|
1. Ni, M., et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425. 2. Chen, X., et al., Semiconductor-based photocatalytic hydrogen generation. Chemical reviews, 2010. 110(11): p. 6503-6570. 3. Konstantinou, I.K. and T.A. Albanis, TiO 2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 2004. 49(1): p. 1-14. 4. Turchi, C.S. and D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of catalysis, 1990. 122(1): p. 178-192. 5. Ibáñez, J.A., M.I. Litter, and R.A. Pizarro, Photocatalytic bactericidal effect of TiO 2 on Enterobacter cloacae: comparative study with other Gram (−) bacteria. Journal of Photochemistry and photobiology A: Chemistry, 2003. 157(1): p. 81-85. 6. Nakata, K. and A. Fujishima, TiO 2 photocatalysis: design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012. 13(3): p. 169-189. 7. Fujishima, A., X. Zhang, and D.A. Tryk, TiO 2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582. 8. Schneider, J., et al., Understanding TiO2 photocatalysis: mechanisms and materials. Chemical reviews, 2014. 114(19): p. 9919-9986. 9. Hadjiivanov, K.I. and D.G. Klissurski, Surface chemistry of titania (anatase) and titania-supported catalysts. Chemical Society Reviews, 1996. 25(1): p. 61-69. 10. Linsebigler, A.L., G. Lu, and J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chemical reviews, 1995. 95(3): p. 735-758. 11. Lai, Y., et al., Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Applied Catalysis B: Environmental, 2011. 105(3): p. 335-345. 12. Xu, A.-W., Y. Gao, and H.-Q. Liu, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO 2 nanoparticles. Journal of Catalysis, 2002. 207(2): p. 151-157. 13. Chiang, L.-F. and R.-a. Doong, Enhanced photocatalytic degradation of sulfamethoxazole by visible-light-sensitive TiO 2 with low Cu addition. Separation and Purification Technology, 2015. 156: p. 1003-1010. 14. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. science, 2001. 293(5528): p. 269-271. 15. Li, R., et al., Efficient photocatalysts from polymorphic cuprous oxide/zinc oxide microstructures. RSC Advances, 2015. 5(16): p. 11917-11924. 16. Saravanan, R., et al., Visible light degradation of textile effluent using novel catalyst ZnO/γ-Mn 2 O 3. Journal of the Taiwan Institute of Chemical Engineers, 2014. 45(4): p. 1910-1917. 17. Song, K.Y., et al., Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties. Chemistry of materials, 2001. 13(7): p. 2349-2355. 18. Wang, P., et al., Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Physical Chemistry Chemical Physics, 2012. 14(28): p. 9813-9825. 19. Wang, P., et al., Ag@ AgCl: a highly efficient and stable photocatalyst active under visible light. Angewandte Chemie International Edition, 2008. 47(41): p. 7931-7933. 20. Chen, W.-T. and Y.-J. Hsu, L-cysteine-assisted growth of core− satellite ZnS− Au nanoassemblies with high photocatalytic efficiency. Langmuir, 2009. 26(8): p. 5918-5925. 21. Sun, L., et al., Plasmonic Ag@ AgCl nanotubes fabricated from copper nanowires as high-performance visible light photocatalyst. ACS applied materials & interfaces, 2014. 6(17): p. 14819-14826. 22. Matsumura, M., et al., Cadmium sulfide photocatalyzed hydrogen production from aqueous solutions of sulfite: effect of crystal structure and preparation method of the catalyst. The Journal of Physical Chemistry, 1985. 89(8): p. 1327-1329. 23. Zyoud, A.H., et al., CdS-sensitized TiO 2 in phenazopyridine photo-degradation: Catalyst efficiency, stability and feasibility assessment. Journal of Hazardous Materials, 2010. 173(1): p. 318-325. 24. Janet, C. and R. Viswanath, Large scale synthesis of CdS nanorods and its utilization in photo-catalytic H2 production. Nanotechnology, 2006. 17(20): p. 5271. 25. Yu, C., et al., Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Advanced Materials, 2014. 26(6): p. 892-898. 26. Zhou, W., et al., Interface dominated high photocatalytic properties of electrostatic self-assembled Ag2O/TiO 2 heterostructure. Physical Chemistry Chemical Physics, 2010. 12(45): p. 15119-15123. 27. You, Y., et al., Effect of different doping methods on microstructure and photo-catalytic activity of Ag 2 O–TiO 2 nanofibers. Materials Research Bulletin, 2010. 45(12): p. 1850-1854. 28. Xue, X., et al., Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy, 2015. 13: p. 414-422. 29. Starr, M.B. and X. Wang, Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials. Scientific reports, 2013. 3. 30. Lin, H., et al., Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb (Zr0. 52Ti0. 48) O3 fibers. Applied Physics Letters, 2014. 104(16): p. 162907. 31. Wu, J.M., et al., Piezo‐Catalytic Effect on the Enhancement of the Ultra‐High Degradation Activity in the Dark by Single‐and Few‐Layers MoS2 Nanoflowers. Advanced Materials, 2016. 28(19): p. 3718-3725. 32. Duerloo, K.-A.N., M.T. Ong, and E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. The Journal of Physical Chemistry Letters, 2012. 3(19): p. 2871-2876. 33. Wang, Z.L., Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today, 2010. 5(6): p. 540-552. 34. Wang, X., et al., Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS nano, 2014. 8(5): p. 5125-5131. 35. Sun, D., et al., Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chemistry of Materials, 2015. 27(8): p. 3167-3175. 36. Chen, X. and R. Fan, Low-temperature hydrothermal synthesis of transition metal dichalcogenides. Chemistry of materials, 2001. 13(3): p. 802-805. 37. Coleman, J.N., et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011. 331(6017): p. 568-571. 38. Larentis, S., B. Fallahazad, and E. Tutuc, Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Applied Physics Letters, 2012. 101(22): p. 223104. 39. Miao, R., et al., Mesoporous TiO 2 modified with carbon quantum dots as a high-performance visible light photocatalyst. Applied Catalysis B: Environmental, 2016. 189: p. 26-38. 40. Ren, W., et al., Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO 2. Applied Catalysis B: Environmental, 2007. 69(3): p. 138-144. 41. Rajbongshi, B.M. and S. Samdarshi, Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum. Applied Catalysis B: Environmental, 2014. 144: p. 435-441. 42. Zheng, Y., et al., Synthesis of hierarchical TiO 2/SnO 2 photocatalysts with different morphologies and their application for photocatalytic reduction of Cr (VI). Materials Letters, 2016. 43. Wang, Z.L. and W. Wu, Piezotronics and piezo-phototronics: fundamentals and applications. National Science Review, 2014. 1(1): p. 62-90. 44. 池田拓郎, 陳., 基本壓電材料學 Fundamentals of Piezoelectric Materials Science. 1985, 台灣台南: 復漢出版社. 45. Alyörük, M.M., et al., Promising piezoelectric performance of single layer transition-metal dichalcogenides and dioxides. The Journal of Physical Chemistry C, 2015. 119(40): p. 23231-23237. 46. Andersen, B., et al., Performance of piezoelectric ceramic multilayer components based on hard and soft PZT. Proceedings of Actuator 2000, 2000: p. 419-422. 47. Muralt, P., et al., Piezoelectric actuation of PZT thin-film diaphragms at static and resonant conditions. Sensors and Actuators A: Physical, 1996. 53(1): p. 398-404. 48. Xu, C.-N., et al., Electrical power generation characteristics of PZT piezoelectric ceramics. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1998. 45(4): p. 1065-1070. 49. Tressler, J.F., S. Alkoy, and R.E. Newnham, Piezoelectric sensors and sensor materials. Journal of electroceramics, 1998. 2(4): p. 257-272. 50. Gururaja, T., et al., Piezoelectric composite materials for ultrasonic transducer applications. Part I: Resonant modes of vibration of PZT rod-polymer composites. IEEE Trans. Sonics Ultrason, 1985. 32(19985): p. 481-498. 51. Furukawa, T., K. Ishida, and E. Fukada, Piezoelectric properties in the composite systems of polymers and PZT ceramics. Journal of Applied Physics, 1979. 50(7): p. 4904-4912. 52. Chang, Y.-H., et al., Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS nano, 2014. 8(8): p. 8582-8590. 53. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 2013. 5(4): p. 263-275. 54. Kumar, A. and P. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. The European Physical Journal B, 2012. 85(6): p. 1-7. 55. Tongay, S., et al., Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano letters, 2012. 12(11): p. 5576-5580. 56. Zhang, Y., et al., Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nature nanotechnology, 2014. 9(2): p. 111-115. 57. Yun, W.S., et al., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X 2 semiconductors (M= Mo, W; X= S, Se, Te). Physical Review B, 2012. 85(3): p. 033305. 58. Buscema, M., et al., Photocurrent generation with two-dimensional van der Waals semiconductors. Chemical Society Reviews, 2015. 44(11): p. 3691-3718. 59. Lai, Y., et al., Two-dimensional graphene-like MoSe 2 nanosheets anchored on hollow carbon nanofibers as a cathode catalyst for rechargeable Li–O 2 batteries. Rsc Advances, 2016. 6(24): p. 19843-19847. 60. Wang, H., et al., MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano letters, 2013. 13(7): p. 3426-3433. 61. Shaw, J.C., et al., Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Research, 2014. 7(4): p. 511-517. 62. Vishwanath, S., et al., Comprehensive structural and optical characterization of MBE grown MoSe2 on graphite, CaF2 and graphene. 2D Materials, 2015. 2(2): p. 024007. 63. Xenogiannopoulou, E., et al., High-quality, large-area MoSe 2 and MoSe 2/Bi 2 Se 3 heterostructures on AlN (0001)/Si (111) substrates by molecular beam epitaxy. Nanoscale, 2015. 7(17): p. 7896-7905. 64. Tang, H., et al., Hydrothermal synthesis of 3D hierarchical flower-like MoSe 2 microspheres and their adsorption performances for methyl orange. Applied Surface Science, 2016. 379: p. 296-303. 65. Kong, D., et al., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano letters, 2013. 13(3): p. 1341-1347. 66. Dai, C., et al., Novel MoSe 2 hierarchical microspheres for applications in visible-light-driven advanced oxidation processes. Nanoscale, 2015. 7(47): p. 19970-19976. 67. Lee, L.T.L., et al., Few-layer MoSe2 possessing high catalytic activity towards iodide/tri-iodide redox shuttles. Scientific reports, 2014. 4. 68. Ambrosi, A., Z. Sofer, and M. Pumera, 2H→ 1T phase transition and hydrogen evolution activity of MoS 2, MoSe 2, WS 2 and WSe 2 strongly depends on the MX 2 composition. Chemical Communications, 2015. 51(40): p. 8450-8453. 69. 許如宏 and 林鶴南, 原子力顯微術於奈米加工之應用. 物理雙月刊, 2003. 25(5): p. 620-631. 70. Yang, L., et al., Lattice strain effects on the optical properties of MoS2 nanosheets. Scientific reports, 2014. 4. 71. Tonndorf, P., et al., Photoluminescence emission and Raman response of monolayer MoS 2, MoSe 2, and WSe 2. Optics express, 2013. 21(4): p. 4908-4916. 72. Terrones, H., et al., New first order Raman-active modes in few layered transition metal dichalcogenides. Scientific reports, 2014. 4. 73. Late, D.J., et al., Thermal Expansion, Anharmonicity and Temperature‐Dependent Raman Spectra of Single‐and Few‐Layer MoSe2 and WSe2. ChemPhysChem, 2014. 15(8): p. 1592-1598. 74. Lu, X., et al., Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano letters, 2014. 14(5): p. 2419-2425. 75. Abdallah, W.e.A. and A. Nelson, Characterization of MoSe 2 (0001) and ion-sputtered MoSe 2 by XPS. Journal of materials science, 2005. 40(9): p. 2679-2681.
|