帳號:guest(3.139.104.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):杜威
作者(外文):Tu, Wei
論文名稱(中文):藉改變銅/錫銀/鎳微凸塊系統之金屬基材接合順序以調控介金屬化合物的相生成及演變機制
論文名稱(外文):Evolution of Intermetallic Compounds, Phase Transformation and the Interfacial Reaction Modified by the Bonding Order of the Under Bump Metallization in Cu/Sn-Ag/Ni Micro-bump
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq Gong
口試委員(中文):吳子嘉
張守一
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031573
出版年(民國):105
畢業學年度:105
語文別:中文英文
論文頁數:97
中文關鍵詞:三維封裝微凸塊接合順序介金屬化合物
外文關鍵詞:3DICMicrobumpsBonding OrderIntermetallic Compounds
相關次數:
  • 推薦推薦:0
  • 點閱點閱:235
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨電子產品微型化之趨勢,電子構裝技術除了追求高封裝密度以外,更要求高功能性。新型三維封裝(3D packages)被視為延續莫爾定律(Moore’s law)之重要技術。其中,導通電路之微銲點與現今業界常用的覆晶封裝 (flip-chip technology) 之銲接點,在體積上有頗大的差異。這些銲點主要由界面介金屬化合物(intermetallic compounds)以達成晶片與電路板穩固接合及電路導通,其性質如形貌、生成相性質與相穩定性皆會影響銲接點可靠度。許多研究由改變銲料合金與凸塊金屬,影響介金屬化合物之性質,以提升整體封裝之可靠度。

本研究延用業界常用之鎳及銅金屬基材至微銲點中,藉由不同接合順序,以探討此二元素在極小錫銲料中之交互反應。分別為先接合無電鍍鎳金 (ENIG) 基板,再接銅基板; 以及先接合有機保銲銅 (OSP-Cu) 基板,再接鎳基板。此外,在微銲點中,由於錫銲料體積微型化,在銲點中生成之介金屬化合物體積比例劇增,因此介金屬化合物之性質將會是影響封裝可靠度ㄉ重要因子。

在 ENIG/Sn-3.5Ag/Cu 三明治微銲點結構中,利用不同回銲時間以觀察介金屬化合物生成演變機制。僅僅10 之微小錫銲點中,生成複雜之五層相結構。在經過30秒回銲時,只有在ENIG端有兩相介面的形成,分別為 (Ni,Cu)3Sn4 與高鎳含量之 H-(Cu,Ni)6Sn5 組成。再5分鐘回銲後,發現兩相介面形成於ENIG端及Cu端,ENIG端一樣為 (Ni,Cu)3Sn4 及 H-(Cu,Ni)6Sn5 ,而Cu端則由高鎳含量之 H-(Cu,Ni)6Sn5及低鎳含量之 L-(Cu,Ni)6Sn5 組成。錫料中大量L-(Cu,Ni)6Sn5 攜出,形成一個五層相堆疊之結構。由於兩相介面易於裂痕擴展,此系統之相結構相信會降低微銲點之機械性質,進而劣化電子夠裝之可靠度。

相反的,在OSP-Cu/Sn-3.5Ag/Ni對照組中,經長時間回銲後,只有低鎳含量之 L-(Cu,Ni)6Sn5 生成,並無任何的兩相介面。在微銲點中,經由金屬基材之接合順序,即能使生成之介金屬化合物差異慎大。綜合上述,本研究將利用熱力學相關理論,配合墊子顯微鏡之觀察及背向散射繞射儀之結果,對介金屬化合物生成機制做深入探討,並提供業界有關於製成順序對元素反應之影響,將因微型化趨勢逐漸放大。
With the highly demand for the miniaturization of large-scale-integration of circuits on Si chips, the electronic packaging technology has been evolved from conventional flip-chip bumps to small micro-bumps. Dramatically reduction of soldering volume results in a great concern of packaging reliability. Furthermore, in micro-bumps, not only the characteristics of interfacial reaction will be a main concern but also more limitation in fabrication process. As a result, architecture control through process modification to alter the microstructure of micro-bumps was demonstrated to affect the interfacial reaction in micro-bumps. Meanwhile, the understanding of interfacial reaction in micro-bumps is a potential way to solve the critical issues in this small solder volume system. In this study, two steps of boing process were investigated. One with ENIG substrate bonded ahead of the Cu substrate, the other with OSP-Cu substrate bonded ahead of the Ni substrate.

By bonding the ENIG substrate ahead of the Cu substrate, the microstructure evolution of ENIG/Sn-3.5Ag/Cu micro-bumps after reflow was studied. Due to the short diffusion path between two opposite substrates, the effects of substrate dissolution by two-steps reflowing process in ENIG/Sn-3.5Ag/Cu micro-bumps revealed a complex 5 layered structure. After 30 sec of reflow, only ENIG side has a dual phase structure composed of H-(Cu,Ni)6Sn5 and (Ni,Cu)3Sn4. After longer reflow time, it is interesting to note that dual phase structure appeared at both Cu and ENIG sides. H-(Cu,Ni)6Sn5 and L-(Cu,Ni)6Sn5 showed up at the Cu side, meanwhile, H-(Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 were at the ENIG side after reflow for 5 min. The dual phase structures are believed to be vulnerable to cracks and lead to degradation of micro-bumps’ reliabilities.

In contrast, by bonding the OSP-Cu substrate ahead of the Ni substrate, the microstructure evolution of OSP-Cu/Sn-3.5Ag/Ni micro-bumps after reflow was also studied. It is noted that the microstructure of IMCs on both interface of the substrates showed a significant difference as only one phase was found, which was L-(Cu,Ni)6Sn5. Also, the deteriorative dual phase structures found in ENIG/Sn-3.5Ag/Cu micro-bumps were no longer shown in OSP Cu/Sn-3.5Ag/Ni micro-bumps. With the aid of the field emission electron probe micro-analyzer (FE-EPMA), the mechanisms of the microstructural evolution are probed in detail by the phase diagram and the diffusion related migration of the constituents. It is expected that the results derived in this study can provide useful information for the industry of microelectronic packaging.
Contents I
Lists of Table IV
Figures Caption V
Abstract IX
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Goals in This Study 2
Chapter 2 Literature Review 5
2.1 Electronic Packaging and Flip Chip Technology 5
2.2 Solder Bump 6
2.2.1 Sn-Pb Solder 7
2.2.2 Lead-Free Solder 8
2.3 Under Bump Metallization 9
2.3.1 Cu based UBM 9
2.3.2 Ni based UBM 10
2.4 Interfacial Reactions in Pb-free Solder Joints 11
2.4.1 Interfacial Reactions between Pb-free Solder and Cu based UBM 12
2.4.2 Interfacial Reactions between Pb-free Solder and Ni based UBM 13
2.4.3 Cross-interaction of Cu/Solder/Ni Sandwich Structure 14
2.4.4 Dual Phase IMC Structures 15
2.5 Novel Electronic Packaging System 16
2.5.1 System on Chip (SoC) 16
2.5.2 System in Package (SiP) 17
2.5.3 Three-dimensional Integrated Circuit (3D-IC) 17
2.6 Reliability Issues in Micro-bumps 19
Chapter 3 Experimental Procedure 48
3.1 Micro-bumps Fabrication 48
3.1.1 The Fabrication of ENIG/Sn-3.5Ag/Cu Micro-bumps 48
3.1.1 The Fabrication of OSP Cu/Sn-3.5Ag/Ni Micro-bumps 49
3.2 Sample Preparation for Characterization 49
3.3 Characterization and Analysis 50
3.3.1 Microstructure Evolution 50
3.3.2 Composition Analysis 50
Chapter 4 Results and Discussion 54
4.1 Microstructure and Formation Mechanism of Complex 5 Layered IMCs in ENIG/Sn-3.5Ag/Cu Micro-bumps by first reflow ENIG UBM 54
4.1.1 Formation of IMCs and Elemental Distributions 54
4.1.2 Mechanisms of phases formation at the ENIG side 58
4.1.3 Mechanisms of phases formation at the Cu side 59
4.2 Microstructure and Formation Mechanism of IMCs in OSP-Cu/Sn-3.5Ag/Ni Micro-bumps by first reflow OSP-Cu UBM 67
4.2.1 Formation of IMCs and Elemental Distributions 67
4.2.2 Mechanisms of phases formation at the OSP-Cu side 70
4.2.3 Mechanisms of phases formation at the Ni side 70
Chapter 5 Conclusions 80
References 82
1. Cisco, “The Internet of Things”, At a glance, (2014).
2. G. R. Blackwell, “The Electronic Handbook”, Boca Raton, (2000) Florida: CRC Press.

3. J. H. Lau, “Ball Grid Array Technology”, McGraw-Hill, (1995) New York.

4. K. N. Tu, “Solder Joint Technology”, Springer, (2007) Los Angeles.
5. L. F. Miller, “Controlled collapse reflow chip joining”, IBM J. Res. Develop. 13 (1969) 239.
6. J.H. Lau, “Flip chip technologies”, McGraw-Hill, New York, 1996, pp.26.
7. G.R. Blackwell, “The electronic packaging handbook”, Boca Raton, Florida: CR Press (2000) 4
8. SMIC, “SMIC Beefs up Solder Products for Semiconductors”, Dempa Publications, AEI (2013)
9. D.R. Frear, J.W. Jang, J.K. Lin and C. Zhang, “Pb-free solders for flip-chip interconnects”, JOM 53 (2001) 1047.
10. T. Laurila, V. Vuorinen and J.K. Kivilahti, “Interfacial reactions between lead-free solders and common base materials”, Mater. Sci. Eng. R: Rep. 49 (2005) 1.
11. T.L. Yang, J.J. Yu, W.L. Shih, C.H. Hsueh, C.R. Kao, “Effects of silver addition on Cu–Sn microjoints for chip-stacking applications”, J. Alloys Comp. 605 (2014) 193-198.
12. K.N. Tu, “Reliability challenges in 3D IC packaging technology”, Microelectron. Reliab. 51 (2011) 517–523.
13. L. M. Yang, Q. K. Zhang, and Z. F. Zhang, “Effects of solder dimension on the interfacial shear strength and fracture behaviors of Cu/Sn-3Cu/Cu joints” Scripta Mater. 67 (2012) 637.
14. L.M. Yin, X.P. Zhang, and C. Lu, “Size and volume effects on the strength of microscale lead-free solder joints” J. Electron. Mater. 38 (2009) 2179.
15. H.Y. Chuang, T.L. Yang, M.S. Kuo, Y.J. Chen, J.J. Yu, C.C. Li, and C. Robert Kao, “Critical Concerns in Soldering Reactions Arising from Space Confinement in 3-D IC Packages” IEEE Trans. Device Mater. Reliab. 12 (2012) 233.
16. R.W. Yang, Y.W. Chang, W.C. Sung, and C. Chen, “Precipitation of large Ag3Sn intermetallic compounds in SnAg2.5 microbumps after multiple reflows in 3D-IC packaging” Mater. Chem. Phys. 134 (2012) 340.
17. Y.C. Huang, S.W. Chen, and K.S. Wu, “Size and substrate effects upon undercooling of Pb-free solders” J. Electron. Mater. 39 (2010) 109.
18. M.B. Zhou, X. Ma, and X.P. Zhang, “Undercooling behavior and intermetallic compound coalescence in microscale Sn-3.0Ag-0.5Cu solder balls and Sn-3.0Ag-0.5Cu/Cu joints” J. Electron. Mater. 41 (2012) 3169.

19. F.Y. Ouyang and W.C. Jhu, “Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three- dimensional integrated circuits” J. Alloys Compd. 580 (2013) 114.

20. L. Ma, Y. Zuo, S. Liu, F. Guo, and X. Wang, “The failure models of Sn-based solder joints under coupling effects of electromigration and thermal cycling” J. Appl. Phys. 113 (2013) 044904.

21. Y.J. Chen, C.K. Chung, C.R. Yang, C.R. Kao, “Single-joint shear strength of micro Cu pillar solder bumps with different amounts of intermetallics”, Microelectron. Reliab. 53 (2013) 47–52.
22. J. Bertheau, F. Hodaj, N. Hotellier, J. Charbonnier, “Effect of intermetallic compound thickness on shear strength of 25 μm diameter Cu-pillars”, Intermetallics 51 (2014) 37–47.
23. S.P.S. Lim, V.S. Rao, Y.H. Hnin, W.L. Ching, V. Kripesh, C. Lee, J. Lau, J. Milla, A. Fenner, ”Process Development and Reliability of Microbumps”, IEEE Trans. Compon. Packag. Technol, 33 (2010) 747–753.
24. C. R. Kao, A.T. Wu, K.N. Tu, Y.S. Lai, “Reliability of micro-interconnects in 3D IC packages”, Microelectron. Reliab. 53 (2013) 1-182.
25. J. Shen, M. Zhao, P. He, Y. Pu, “Growth behaviors of intermetallic compounds at Sn–3Ag–0.5Cu/Cu interface during isothermal and non-isothermal aging”, J. Alloys Compd. 574 (2013) 451-458.
26. Q. Li, Y.C. Chan, “Growth kinetics of the Cu3Sn phase and void formation of sub-micrometre solder layers in Sn–Cu binary and Cu–Sn–Cu sandwich structures”, J. Alloys Compd. 567 (2013) 47-53.
27. X. Hu, Z. Ke, “Growth behavior of interfacial Cu–Sn intermetallic compounds of Sn/Cu reaction couples during dip soldering and aging”, J. Mater. Sci-Mater. El. 25 (2013) 936-945
28. W.Y. Chen, T.T. Chou, W. Tu, H.C. Chang, C.J. Lee, J.G. Duh, “Retarding the Cu-Sn and Ag-Sn Intermetallic Compounds by Applying Cu-xZn Alloy on Microbump in Novel 3D-IC Technologies”, J Mater Sci: Mater Electron. 26 (2015) 2357-2362.
29. C.E. Ho, R.Y. Tsai, Y.L. Lin, and C.R. Kao, “Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni”, J. Electron. Mater. 31 (2002) 584–590.
30. C.S. Liu, C.E. Ho, C.S. Peng, and C.R. Kao, “Effects of Joining Sequence on the Interfacial Reactions and Substrate Dissolution Behaviors in Ni/Solder/Cu Joints”, J. Electron. Mater. 40 (2011) 1912–1920.
31. P.A. Totta and R.P. Sopher, “SLT device metallurgy and its monolithic extension.” IBM J. Res. Develop. 13 (1969) 226.
32. P. A. Totta and R. P. Sopher, “Controlled collapse reflow chip jointing” IBM J. Res. Develop. 13 (1969) 226.
33. J.H. Lau and S.W.R. Lee, “Chip scale package, CSP: Design, Materials, Process and applications”, McGraw-Hill, New York, 1999.
34. R. Beica, “Flip Chip Market and Technology Trends” EMPC (2013)
35. C.A. Harper, “Electronic packaging and interconnection handbook”, 3rd edition, McGraw-Hill, New York, 2000.
36. J.W. Morris, J.L.F. Goldstein and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solder.” JOM 45 (1993) 25
37. R.E. Reed-Hill and R. Abbaschian, “Physical metallurgy principles”. PWS, Boston, 1994.
38. W.R. Lewis, “Notes on soldering.” Tin Research Institute, 66 (1961).
39. M. Abtew and G. Selvaduray, “Lead-free solders in microelectronics”, Mater. Sci. Eng. R 27 (2000) 95.
40. M. McCormack, S. Jin, G.W. Kammlott and H.S. Chen, “New Pb- free solder alloy with superior mechanical-properties.” Appl. Phys. Lett. 63 (1993) 15.
41. K. Suganuma, “Advances in lead-free electronics soldering.” Current Opinion Solid State Mater. Sci. 5 (2001) 55.
42. K.S. Kim, S.H. Huh and K. Suganuma, “Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys.” Mater. Sci. Eng. A 333 (2002) 106.
43. C.S. Chang, A. Oscilowski and R.C. Bracken, “Future challenges in electronics packaging.” IEEE Circuits Devices Mag. 14 (1998) 45.
44. K.N. Tu, A.M. Gusak and M. Li, “Physics and materials challenges for lead-free solders.” J. Appl. Phys. 93 (2003) 1335.
45. K. Zeng and K.N. Tu, “Six cases of reliability study of Pb-free solder joints in electronic packing technology.” Mater. Sci. Eng. R 38 (2002) 55.
46. H. Ma and J.C. Suhling, “A review of mechanical properties of lead- free solders for electronic packaging.” J. Mater. Sci. 44 (2009) 1141.
47. I.E. Anderson, “Development of Sn-Ag-Cu and Sn-Ag-Cu-X alloys for Pb-free electronic solder applications.” J. Mater. Sci: Mater. Electron. 18 (2007) 55.
48. I.E. Anderson, B.A. Cook, J.L. Harringa and R.L. Terpstra, “Sn-Ag- Cu solders and solder joints: alloy development, microstructure, and properties.” JOM 54 (2002) 26.
49. I.E. Anderson, J.C. Foley, B.A. Cook, J. Harringa, R.L. Terpstra and O. Unal, “Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability.” J. Electron. Mater. 30 (2001) 1050.
50. W. Liu and N.C. Lee, “The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints.” JOM 59 (2007) 26.
51. Tong, K. H., M. T. Ku, K. L. Hsu, Q. Tang, C. Y. Chan, and K. W. Yee. “The Evolution of Organic Solderability Preservative (OSP) Process in PCB Application” IEEE, IMPACT, (2013).
52. A.A. Liu, H.K. Kim, K.N. Tu and P.A. Totta, “Spalling of Cu6Sn5 spheroids in the soldering reaction of eutectic SnPb on Cr/Cu/Au thin films”, J. Appl. Phys. 80 (1996) 2774.
53. H.K. Kim, K.N. Tu and P.A. Totta, “Ripening-assisted asymmetric spalling of Cu-Sn compound spheroids in solder joint on Si wafer”, Appl. Phys. Lett. 68 (1996) 2204.
54. M. Li. F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan and P. Elenius, “Interfacial microstructure evolution between eutectic SnAgCu solder and Al/Ni(V)/Cu thin film”, J. Mater. Res. 17 (2002) 1612.
55. F.A. Lowenheim, “Modern electroplating”, 2nd edition, Wiley, New York, (1974).
56. S.V.S. Tyagi, V.K. Tondon and S. Ray, “Study of the crystallization behavior of electroless Ni-P films by electron and x-ray diffraction”, Z. Metallkd. 76 (1985) 492.
57. J.H. Yeh, “Interfacial reactions and wetting property between electroless Ni in the under bump metallurgy (UBM) and Sn-37Pb solder”, Master Thesis, National Tsing Hua University, Hsinchu, Taiwan, (2000).
58. R.C. Agarwala and S. Ray, “Variation of structure in electroless Ni-P films with phosphorous content”, Z. Metallkd, 79 (1988) 472.
59. IPC, “Specification for Electroless Nickel/ Immersion Gold (ENIG) Plating for Printed Circuit Boards” (2002)
60. P. Nash, “Phase Diagram of Binary Nickel Alloys” ASM Int. (1991) pp. 235.
61. J. W. Jang, P. G. Kim, K. N. Tu, D. R. Frear, and P. Thompson, “Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology” J. Appl. Phys. 85 (1999) 8456.
62. B. L. Young and J. G. Duh, “Interfacial reaction and microstructural evolution for electroplated Ni and electroless Ni in the under bump metallurgy with 42Sn-58Bi solder during annealing” J. Electron. Mater. 30 (2001) 878.
63. W. Lai, P. S. Wong, K. L. Hsu, C. M. Chan, C. Y. Chan, M. W. Bayes and K. W. Yee, “Development of Novel Electroless Nickel for Selective Electroless Nickel Immersion Gold Applications”, iMPACT 80-85.
64. K. Zeng, R. Stierman, D. Abbott and M. Murtuza, “The Root Cause of Black Pad Failure of Solder Joints with Electroless Ni/Immersion Gold Plating”, JOM (2006) 75-79.
65. Long, and L Toscano, “Electroless Nickel/Immersion Silver – A New Surface Finish For PCB Applications” Metal Finishing 1 (2013) 12-19
66. J. Nable, “PCB Surface Finishes: A General Review”, SMTnet (2015)
67. R. Labie, W. Ruythooren and J. Van Humbeeck, “Solid state diffusion in Cu-Sn and Ni-Sn diffusion couples with flip-chip scale dimensions” Intermetallics. 15 (2007) 396.
68. D. Li, C. Liu and P.P. Conway, “Characteristics of intermetallics and micromechanical properties during thermal aging of Sn-Ag-Cu flip-chip solder interconnects” Mater. Sci. Eng: A, 391 (2005) 95.
69. W.R. Lewis, “Notes on soldering”, Tin Research Institute, 66 (1961).
70. K.J. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano and K.N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, J. Appl. Phys. 97 (2005) 024508.
71. T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, “Binary alloy phase diagrams”, ASM Int., Materials Park, Ohio, (1990) 1481.
72. K. J. Wang, Y. C. Lin and J. G. Duh, “In situ investigation of the interfacial reaction in Sn/Cu system by synchrotron radiation” J. Mater. Res. 25 (2010) 972.
73. T.Y. Kanga, Y.Y. Xiub, C.Z. Liub, L. Hui, J.J. Wang and W.P. Tong, “Bismuth segregation enhances intermetallic compound growth in SnBi/Cu microelectronic interconnect” J. Alloys Compd 509 (2011) 1785.
74. C. Y. Yu, W.Y. Chen and J. G. Duh, “Improving the impact toughness of Sn-Ag-Cu/Cu-Zn Pb-free solder joints under high speed shear testing” J. Alloys Compd. 586 (2014) 633.
75. K.N. Tu and K. Zeng, “Tin-lead (SnPb) solder reaction in flip chip technology.” Mater. Sci. Eng. R 34 (2001) 1.
76. K. Zeng and J.K. Kivilahti, “Use of multicomponent phase diagrams for predicting phase evolution in solder/conductor systems”, J. Electron. Mater. 30 (2001) 35.
77. Y.D. Jeon, K.W. Paik, A. Ostmann and H. Reichl, “Effect of Cu contents in Pb- free solder alloys on intefacial reactions and bump reliability of Pb free solder bumps on electroless Ni-P under-bump metallurgy” J. Electron. Mater, 34 (2005) 80.
78. Suppressing the growth of interfacial Cu-Sn intermetallic compounds in the Sn-3.0Ag-0.5Cu-0.1Ni/Cu-15Zn solder joint during thermal aging” J. Mater. Sci. 47 (2012) 4012.
79. C. Y. Yu, W. Y. Chen and J. G. Duh, “Suppressing the growth of Cu-Sn intermetallic compounds in Ni/Sn-Ag-Cu/Cu-Zn solder joints during thermal aging” Intermetallics. 26 (2012) 11.
80. N. Chawla and R. S. Sidhu, “Microstructure-based modeling of deformation in Sn-rich (Pb-free) solder alloys” J Mater Sci: Mater Electron 18 (2007) 175.
81. W. H. Wu, H. L. Chung, C. N. Chen and C. E. Ho, “The Influence of Current Direction on the Cu-Ni Cross-Interaction in Cu/Sn/Ni Diffusion Couples” J Electronic Mater 38 (2009).
82. S. J. Wang and C. Y. Liu, “Study of Interaction between Cu-Sn and Ni-Sn Interfacial Reactions by Ni-Sn3.5Ag-Cu Sandwich Structure” J Electronic Mater 32 (2003).
83. S.C. Yang, C.C. Chang, M.H. Tsai and C.R. Kao, “Effect of Cu concentration, solder volume, and temperature on the reaction between SnAgCu solders and Ni.” J. Alloys Compd. 499 (2010) 149.
84. C.H. Wang and H.T. Shen,” Effect of Ni addition on the interfacial reactions between Sn Cu solders and Ni substrate”, Intermetallics 18 (2010) 616.
85. C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao and D.S. Jiang,” Effects of limited Cu supply on soldering reactions between SnAgCu and Ni”, J. Electron. Mater. 35 (2006) 1017.
86. W.M. Chen, S.C. Yang, M.H. Tsai and C.R. Kao, “Uncovering the driving force for massive spalling in the Sn–Cu/Ni system”, Scripta Mater. 63 (2010) 47.
87. S.J. Wang, C.Y. Liu, “Retarding growth of Ni3P crystalline layer in Ni(P) substrate by reacting with Cu-bearing Sn(Cu) solder”, ScriptaMater. 49 (2003) 813.
88. C.H. Wang, S.W. Chen, “Sn-0.7 wt%.Cu/Ni interfacial reactions at 250 ”, Acta Mater. 54 (2006) 247.
89. J.Y. Kim, Y.C. Sohn and J. Yu, “Effect of Cu content on the mechanical reliability of Ni/Sn–3.5Ag system.” J. Mater. Res. 22 (2007) 770.
90. K. Zeng, M. Pierce, H. Miyazaki and B. Holdford, “Optimization of Pb-free solder joint reliability from a metallurgical perspective.” J. Electron. Mater. 41 (2012) 253.
91. A. Kumar and Z. Chen, “Interdependent Intermetallic Compound Growth in an Electroless Ni-P/Sn-3.5Ag Reaction Couple” J. Electron. Mater. 40 (2011) 213.
92. H. Kim, M. Zhang, C.M. Kumar, D. Suh, P. Liu, D. Kim, M. Xie and Z. Wang, “Improved drop reliability performance with lead free solders of low Ag content and their failure modes.” 2007 Electronic Components and Technology Conference Proceedings, p.962.
93. C.Y. Yu, T.K. Lee, M. Tsai, K.C. Liu, and J.G. Duh, “Effects of Minor Ni Doping on Microstructural Variations and Interfacial Reactions in Cu/Sn-3.0Ag-0.5Cu-xNi/Au/Ni Sandwich Structures” Journal of Electronic Materials, 39, 12, (2010), pp 2544-2552
94. S.W. Fu, C.Y. Yu, T.K. Lee, K.C. Liu, and J.G. Duh, “Impact crack propagation through the dual-phased (Cu,Ni)6Sn5 layer in Sn–Ag–Cu/Ni solder joints” Materials Letters, 80, (2012),pp 103–105
95. Gordon E. Moore, “Cramming more components onto integrated circuits”, Intel, Electronics. 38 (1965)
96. Chulwoo Kim and Sung-Mo Kang, “Low Power Flip-Flop and Clock Network Design Methodologies in High-Performance System-on-a-Chip” IBM Microelectronics, Power Aware Design Methodologies, (2002), pp 151-179
97. Resve Saleh et, al. “System-on-Chip: Reuse and Integration”, Proceedings of the IEEE, 94, 6 (2006)
98. Rao Tummala, “SoC vs. MCM vs SiP vs. SoP”, Solid State Technology, (2015)
99. Clive Maxfield, “2D vs. 2.5D vs. 3D ICs 101”, EE Times, (2012)
100. William Chen et,al. “The next Step in Assembly and Packaging: System Level Integration in the package (SiP)” SiP White Paper, pp 11,12
101. W. Rhett Davis et,al. “Demystifying 3D ICs: The Pros and Cons of Going Vertical” IEEE Design & Test of Computers, (2005), pp 498-510
102. M. Santatini, “Stacked & Loaded: Xilinx SSI, 28-Gbps I/O Yield Amazing FPGAs” Xcell J. 74 (2011) 8.
103. Aibin Yu et,al. “Study of 15μm Pitch Solder Microbumps for 3D IC Integration” IEEE, (2009), pp 6-10
104. W.Y. Chen, W. Tu, H.C. Chang, T.T. Chou, and J.G. Duh “Growth orientation of Cu–Sn IMC in Cu/Sn–3.5Ag/Cu–xZn microbumps and Zn-doped solder joints” Materials Letters, 134 (2014), pp 184–186
105. S. J. Wang, L. H. Hsu, N. K. Wang and C. E. Ho, “EBSD Investigation of Cu-Sn IMC Microstructural Evolution in Cu/Sn-Ag/Cu Microbumps During Isothermal Annealing” J. Electron. Mater. 43 (2013) 219.
106. S.J. Wang, C.Y. Liu, “Kinetic analysis of the interfacial reactions in Ni/Sn/Cu sandwich structures” J. Electron. Mater. 35 (2006) 1955–1960.
107. C. H. Wang, J. L. Liu, “Effects of Sn thickness on morphology and evolution of Ni3Sn4 grains formed between molten Sn and Ni substrate” Intermetallics, 61 (2015)9-15.
108. C.E. Ho, S.C. Yang, and C.R. Kao, “Interfacial reaction issues for lead-free electronic solders”, J. Mater. Sci. Mater. Electron. 18 (2007) 155-174.
109. H.K. Kim and K.N. Tu, “Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening” Phys. Rev. B 53 (1996) 16027.
110. W. Peng, E. Monlevad, and M.E. Marques, “Effect of thermal aging on the interfacial structure of SnAgCu solder joints on Cu”, Microelectron. Reliab. 47 (2007) 2161-2167.
111. S.J. Wang and C.Y. Liu, “Asymmetrical solder microstructure in Ni/Sn/Cu solder joint”, Scripta Mater. 55 (2006) 347–350
112. K. Nogita, “Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys”, Intermetallics 18 (2010) 145–149
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *