|
[1] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, A review of very-high-temperature Nb-silicide-based composites, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 34A(10) (2003) 2043-2052. [2] D.M. Dimiduk, J.H. Perepezko, Mo-Si-B alloys developing a revolutionary turbine-engine material, MRS Bulletin 28(9) (2003) 639-645. [3] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta, J.J. Lewandowski, Ultrahigh-temperature Nb-silicide-based composites, MRS Bulletin 28 (2003) 646-653. [4] J.H. Perepezko, The Hotter the Engine, the Better, Science 326(5956) (2009) 1068-1069. [5] J.A. Lemberg, R.O. Ritchie, Mo-Si-B alloys for ultrahigh-temperature structural applications, Advanced Materials 24(26) (2012) 3445-3480. [6] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Advanced Engineering Materials 6(1-2) (2004) 74-78. [7] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 35A(5) (2004) 1465-1469. [8] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A 36(5) (2005) 1263-1271. [9] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 36A(4) (2005) 881-893. [10] J.W. Yeh, Recent progress in high-entropy alloys, Annales De Chimie-Science Des Materiaux 31(6) (2006) 633-648. [11] Y.L. Chou, J.W. Yeh, H.C. Shih, Effect of Molybdenum on the Pitting Resistance of Co1.5CrFeNi1.5Ti0.5Mox Alloys in Chloride Solutions, Corrosion 67(8) (2011) 0850021-0850026. [12] C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, S.K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys, Materials Science and Engineering A 528(10-11) (2011) 3581-3588. [13] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Materialia 59(16) (2011) 6308-6317. [14] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897. [15] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and Properties of High-entropy Alloys, Progress in Materials Science 61 (2014) 1-93. [16] M.H. Tsai, J.W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters 2(3) (2014) 107-123. [17] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765. [18] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb(25)Mo(25)Ta(25)W(25) and V(20)Nb(20)Mo(20)Ta(20)W(20) refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706. [19] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds 509(20) (2011) 6043-6048. [20] O. Senkov, J. Scott, S. Senkova, F. Meisenkothen, D. Miracle, C. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, Journal of Materials Science 47(9) (2012) 4062-4074. [21] O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo(0.5)Ta(0.5)TiZr alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 529 (2011) 311-320. [22] 張嘉修, 耐火高熵合金 Alx-Hf-Nb-Ta-Ti-Zr (x=0, 0.3, 0.5, 0.75, 1.0) 之研究, 碩士論文, 國立清華大學材料科學工程研究所, 2013. [23] 洪奕平, Si 添加對 Al-Hf-Nb-Ta-Ti-Zr 耐火高熵合金性質之影響, 碩士論文, 國立清華大學材料科學工程研究所, 2014. [24] 蔡孟哲, 耐火高熵合金Al-Hf-Mo-Nb-Ta-Ti-Zr添加 Cr與Si對微結構及性質影響之研究, 碩士論文, 國立清華大學材料科學工程研究所, 2015. [25] C.T. Sims, 70-GT-24, ASTM Tech. Pub., USA, 1970. [26] C.T. Sims, W.C. Hagel, The Superalloys, John Wiley & Sons, New York, 1972. [27] 黃聖閔, TiC與Co1.5CrFeNi1.5Ti0.5燒結瓷金之製程與機械性質研究, 碩士論文, 國立清華大學材料科學工程研究所, 2006. [28] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303. [29] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 35A(8) (2004) 2533-2536. [30] 賴高廷, 高亂度合金微結構及性質探討, 碩士論文, 國立清華大學材料科學工程研究所, 1998. [31] 黃炳剛, 多元高熵合金於熱熔射塗層之研究, 碩士論文, 國立清華大學材料科學工程研究所, 2003. [32] 張慧紋, 以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵合金氮化物薄膜及其性質探討, 碩士論文, 國立清華大學材料科學工程研究所, 2005. [33] O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system, Materials Science and Engineering A 565(10) (2013) 51-62. [34] O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis, Acta materialia 61 (2013) 1545-1557. [35] C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang, Microstructure and oxidation behavior of new refractory high entropy alloys, Journal of Alloys and compounds 583 (2014) 162-169. [36] 蔡坤佑, 高熵合金之高熵效應及緩慢擴散效應探討, 博士論文, 國立清華大學材料科學工程研究所, 2013. [37] R.L. Fleischer, Solution hardening, Acta metallurgica 9(11) (1961) 996. [38] R. Fleischer, Solution hardening by tetragonal dist ortions: Application to irradiation hardening in F.C.C. crystals, Acta metallurgica 10(9) (1962) 835-842. [39] R.L. Fleischer, Substitutional solution hardening, Acta metallurgica 11(3) (1963) 203-209. [40] G.E. Dieter, Mechanical metallurgy, McGraw-Hill. [41] A. Sengupta, S.K. Putatunda, L. Bartosiewicz, J. Hangas, P.J. Nailos, M. Peputapeck, F.E. Alberts, Tensile behavior of a new single-crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures, JMEP 3(1) (1994) 73-81. [42] Inconel 718. <http://www.specialmetals.com/documents/Inconel%20alloy%20718.pdf>). [43] Haynes 230 Alloy. ). [44] H.J. Grabke, G.H. Meier, Accelerated Oxidation, Internal Oxidation, Intergranular Oxidation, and Pesting of Intermetallic Compounds, Oxidation of Metals 44(1-2) (1995) 147-176. [45] C.G. Mckamey, P.F. Tortorelli, J.H. Devan, C.A. Carmichael, A Study of Pest Oxidation in Polycrystalline Mosi2, Journal of Materials Research 7(10) (1992) 2747-2755. [46] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, A review of very-high-temperature Ni-silicide-based composites, Metallurgical and Materials Transactions A 34 (2003) 2043-2052.
|