帳號:guest(18.226.88.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳美萱
作者(外文):Wu, Mei Hsuan
論文名稱(中文):單層至少數層二硒化鉬奈米粒子之合成、性質及壓電響應研究
論文名稱(外文):Single- and Few-Layers MoSe2 Nanoflowers: Synthesis, Characterization, and Their Piezoresponse
指導教授(中文):吳志明
指導教授(外文):Wu, Jyh-Ming
口試委員(中文):陳柏宇
林宗宏
口試委員(外文):Chen, Po-Yu
Lin, Zong-Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031552
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:81
中文關鍵詞:二維過渡金屬硫族化物二硒化鉬水熱法壓電效應壓電觸媒
外文關鍵詞:two dimensional transition metal dichalcogenidemolybdenum diselenidepiezoelectric responsehydrothermal methodpiezo- catalyst
相關次數:
  • 推薦推薦:0
  • 點閱點閱:68
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用水熱法合成二硒化鉬奈米粒子。二硒化鉬屬於過度金屬硫族化物,具有Se-Mo-Se為單位堆疊之層狀結構,屬於由掃描式電子顯微鏡影像可知二硒化鉬奈米粒子具有均勻粒子尺寸,其粒子直徑小於1微米;經由X光繞射、高解析穿透式電子顯微鏡影像及拉曼光譜儀分析,確認為具有可靠純度以及良好結晶性之二硒化鉬(2H-MoSe2, 六方晶結構),並且用有豐富的單層至少數層結構。穿透式電子顯微鏡影像顯示水熱法合成之二硒化鉬奈米粒子晶體結構中層與層間距為0.67nm,與X光繞射圖譜之分析結果互相符合。透過X光光電子能譜儀以及能量散步分析儀之分析確認水熱法合成二硒化鉬奈米粒子具有均勻之組成,且不存在氧化鉬之雜質。高角度環狀暗場影像中亦沒有顯著介面結構。
進一步利用壓電響應力顯微鏡以及穿隧原子力顯微鏡分析分別證實水熱法合成二硒化鉬之正、逆壓電特性。基於此一材料特性,對二硒化鉬奈米粒子進行壓電觸媒實驗分析,結果顯示10mg二硒化鉬奈米粒子在超音波震盪作為外加應力源之狀況下能在120秒將50ml 10ppm羅丹明染料水溶液降解至完全透明。
We demonstrate a hydrothermal process to synthesize single to few layers MoSe2 nanoflowers which exhibit a reliable purity and cristallinity. The crystal structure of the MoSe2 nanoflowers has been confirmed by X-ray diffraction pattern, Raman, and High-resolution transmission electron microscopy (HRTEM). On the basis of the scanning electron microscope (SEM) image, the size of the MoSe2 nanoflowers obsess diameter less than 1μm. HRTEM image reveals that the MoSe2 nanoflowers possess a great number of the single- and few-layers, which further confirms that our nanoflowers display the plentiful amount of active surface sites. In addition, the lattice fringes between each single layer is about 0.67 nm, which is slightly larger than the reported value of 0.62 nm for the MoSe2. The piezoresponse force microscopy and tunneling atomic force microscopy analysis further support that the MoSe2 nanoflowers exhibits significantly piezoelectric potential which is generated from the active surface sites of the petals in the MoSe2 nanoflowers. Through the piezocatalyst experiment we reveal that these MoSe2 nanoflowers can successful turn dye solution in 120 second with assist of ultrasonic vibration as a mechanical force to induce piezocatalytic activity.
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 4
2.1 光觸媒(Photocatalyst) 4
2.1.1 傳統光觸媒材料 6
2.1.2 修飾光觸媒提升其效能 10
2.2 壓電效應應用於光觸媒系統(Photocatalyst system) 14
2.2.1 壓電效應(piezoelectric effect) 14
2.2.2 壓電勢(Piezo-potential)促進氧化鋅光觸媒對有機染料之降解效果 14
2.3 壓電觸媒 17
2.3.1 二維過渡金屬硫族化物材料具有壓電效應 17
2.3.2 壓電觸媒 21
2.3.3 二硫化鉬奈米花作為壓電觸媒之表現 23
2.4 二硒化鉬 27
2.5 二硒化鉬合成方式 29
2.5.1 化學氣相沉積法(chemical vapor deposition;CVD) 29
2.5.2 水熱法(hydrothermal method) 31
2.6 二硒化鉬於觸媒領域之應用 34
2.6.1 光觸媒 34
2.6.2 染料敏化電池(Dye-sensitized solar cell) 37
2.6.3 產氫 40
第三章 實驗方法與步驟 42
3.1 前驅物製備 43
3.2 水熱法製程 44
3.3 材料特性分析 45
3.3.1 場發射掃描式電子顯微鏡 45
3.3.2 WAG廣角X光繞射儀 46
3.3.3 拉曼光譜儀 47
3.3.4 高解析穿透式電子顯微鏡暨能量散佈分析儀器 48
3.3.5 X光光電子能能譜儀 49
3.3.6 壓電響應力顯微鏡 50
3.3.7 穿隧原子力顯微鏡 51
3.3.8 壓電觸媒 52
第四章 結果與討論 54
4.1 掃描式電子顯微鏡表面形貌分析 54
4.2 X光繞射之結構與成分分析 57
4.3 高解析穿透式電子顯微鏡暨能量散佈分析儀器之晶體結構分析 59
4.4 拉曼光譜分析 62
4.5 X光光電子能譜分析 64
4.6 壓電性質分析 66
4.7 壓電觸媒催化實驗與分析 69
4.7.1 壓電催化染料降解 69
4.7.2 壓電催化染料分解機制 71
第五章 結論 73
第六章 未來展望 74
第七章 參考文獻 75
1. Ni, M., et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425.
2. Chen, X., et al., Semiconductor-based photocatalytic hydrogen generation. Chemical reviews, 2010. 110(11): p. 6503-6570.
3. Konstantinou, I.K. and T.A. Albanis, TiO 2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 2004. 49(1): p. 1-14.
4. Turchi, C.S. and D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of catalysis, 1990. 122(1): p. 178-192.
5. Ibáñez, J.A., M.I. Litter, and R.A. Pizarro, Photocatalytic bactericidal effect of TiO 2 on Enterobacter cloacae: comparative study with other Gram (−) bacteria. Journal of Photochemistry and photobiology A: Chemistry, 2003. 157(1): p. 81-85.
6. Nakata, K. and A. Fujishima, TiO 2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012. 13(3): p. 169-189.
7. Fujishima, A., X. Zhang, and D.A. Tryk, TiO 2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582.
8. Schneider, J., et al., Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews, 2014. 114(19): p. 9919-9986.
9. Hadjiivanov, K.I. and D.G. Klissurski, Surface chemistry of titania (anatase) and titania-supported catalysts. Chemical Society Reviews, 1996. 25(1): p. 61-69.
10. Linsebigler, A.L., G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 1995. 95(3): p. 735-758.
11. Lai, Y., et al., Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Applied Catalysis B: Environmental, 2011. 105(3): p. 335-345.
12. Xu, A.-W., Y. Gao, and H.-Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO 2 nanoparticles. Journal of Catalysis, 2002. 207(2): p. 151-157.
13. Chiang, L.-F. and R.-a. Doong, Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO 2 with low Cu addition. Separation and Purification Technology, 2015. 156: p. 1003-1010.
14. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 2001. 293(5528): p. 269-271.
15. Li, R., et al., Efficient photocatalysts from polymorphic cuprous oxide/zinc oxide microstructures. RSC Advances, 2015. 5(16): p. 11917-11924.
16. Saravanan, R., et al., Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn 2 O 3. Journal of the Taiwan Institute of Chemical Engineers, 2014. 45(4): p. 1910-1917.
17. Song, K.Y., et al., Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties. Chemistry of materials, 2001. 13(7): p. 2349-2355.
18. Wang, P., et al., Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Physical Chemistry Chemical Physics, 2012. 14(28): p. 9813-9825.
19. Wang, P., et al., Ag@ AgCl: a highly efficient and stable photocatalyst active under visible light. Angewandte Chemie International Edition, 2008. 47(41): p. 7931-7933.
20. Chen, W.-T. and Y.-J. Hsu, L-cysteine-assisted growth of core− satellite ZnS− Au nanoassemblies with high photocatalytic efficiency. Langmuir, 2009. 26(8): p. 5918-5925.
21. Sun, L., et al., Plasmonic Ag@ AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst. ACS applied materials & interfaces, 2014. 6(17): p. 14819-14826.
22. Matsumura, M., et al., Cadmium sulfide photocatalyzed hydrogen production from aqueous solutions of sulfite: effect of crystal structure and preparation method of the catalyst. The Journal of Physical Chemistry, 1985. 89(8): p. 1327-1329.
23. Zyoud, A.H., et al., CdS-sensitized TiO 2 in phenazopyridine photo-degradation: Catalyst efficiency, stability and feasibility assessment. Journal of Hazardous Materials, 2010. 173(1): p. 318-325.
24. Janet, C. and R. Viswanath, Large scale synthesis of CdS nanorods and its utilization in photo-catalytic H2 production. Nanotechnology, 2006. 17(20): p. 5271.
25. Yu, C., et al., Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Advanced Materials, 2014. 26(6): p. 892-898.
26. Zhou, W., et al., Interface dominated high photocatalytic properties of electrostatic self-assembled Ag2O/TiO 2 heterostructure. Physical Chemistry Chemical Physics, 2010. 12(45): p. 15119-15123.
27. You, Y., et al., Effect of different doping methods on microstructure and photo-catalytic activity of Ag 2 O–TiO 2 nanofibers. Materials Research Bulletin, 2010. 45(12): p. 1850-1854.
28. Xue, X., et al., Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy, 2015. 13: p. 414-422.
29. Starr, M.B. and X. Wang, Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Scientific reports, 2013. 3.
30. Lin, H., et al., Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb (Zr0. 52Ti0. 48) O3 fibers. Applied Physics Letters, 2014. 104(16): p. 162907.
31. Wu, J.M., et al., Piezo‐Catalytic Effect on the Enhancement of the Ultra‐High Degradation Activity in the Dark by Single‐and Few‐Layers MoS2 Nanoflowers. Advanced Materials, 2016. 28(19): p. 3718-3725.
32. Duerloo, K.-A.N., M.T. Ong, and E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. The Journal of Physical Chemistry Letters, 2012. 3(19): p. 2871-2876.
33. Wang, Z.L., Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010. 5(6): p. 540-552.
34. Wang, X., et al., Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS nano, 2014. 8(5): p. 5125-5131.
35. Sun, D., et al., Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chemistry of Materials, 2015. 27(8): p. 3167-3175.
36. Chen, X. and R. Fan, Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chemistry of materials, 2001. 13(3): p. 802-805.
37. Coleman, J.N., et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011. 331(6017): p. 568-571.
38. Larentis, S., B. Fallahazad, and E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Applied Physics Letters, 2012. 101(22): p. 223104.
39. Miao, R., et al., Mesoporous TiO 2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Applied Catalysis B: Environmental, 2016. 189: p. 26-38.
40. Ren, W., et al., Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO 2. Applied Catalysis B: Environmental, 2007. 69(3): p. 138-144.
41. Rajbongshi, B.M. and S. Samdarshi, Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum. Applied Catalysis B: Environmental, 2014. 144: p. 435-441.
42. Zheng, Y., et al., Synthesis of hierarchical TiO 2/SnO 2 photocatalysts with different morphologies and their application for photocatalytic reduction of Cr (VI). Materials Letters, 2016.
43. Wang, Z.L. and W. Wu, Piezotronics and piezo-phototronics: fundamentals and applications. National Science Review, 2014. 1(1): p. 62-90.
44. 池田拓郎, 陳., 基本壓電材料學 Fundamentals of Piezoelectric Materials Science. 1985, 台灣台南: 復漢出版社.
45. Alyörük, M.M., et al., Promising piezoelectric performance of single layer transition-metal dichalcogenides and dioxides. The Journal of Physical Chemistry C, 2015. 119(40): p. 23231-23237.
46. Andersen, B., et al., Performance of piezoelectric ceramic multilayer components based on hard and soft PZT. Proceedings of Actuator 2000, 2000: p. 419-422.
47. Muralt, P., et al., Piezoelectric actuation of PZT thin-film diaphragms at static and resonant conditions. Sensors and Actuators A: Physical, 1996. 53(1): p. 398-404.
48. Xu, C.-N., et al., Electrical power generation characteristics of PZT piezoelectric ceramics. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1998. 45(4): p. 1065-1070.
49. Tressler, J.F., S. Alkoy, and R.E. Newnham, Piezoelectric sensors and sensor materials. Journal of electroceramics, 1998. 2(4): p. 257-272.
50. Gururaja, T., et al., Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Sonics Ultrason, 1985. 32(19985): p. 481-498.
51. Furukawa, T., K. Ishida, and E. Fukada, Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics, 1979. 50(7): p. 4904-4912.
52. Chang, Y.-H., et al., Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS nano, 2014. 8(8): p. 8582-8590.
53. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 2013. 5(4): p. 263-275.
54. Kumar, A. and P. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. The European Physical Journal B, 2012. 85(6): p. 1-7.
55. Tongay, S., et al., Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano letters, 2012. 12(11): p. 5576-5580.
56. Zhang, Y., et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature nanotechnology, 2014. 9(2): p. 111-115.
57. Yun, W.S., et al., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X 2 semiconductors (M= Mo, W; X= S, Se, Te). Physical Review B, 2012. 85(3): p. 033305.
58. Buscema, M., et al., Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 2015. 44(11): p. 3691-3718.
59. Lai, Y., et al., Two-dimensional graphene-like MoSe 2 nanosheets anchored on hollow carbon nanofibers as a cathode catalyst for rechargeable Li–O 2 batteries. Rsc Advances, 2016. 6(24): p. 19843-19847.
60. Wang, H., et al., MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano letters, 2013. 13(7): p. 3426-3433.
61. Shaw, J.C., et al., Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research, 2014. 7(4): p. 511-517.
62. Vishwanath, S., et al., Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Materials, 2015. 2(2): p. 024007.
63. Xenogiannopoulou, E., et al., High-quality, large-area MoSe 2 and MoSe 2/Bi 2 Se 3 heterostructures on AlN (0001)/Si (111) substrates by molecular beam epitaxy. Nanoscale, 2015. 7(17): p. 7896-7905.
64. Tang, H., et al., Hydrothermal synthesis of 3D hierarchical flower-like MoSe 2 microspheres and their adsorption performances for methyl orange. Applied Surface Science, 2016. 379: p. 296-303.
65. Kong, D., et al., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano letters, 2013. 13(3): p. 1341-1347.
66. Dai, C., et al., Novel MoSe 2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes. Nanoscale, 2015. 7(47): p. 19970-19976.
67. Lee, L.T.L., et al., Few-layer MoSe2 possessing high catalytic activity towards iodide/tri-iodide redox shuttles. Scientific reports, 2014. 4.
68. Ambrosi, A., Z. Sofer, and M. Pumera, 2H→ 1T phase transition and hydrogen evolution activity of MoS 2, MoSe 2, WS 2 and WSe 2 strongly depends on the MX 2 composition. Chemical Communications, 2015. 51(40): p. 8450-8453.
69. 許如宏 and 林鶴南, 原子力顯微術於奈米加工之應用. 物理雙月刊, 2003. 25(5): p. 620-631.
70. Yang, L., et al., Lattice strain effects on the optical properties of MoS2 nanosheets. Scientific reports, 2014. 4.
71. Tonndorf, P., et al., Photoluminescence emission and Raman response of monolayer MoS 2, MoSe 2, and WSe 2. Optics express, 2013. 21(4): p. 4908-4916.
72. Terrones, H., et al., New first order Raman-active modes in few layered transition metal dichalcogenides. Scientific reports, 2014. 4.
73. Late, D.J., et al., Thermal Expansion, Anharmonicity and Temperature‐Dependent Raman Spectra of Single‐and Few‐Layer MoSe2 and WSe2. ChemPhysChem, 2014. 15(8): p. 1592-1598.
74. Lu, X., et al., Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano letters, 2014. 14(5): p. 2419-2425.
75. Abdallah, W.e.A. and A. Nelson, Characterization of MoSe 2 (0001) and ion-sputtered MoSe 2 by XPS. Journal of materials science, 2005. 40(9): p. 2679-2681.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *