帳號:guest(13.59.108.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱菀翎
作者(外文):Chu, Wan Ling
論文名稱(中文):Bi-Sb-Te/Te複合濺鍍薄膜熱電性質與微結構之研究
論文名稱(外文):Thermoelectric Properties and Microstructure of Sputtered Bi-Sb-Te/Te Multilayered Thin Films
指導教授(中文):廖建能
指導教授(外文):Liao, Chien Neng
口試委員(中文):甘炯耀
朱旭山
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031574
出版年(民國):105
畢業學年度:104
論文頁數:50
中文關鍵詞:熱電材料碲化鉍多層膜結構
外文關鍵詞:thermoelectric materialsbismuth telluridemultilayer structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:285
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
碲化鉍系化合物在室溫區段具有優秀的熱電優值。但在室溫鍍製的熱電薄膜內有較多缺陷,性質通常不佳,常需經後續退火熱處理來改善性質。在碲化鉍系統中,碲為一高蒸汽壓的元素,易於退火製程中揮發。為補足在退火製程中揮發掉的碲元素,本實驗以磁控濺鍍法製備Bi0.4Sb1.6Te3/Te複合多層膜於聚亞醯胺基板,以抑制薄膜內部Te元素的揮發。首先,本實驗先針對濺鍍製程參數與聚亞醯胺基板之選擇進行研究。結果顯示調高濺鍍製程壓力將使薄膜鍍率降低。調高鍍膜功率將影響成份元素濺鍍效率進而影響薄膜內的元素比例。具有高熱膨脹係數的聚亞醯胺基板會在熱退火製程中產生額外的熱應力(張應力),使熱電膜在高溫退火後表面出現微細孔洞,影響薄膜致密性。低熱膨脹係數的聚亞醯胺基板則無此情形產生。在薄膜電性及微結構部分,所有試片經350 C以上退火處理後皆觀察到富銻析出相,而無多層膜結構的Bi0.4Sb1.6Te3薄膜之析出相尺寸與數量皆多於Bi0.4Sb1.6Te3/Te多層膜結構。在相同退火條件下Bi0.4Sb1.6Te3/Te多層膜較純Bi0.4Sb1.6Te3薄膜擁有較高的載子濃度、較低的電阻率、較高的熱電功率因子與較好的結晶性。且其差異隨著Te層數的增加而變得更加顯著。此結果顯示額外添加的Te層抑制Te孔隙VTe的生成。我們可在含有15層Te經400 C退火的Bi0.4Sb1.6Te3/Te多層膜中得到最高的熱電功率因子約為9.2×10-3 W/mK2。
Bismuth telluride-based compounds have superior thermoelectric properties at room temperature regime. The thermoelectric thin films deposited at room temperature usually have many crystal defect. A post thermal treatment is required to eliminate the defects and improve the thermoelectric properties of the thermoelectric thin films. However, Te atoms have high vapor pressure and easily to evaporate during the annealing process, resulting in the variation of composition. In this study, a Bi0.4Sb1.6Te3/Te multilayered structure has been deposited on a polyimide substrate by RF/DC magnetron sputtering. The extra Te layers inserted in between the Bi0.4Sb1.6Te3 films is used to compensate the Te loss during thermal annealing. First, the effects of sputtering parameters and polyimide substrate on the characteristics of Bi0.4Sb1.6Te3 were investigated. The results show that a high process pressure reduces the deposition rate of the Bi0.4Sb1.6Te3 thin film. The composition will vary by changing the sputtering power due to different elemental sputter yield. Moreover, the polyimide substrate of high coefficient of thermal expansion possesses a high tensile thermal stress at annealing temperature and is susceptible to the formation of micro voids in the Bi0.4Sb1.6Te3 thin films. As for the microstructure and thermoelectric properties, we observed that some Sb-rich phases precipitate at the film surface after the specimen annealed at the temperature higher than 350 C. Interestingly, the Bi0.4Sb1.6Te3/Te films exhibits less and smaller Sb-rich precipitates than the Bi0.4Sb1.6Te3 films. The Bi0.4Sb1.6Te3/Te films were found to have a higher carrier concentration, a lower electrical resistivity and better crystallinity than the Bi0.4Sb1.6Te3 films. The discrepancy appears to increase with the increasing number of Te layers in the sample. It is suggested that the excess Te layers in the Bi0.4Sb1.6Te3/Te films are able to compensate the Te loss and suppress the formation of Te vacancies VTe during the high temperature annealing. A high thermoelectric power factor of 9.2×10-3 W/mK2 is obtained for the Bi0.4Sb1.6Te3/Te samples with 15 Te intersection layers after annealed at 400 C.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 背景介紹 1
1.2 研究動機 2
第二章 文獻回顧 4
2.1 熱電元件的應用與轉換效率 4
2.2 碲化鉍(Bi2Te3)系列熱電材料結構與傳輸性質 6
2.3 晶體缺陷與介面效應對熱電傳輸性質之影響 8
2.3.1 P型碲化鉍系列材料內部的缺陷 8
2.3.2 界面效應對熱電傳輸性質之影響 9
2.4 熱電薄膜材料的發展與應用 12
2.5 濺鍍薄膜沉積原理 14
第三章 實驗方法 16
3.1 碲化鉍熱電薄膜試片 16
3.1.1 實驗流程 16
3.1.2 碲化鉍/碲多層膜結構 18
3.2 碲化鉍熱電薄膜鑑定分析 20
3.2.1 薄膜微結構與成分鑑定 20
3.2.2 薄膜熱電傳輸性質量測 21
第四章 結果與討論 25
4.1 鍍膜製程與基板效應對碲化鉍薄膜微結構與熱電性質之影響 25
4.1.1 製程參數選擇 25
4.1.2 濺鍍製程壓力與功率效應 27
4.1.3 聚亞醯胺基板效應 29
4.2 退火碲化鉍與碲化鉍/碲多層膜結構之微結構與熱電性質 32
4.2.1 微結構與成分分析 32
4.2.2 富銻相析出成因探討 36
4.2.3 熱電性質分析 38
4.2.4 碲插入層效應熱電傳輸性質分析 41
4.2.5 散射機制分析 44
第五章 結論 46
參考文獻 48

[1] K. M. Saqr, M. K. Mansour, M. N. Musa, International Journal of Automotive Technology 9, 2 (2008).
[2] S. A. Abdul-Wahab, A. Elkamelb, A. M. Al-Damkhic, I. A. Al-Habsia, H. S. Al-Rubai'ey'a, A. K. Al-Battashia, A. R. Al-Tamimia, K. H. Al-Mamaria, M. U. Chutanib, Renewable Energy 34, 1 (2009).
[3] T. M. Tritt, M. A. Subramanian, MRS Bulletin 3, 31 (2006).
[4] 沈孜璨,循環拉伸應力與電流輔助熱退火對可撓式基板上碲化鉍系薄膜微結構與熱電性質影響之研究,國立清華大學(2015).
[5] H. Noro, K. Sato, H. Kagechika, Journal of Applied Physics 73, 1252 (1993).
[6] D. M. Rowe, CRC handbook of thermoelectrics, CRC Press, p19-25 (1995).
[7] G. F. Wang, T. Cagin, Physical Review 76, 075201 (2007).
[8] T. Caillat, M. Carle, P. Pierrat, H. Scherrer, S. Scherrer, Journal of Physics and Chemistry of Solids 53, 1121 (1992).
[9] D. M. Rowe, Thermoelectric Handbook: Macro to Nano, CRC Press, p27-16 (2006).
[10] X. A. Fan, J. Y. Yang, R. G. Chen, H. S. Yun, W. Zhu, S. Q. Bao, X. K. Duan, Journal of Physics D-Applied Physics 39, 740 (2006).
[11] S. Cho, Y. Kim, A. DiVenere, G. K. Wong, J. B. Kettersonb, J. R. Meyer, Applied Physics Letters 75, 1401 (1999).
[12] Z. Stary, J. Horák, M.Stordeur, M. Stӧlzer, Journal of Physics and Chemistry of Solids 49, 29 (1988).
[13] S. V. Faleev, F. L´eonard, Physical Review 77, 214304 (2008).
[14] S. I. Kim, S. Hwang, J. W. Roh, K. Ahn, D. H. Yeon, K. H. Lee, Journal of Materials Research 27, 19 (2012).
[15] S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, S. W. Kim, Science 348, 6230 (2015).
[16] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Nature 413, 597 (2001).
[17] J. Weber, K. P. Kamloth, F. Haase, P. Detemple, F. V¨olklein, T. Doll, Sensors and Actuators A: Physical 132, 1 (2006).
[18] W. Glatz, E. Schwyter, L. Durrer, C. Hierold, Journal of Microelectromechanical Systems 3, 18 (2009).
[19] 田民波,薄膜技術與薄膜材料,五南圖書出版股份有限公司 (2007).
[20] L. Holland, Vacuum deposition of thin film 3rd ed, Chapman & Hall, p401 (1960).
[21] P.D. Davidse, L. I. Maissel, Journal of Applied Physics 37, 574 (1966).
[22] ASTM Designation F76, Annual Book of ASTM Standards, Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in Single-Crystal Semiconductor 10, 05 (2000).
[23] 張志宇,經電流輔助退火處理之Bi0.5Sb1.5Te3/Sb多層濺鍍薄膜熱電性質研究,國立清華大學 (2010).
[24] National Physical Laboratory (http://www.npl.co.uk/science-technology/surface-and-nanoanalysis/services/sputter-yield-values).
[25] D. M. Mattox, Atomistic film growth and resulting film properties: residual film stress, Vacuum Technology & Coating, November 22-23 (2001).
[26] Q. Lu, H. Y. Zhang, Y. Cheng, X. R. Chen, G. F. Ji, Chinese Physical Society 25, 2 (2016).
[27] E. A. Marchenkov, V. P. Shipul', Journal of Engineering Physics and Thermophysics 66, 5 (1994).
[28] 劉昆明,電流輔助熱退火效應對濺鍍Bi-Sb-Te和Bi-Se-Te熱電薄膜其傳輸性質與缺陷消除的影響,國立清華大學 (2010).
[29] B. Fang, Z. Zeng, X. Yan, Z, Hu, Journal of Materials Science: Materials in Electronics 24, 4 (2013).
[30] G. S. Nolas, J. Sharp, H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, Chapter 2 (2001).
[31] M. Stordeur, M. Stolzer, H. Sobotta, V. Riede, Physica Status Solidi B-Basic Research 150, 165 (1988).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *