要支撐一定負重的加熱材。
Electrical resistive composites are made by epoxy, Al2O3 and multi-walled carbon nanotubes (MWCNTs) at different ratios. Firstly, epoxy, MWCNTs and Al2O3 powder are uniformly mixed by three-roll mill to form adhesives. Then adhesives are cured at 110 and under 1000 psi by thermoforming process. Two types of Al2O3 are used; angular type and spherical type. The specimens contain two different Al2O3 and MWCNT 1~5 wt% are selected for further tests. Results show a significant improvement in electrical and thermal properties compared with pure epoxy. Improvements therefore allow MWCNTs/ Al2O3/Epoxy composites to be used as resistive heating elements. The surface temperature of composites can reach 60℃ in 10 min with an input power of only 4W and in 5 min with 6W. The stable heating coupled with mechanical strength of composites can be used as floor heating system.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 實驗目的與動機 2
第二章 文獻回顧 4
2-1 地暖簡介 4
2-1-1 地暖的原理與優勢 4
2-1-2 水地暖與電地暖的比較 5
2-1-3 電地暖的種類與比較 6
2-2 奈米碳管簡介 8
2-2-1 奈米碳管的結構 8
2-2-2 奈米碳管的電性 11
2-2-3 奈米碳管的熱性質 12
2-2-4 奈米碳管的機械性質 14
2-3 氧化鋁簡介 15
2-4 環氧樹脂簡介 17
2-5 複合材料簡介 18
第三章 實驗方法 19
3-1 實驗藥品與儀器 19
3-2 實驗流程 20
3-3 實驗步驟 21
3-3-1 MWCNTs/Al2O3/Epoxy複合材料之製備 21
3-3-2 拉曼光譜量測 23
3-3-3 電性量測 24
3-3-4 熱傳導係數量測 27
3-3-5 玻璃轉換溫度量測 29
3-3-6 溫升測試 30
3-3-7 抗彎測試 31
第四章 實驗結果與討論 33
4-1 掃描式電子顯微鏡影像與拉曼光譜 33
4-2 電性量測 43
4-2-1 碳管濃度與電性之關係 43
4-2-2 填充材形狀與電性之關係 45
4-2-3溫度與電性之關係 46
4-3 熱傳導係數量測 47
4-3-1 碳管濃度與熱傳導係數之關係 47
4-3-2 添加材形狀與熱傳導係數之關係 49
4-3-3 溫度與熱傳導係數之關係 49
4-4 玻璃轉換溫度量測 51
4-5 溫升量測 54
4-5-1 重複升溫測試 55
4-5-2 變壓升溫測試 58
4-5-3升溫效率測試 59
4-5-4降溫測試 63
4-6 抗彎強度 64
第五章 結論 66
參考文獻 68
1. 台灣WORD. 電地暖. 2013; Available from: http://www.twword.com/wiki/%E9%9B%BB%E5%9C%B0%E6%9A%96.
2. 德浦地暖系統. 水地暖. 2012; Available from: http://www.xn--ces417a.tw/class-water-heat.html.
3. 德浦微電腦恆溫地暖系統. 地暖原理與優勢. 2012; Available from: http://www.e-floors.com.tw/knowledge/.
4. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58.
5. Collins, P.G. and P. Avouris, Nanotubes for electronics. Scientific american, 2000. 283(6): p. 62-69.
6. Odom, T.W., J.H. Hafner, and C.M. Lieber, Scanning Probe Microscopy Studies of Carbon Nanotubes, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, Editors. 2001, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 173-211.
7. Dresselhaus, M.S., et al., Carbon nanotubes. 2000: Springer.
8. Odom, T.W., J.H. Hafner, and C.M. Lieber, Scanning probe microscopy studies of carbon nanotubes, in Carbon Nanotubes. 2001, Springer. p. 173-211.
9. Kane, C.L. and E. Mele, Size, shape, and low energy electronic structure of carbon nanotubes. Physical Review Letters, 1997. 78(10): p. 1932.
10. Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109.
11. Hamada, N., S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: graphitic microtubules. Physical Review Letters, 1992. 68(10): p. 1579.
12. Pop, E., et al., Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano letters, 2006. 6(1): p. 96-100.
13. Hone, J., et al., Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 1999. 59(4): p. R2514.
14. Yi, W., et al., Linear specific heat of carbon nanotubes. Physical Review B, 1999. 59(14): p. R9015-R9018.
15. 許景棟, H. Wen-Kuang, and H. Ching-Tung, 奈米碳管的聲子,吸附性質及其新穎的合成技術.
16. Bellucci, S., Carbon nanotubes: physics and applications. Physica status solidi (C), 2005. 2(1): p. 34-47.
17. Meo, M. and M. Rossi, Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Composites Science and Technology, 2006. 66(11): p. 1597-1605.
18. Sinnott, S.B. and R. Andrews, Carbon nanotubes: synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 2001. 26(3): p. 145-249.
19. Salvetat, J.-P., et al., Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Advanced Materials, 1999. 11(2): p. 161-165.
20. Xie, S., et al., Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of solids, 2000. 61(7): p. 1153-1158.
21. Abe, H., et al., Engineering ceramics, in Ceramic Science. 1984, Gihoudo Tokyo. p. 24.
22. 林江財, 氧化鋁陶瓷特性及製作. 精密陶瓷科技, 經濟部中小企業及工業技術研究院工業材料研究所聯合編印 [19] R. Stommer, H.
23. Metal, N.S.S. Silica and Alumina Spherical Fine Particles. Available from: http://www.nssmc.com/en/tech/report/nsc/pdf/n9315.pdf.
24. UCSB, M.R.L.a. HW2 # 9. 2016
Available from: http://www.mrl.ucsb.edu/~dshoe/218/.
25. 馬振基 and 國立編譯館, 高分子複合材料: 上册 (修訂本). 2009: 國立編譯館出版.
26. 陳平 and 王德中, 環氧樹脂及其應用. 2004, 北京: 化學工業出版社.
27. Smith, W.F. and J. Hashemi, Foundations of materials science and engineering. 2011: McGraw-Hill.
28. Vandenabeele, P., Theoretical Aspects, in Practical Raman Spectroscopy – An Introduction. 2013, John Wiley & Sons, Ltd. p. 1-38.
29. PM, N., A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. 1958.
30. Banaszczyk, J., et al., The Van der Pauw method for sheet resistance measurements of polypyrrole‐coated para‐aramide woven fabrics. Journal of applied polymer science, 2010. 117(5): p. 2553-2558.
31. NETZSCH. LFA 447 NanoFlash. Available from: https://pec.engr.wisc.edu/Assets/Machines/LFA/LFA447_Brochure.pdf.
32. Fava, R., Differential scanning calorimetry of epoxy resins. Polymer, 1968. 9: p. 137-151.
33. 林樹均, et al., 材料工程實驗及原理. 初版, 全華科技圖書有限公司, 1990: p. 111-122.
34. Spitalsky, Z., et al., Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 2010. 35(3): p. 357-401.
35. Ramasubramaniam, R., J. Chen, and H. Liu, Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters, 2003. 83(14): p. 2928-2930.
36. Kymakis, E. and G.A. Amaratunga, Electrical properties of single-wall carbon nanotube-polymer composite films. Journal of applied physics, 2006. 99(8): p. 084302.
37. Winey, K.I., T. Kashiwagi, and M. Mu, Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. Mrs Bulletin, 2007. 32(04): p. 348-353.
38. Schilde, C., et al., Effect of fluid–particle-interactions on dispersing nano-particles in epoxy resins using stirred-media-mills and three-roll-mills. Composites Science and Technology, 2010. 70(4): p. 657-663.
39. Tang, L.-C., et al., Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Composites Part A: Applied Science and Manufacturing, 2013. 45: p. 95-101.
40. Mohiuddin, M. and S. Van Hoa, Electrical resistance of CNT-PEEK composites under compression at different temperatures. Nanoscale research letters, 2011. 6(1): p. 1-5.
41. Allaoui, A. and N.-E. El Bounia, How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?–a review. Express Polymer Letters, 2009. 3(9): p. 588-594.
42. Satapathy, B.K., et al., Crack toughness behaviour of multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Macromolecular rapid communications, 2005. 26(15): p. 1246-1252.
43. Asi, O., Mechanical Properties of Glass-Fiber Reinforced Epoxy Composites Filled with Al 2O3 Particles. Journal of reinforced plastics and composites, 2009. 28(23): p. 2861-2867.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *