|
1. 台灣WORD. 電地暖. 2013; Available from: http://www.twword.com/wiki/%E9%9B%BB%E5%9C%B0%E6%9A%96. 2. 德浦地暖系統. 水地暖. 2012; Available from: http://www.xn--ces417a.tw/class-water-heat.html. 3. 德浦微電腦恆溫地暖系統. 地暖原理與優勢. 2012; Available from: http://www.e-floors.com.tw/knowledge/. 4. Iijima, S., Helical microtubules of graphitic carbon. nature, 1991. 354(6348): p. 56-58. 5. Collins, P.G. and P. Avouris, Nanotubes for electronics. Scientific american, 2000. 283(6): p. 62-69. 6. Odom, T.W., J.H. Hafner, and C.M. Lieber, Scanning Probe Microscopy Studies of Carbon Nanotubes, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, Editors. 2001, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 173-211. 7. Dresselhaus, M.S., et al., Carbon nanotubes. 2000: Springer. 8. Odom, T.W., J.H. Hafner, and C.M. Lieber, Scanning probe microscopy studies of carbon nanotubes, in Carbon Nanotubes. 2001, Springer. p. 173-211. 9. Kane, C.L. and E. Mele, Size, shape, and low energy electronic structure of carbon nanotubes. Physical Review Letters, 1997. 78(10): p. 1932. 10. Neto, A.C., et al., The electronic properties of graphene. Reviews of modern physics, 2009. 81(1): p. 109. 11. Hamada, N., S.-i. Sawada, and A. Oshiyama, New one-dimensional conductors: graphitic microtubules. Physical Review Letters, 1992. 68(10): p. 1579. 12. Pop, E., et al., Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano letters, 2006. 6(1): p. 96-100. 13. Hone, J., et al., Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 1999. 59(4): p. R2514. 14. Yi, W., et al., Linear specific heat of carbon nanotubes. Physical Review B, 1999. 59(14): p. R9015-R9018. 15. 許景棟, H. Wen-Kuang, and H. Ching-Tung, 奈米碳管的聲子,吸附性質及其新穎的合成技術. 16. Bellucci, S., Carbon nanotubes: physics and applications. Physica status solidi (C), 2005. 2(1): p. 34-47. 17. Meo, M. and M. Rossi, Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Composites Science and Technology, 2006. 66(11): p. 1597-1605. 18. Sinnott, S.B. and R. Andrews, Carbon nanotubes: synthesis, properties, and applications. Critical Reviews in Solid State and Materials Sciences, 2001. 26(3): p. 145-249. 19. Salvetat, J.-P., et al., Elastic modulus of ordered and disordered multiwalled carbon nanotubes. Advanced Materials, 1999. 11(2): p. 161-165. 20. Xie, S., et al., Mechanical and physical properties on carbon nanotube. Journal of Physics and Chemistry of solids, 2000. 61(7): p. 1153-1158. 21. Abe, H., et al., Engineering ceramics, in Ceramic Science. 1984, Gihoudo Tokyo. p. 24. 22. 林江財, 氧化鋁陶瓷特性及製作. 精密陶瓷科技, 經濟部中小企業及工業技術研究院工業材料研究所聯合編印 [19] R. Stommer, H. 23. Metal, N.S.S. Silica and Alumina Spherical Fine Particles. Available from: http://www.nssmc.com/en/tech/report/nsc/pdf/n9315.pdf. 24. UCSB, M.R.L.a. HW2 # 9. 2016 Available from: http://www.mrl.ucsb.edu/~dshoe/218/. 25. 馬振基 and 國立編譯館, 高分子複合材料: 上册 (修訂本). 2009: 國立編譯館出版. 26. 陳平 and 王德中, 環氧樹脂及其應用. 2004, 北京: 化學工業出版社. 27. Smith, W.F. and J. Hashemi, Foundations of materials science and engineering. 2011: McGraw-Hill. 28. Vandenabeele, P., Theoretical Aspects, in Practical Raman Spectroscopy – An Introduction. 2013, John Wiley & Sons, Ltd. p. 1-38. 29. PM, N., A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. 1958. 30. Banaszczyk, J., et al., The Van der Pauw method for sheet resistance measurements of polypyrrole‐coated para‐aramide woven fabrics. Journal of applied polymer science, 2010. 117(5): p. 2553-2558. 31. NETZSCH. LFA 447 NanoFlash. Available from: https://pec.engr.wisc.edu/Assets/Machines/LFA/LFA447_Brochure.pdf. 32. Fava, R., Differential scanning calorimetry of epoxy resins. Polymer, 1968. 9: p. 137-151. 33. 林樹均, et al., 材料工程實驗及原理. 初版, 全華科技圖書有限公司, 1990: p. 111-122. 34. Spitalsky, Z., et al., Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 2010. 35(3): p. 357-401. 35. Ramasubramaniam, R., J. Chen, and H. Liu, Homogeneous carbon nanotube/polymer composites for electrical applications. Applied Physics Letters, 2003. 83(14): p. 2928-2930. 36. Kymakis, E. and G.A. Amaratunga, Electrical properties of single-wall carbon nanotube-polymer composite films. Journal of applied physics, 2006. 99(8): p. 084302. 37. Winey, K.I., T. Kashiwagi, and M. Mu, Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. Mrs Bulletin, 2007. 32(04): p. 348-353. 38. Schilde, C., et al., Effect of fluid–particle-interactions on dispersing nano-particles in epoxy resins using stirred-media-mills and three-roll-mills. Composites Science and Technology, 2010. 70(4): p. 657-663. 39. Tang, L.-C., et al., Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Composites Part A: Applied Science and Manufacturing, 2013. 45: p. 95-101. 40. Mohiuddin, M. and S. Van Hoa, Electrical resistance of CNT-PEEK composites under compression at different temperatures. Nanoscale research letters, 2011. 6(1): p. 1-5. 41. Allaoui, A. and N.-E. El Bounia, How carbon nanotubes affect the cure kinetics and glass transition temperature of their epoxy composites?–a review. Express Polymer Letters, 2009. 3(9): p. 588-594. 42. Satapathy, B.K., et al., Crack toughness behaviour of multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Macromolecular rapid communications, 2005. 26(15): p. 1246-1252. 43. Asi, O., Mechanical Properties of Glass-Fiber Reinforced Epoxy Composites Filled with Al 2O3 Particles. Journal of reinforced plastics and composites, 2009. 28(23): p. 2861-2867.
|