帳號:guest(3.137.213.98)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李立陽
作者(外文):Lee, Li Yang
論文名稱(中文):耐火高熵合金Al-Mo-Nb-Ta-Ti-Zr 添加Si與Ni對微結構及性質影響之研究
論文名稱(外文):Study on the effects of Si, Ni addition on the properties of Al-Mo-Nb-Ta-Ti-Zr refractory high-entropy alloys
指導教授(中文):葉均蔚
指導教授(外文):Yeh, Jien Wei
口試委員(中文):洪健龍
楊智超
孫道中
李英杰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031572
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:167
中文關鍵詞:耐火高熵合金
外文關鍵詞:refractory high-entropy alloys
相關次數:
  • 推薦推薦:0
  • 點閱點閱:105
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
以五元或五元以上近等莫耳元素組成之高熵合金設計概念已逐漸受國內外矚目。美國空軍實驗室首先將高熵合金概念結合耐火元素組成,於2010年開始發表一系列耐火高熵合金,第一組耐火高熵合金 NbTaMoW、VNbTaMoW,具有優異的高溫壓縮強度 (1600°C時為477 MPa),但其缺點為室溫延性不佳且密度過高,因此不利於實際應用,隨後又發表第二組耐火高熵合金HfNbTaTiZr,其室溫壓縮塑性應變量大於50%,具有很好的延性,但其高溫強度仍不足夠,且抗氧化性不佳,因此本實驗室以HfNbTaTiZr 為基底開始進行一系列的合金設計改良。
由先前學長研究發現,HfNbTaTiZr添加Al、Si皆能有效提升高溫抗氧化能力,而添加Mo、Si能使高溫強度提升,綜合以上考量設計出本研究之耐火高熵合金Al-Mo-Nb-Ta-Ti-Zr,對Mo增量與微量添加Si跟Ni探討其對合金性質之影響。
由實驗結果得知,四種合金皆為BCC之結構,其中添加Si之合金有矽化物 (hexagonal結構) 峰值出現;高溫強度方面,Mo增量、Si添加皆使強度上升,但Ni添加不利於高溫強度;高溫抗氧化方面,Si添加對合金抗氧化力有明顯幫助,Mo與Ni則有負面的影響。
綜合來看,本研究表現最佳之AS合金兼顧了室溫延性、高溫強度及高溫抗氧化能力,且900 °C以上高溫強度更勝商用單晶鎳基超合金CMSX-4,具有高溫應用的潛力。
The concept of high-entropy alloy which combines equal or nearly equal quantities of elements has received lots of attention and research. Air Force Research Laboratory first reported refractory high-entropy alloy NbTaMoW and VNbTaMoW based on this concept in 2010. VNbTaMoW has high compressive yield strength of 1246 MPa at room temperature and excellent compressive yield strength of 477 MPa at 1600 °C, but has poor room-temperature ductility and much higher density. Afterwards, they reported new refractory high-entropy alloy HfNbTaTiZr with excellent ductility at room temperature and lower density. But, this alloy has poor oxidation resistance and low high-temperature strength. In order to overcome these drawbacks, our laboratory developed new compositions based on HfNbTaTiZr in recent years.
From the previous studies in our laboratory, we found the addition of Al and Si in HfNbTaTiZr effectively enhances high-temperature oxidation resistance and the addition of Mo and Si improves high-temperature strength. So, refractory high-entropy alloy Al-Mo-Nb-Ta-Ti-Zr is designed in this study. Besides, the increment of Mo and the addition of Ni, Si will also be studied to see their effects on microstructure, mechanical properties and oxidation resistance.
X-ray patterns show that all Al-Mo-Nb-Ta-Ti-Zr series are single BCC crystal structure with the exception that AS alloy appears silicide peaks (hexagonal structure). Furthermore, the addition of Si improves high-temperature strength and oxidation resistance. However, the increment of Mo shows negative impact on oxidation resistance and Ni shows negative impact on all high-temperature property.
On the whole, AS alloy has the best room-temperature ductility and high-temperature strength. In addition, the high-temperature strength of this alloy is better than that of single-crystal Ni-based superalloy CMSX-4 up to 1100 °C. Therefore, this alloy is very promising in high temperature applications.
壹、 前言 1
貳、 文獻回顧 3
2.1 鎳基超合金發展與應用 3
2.2 耐火合金 5
2.2.1 鈮合金[1] 7
2.3 高熵合金[28] 9
2.3.1 開發背景 9
2.3.2 高熵合金的特性 11
2.3.3 耐火高熵合金 13
參、 實驗步驟 52
3.1 合金製備及實驗流程 52
3.1.1 合金設計 52
3.1.2 實驗流程 55
3.1.3 真空電弧熔煉 55
3.2 密度量測 56
3.3 機械性質量測 56
3.3.1 硬度量測 56
3.3.2 常溫壓縮試驗 57
3.3.3 高溫壓縮試驗 57
3.4 氧化增重試驗 60
3.5 微結構觀察 61
3.5.1 掃描式電子顯微鏡 61
3.5.2 X-ray 繞射分析 61
肆、 結果與討論 63
4.1 晶體結構、微結構與基本性質 63
4.1.1 晶體結構分析 63
4.1.2 微結構分析 66
4.1.3 合金之基本性質 74
4.2 壓縮試驗 80
4.2.1 常溫壓縮 80
4.2.2 高溫壓縮 87
4.3 氧化增重試驗 117
4.3.1 700 °C 氧化增重 118
4.3.2 900 °C氧化增重 129
4.3.3 1100 °C氧化增重 139
4.3.4 抗氧化性比較與氧化層成長機制探討 149
伍、 結論 156
陸、 本研究貢獻與未來研究方向 161
柒、 參考文獻 163
[1] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, A review of very-high-temperature Nb-silicide-based composites, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 34A(10) (2003) 2043-2052.
[2] D.M. Dimiduk, J.H. Perepezko, Mo-Si-B alloys developing a revolutionary turbine-engine material, MRS Bulletin 28(9) (2003) 639-645.
[3] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, M.G. Mendiratta, J.J. Lewandowski, Ultrahigh-temperature Nb-silicide-based composites, MRS Bulletin 28 (2003) 646-653.
[4] J.H. Perepezko, The Hotter the Engine, the Better, Science 326(5956) (2009) 1068-1069.
[5] J.A. Lemberg, R.O. Ritchie, Mo-Si-B alloys for ultrahigh-temperature structural applications, Advanced Materials 24(26) (2012) 3445-3480.
[6] P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating, Advanced Engineering Materials 6(1-2) (2004) 74-78.
[7] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 35A(5) (2004) 1465-1469.
[8] C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, S.K. Chen, T.T. Shun, S.Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A 36(5) (2005) 1263-1271.
[9] C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, S.J. Lin, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 36A(4) (2005) 881-893.
[10] J.W. Yeh, Recent progress in high-entropy alloys, Annales De Chimie-Science Des Materiaux 31(6) (2006) 633-648.
[11] Y.L. Chou, J.W. Yeh, H.C. Shih, Effect of Molybdenum on the Pitting Resistance of Co1.5CrFeNi1.5Ti0.5Mox Alloys in Chloride Solutions, Corrosion 67(8) (2011) 0850021-0850026.
[12] C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, S.K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys, Materials Science and Engineering A 528(10-11) (2011) 3581-3588.
[13] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Materialia 59(16) (2011) 6308-6317.
[14] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Materialia 61(13) (2013) 4887-4897.
[15] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and Properties of High-entropy Alloys, Progress in Materials Science 61 (2014) 1-93.
[16] M.H. Tsai, J.W. Yeh, High-Entropy Alloys: A Critical Review, Materials Research Letters 2(3) (2014) 107-123.
[17] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765.
[18] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb(25)Mo(25)Ta(25)W(25) and V(20)Nb(20)Mo(20)Ta(20)W(20) refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706.
[19] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, Journal of Alloys and Compounds 509(20) (2011) 6043-6048.
[20] O. Senkov, J. Scott, S. Senkova, F. Meisenkothen, D. Miracle, C. Woodward, Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy, Journal of Materials Science 47(9) (2012) 4062-4074.
[21] O.N. Senkov, C.F. Woodward, Microstructure and properties of a refractory NbCrMo(0.5)Ta(0.5)TiZr alloy, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 529 (2011) 311-320.
[22] 張嘉修, 耐火高熵合金 Alx-Hf-Nb-Ta-Ti-Zr (x=0, 0.3, 0.5, 0.75, 1.0) 之研究, 碩士論文, 國立清華大學材料科學工程研究所, 2013.
[23] 洪奕平, Si 添加對 Al-Hf-Nb-Ta-Ti-Zr 耐火高熵合金性質之影響, 碩士論文, 國立清華大學材料科學工程研究所, 2014.
[24] 蔡孟哲, 耐火高熵合金Al-Hf-Mo-Nb-Ta-Ti-Zr添加 Cr與Si對微結構及性質影響之研究, 碩士論文, 國立清華大學材料科學工程研究所, 2015.
[25] C.T. Sims, 70-GT-24, ASTM Tech. Pub., USA, 1970.
[26] C.T. Sims, W.C. Hagel, The Superalloys, John Wiley & Sons, New York, 1972.
[27] 黃聖閔, TiC與Co1.5CrFeNi1.5Ti0.5燒結瓷金之製程與機械性質研究, 碩士論文, 國立清華大學材料科學工程研究所, 2006.
[28] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials 6(5) (2004) 299-303.
[29] J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 35A(8) (2004) 2533-2536.
[30] 賴高廷, 高亂度合金微結構及性質探討, 碩士論文, 國立清華大學材料科學工程研究所, 1998.
[31] 黃炳剛, 多元高熵合金於熱熔射塗層之研究, 碩士論文, 國立清華大學材料科學工程研究所, 2003.
[32] 張慧紋, 以反應式直流濺鍍法製備Al-Cr-Mo-Si-Ti高熵合金氮化物薄膜及其性質探討, 碩士論文, 國立清華大學材料科學工程研究所, 2005.
[33] O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward, Mechanical properties of low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system, Materials Science and Engineering A 565(10) (2013) 51-62.
[34] O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis, Acta materialia 61 (2013) 1545-1557.
[35] C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang, Microstructure and oxidation behavior of new refractory high entropy alloys, Journal of Alloys and compounds 583 (2014) 162-169.
[36] 蔡坤佑, 高熵合金之高熵效應及緩慢擴散效應探討, 博士論文, 國立清華大學材料科學工程研究所, 2013.
[37] R.L. Fleischer, Solution hardening, Acta metallurgica 9(11) (1961) 996.
[38] R. Fleischer, Solution hardening by tetragonal dist ortions: Application to irradiation hardening in F.C.C. crystals, Acta metallurgica 10(9) (1962) 835-842.
[39] R.L. Fleischer, Substitutional solution hardening, Acta metallurgica 11(3) (1963) 203-209.
[40] G.E. Dieter, Mechanical metallurgy, McGraw-Hill.
[41] A. Sengupta, S.K. Putatunda, L. Bartosiewicz, J. Hangas, P.J. Nailos, M. Peputapeck, F.E. Alberts, Tensile behavior of a new single-crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures, JMEP 3(1) (1994) 73-81.
[42] Inconel 718. <http://www.specialmetals.com/documents/Inconel%20alloy%20718.pdf>).
[43] Haynes 230 Alloy. ).
[44] H.J. Grabke, G.H. Meier, Accelerated Oxidation, Internal Oxidation, Intergranular Oxidation, and Pesting of Intermetallic Compounds, Oxidation of Metals 44(1-2) (1995) 147-176.
[45] C.G. Mckamey, P.F. Tortorelli, J.H. Devan, C.A. Carmichael, A Study of Pest Oxidation in Polycrystalline Mosi2, Journal of Materials Research 7(10) (1992) 2747-2755.
[46] B.P. Bewlay, M.R. Jackson, J.C. Zhao, P.R. Subramanian, A review of very-high-temperature Ni-silicide-based composites, Metallurgical and Materials Transactions A 34 (2003) 2043-2052.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *