帳號:guest(18.118.189.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭羽婷
作者(外文):Hsiao, Yu Ting
論文名稱(中文):單元至多元銅合金膜鍍製與固溶合金元素分離偏析之研究
論文名稱(外文):Deposition of Unitary to Multi-component Copper Alloy Films and Segregation of Alloyed Solute Elements
指導教授(中文):張守一
指導教授(外文):Chang, Shou Yi
口試委員(中文):陳育良
蔡哲瑋
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031548
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:94
中文關鍵詞:單元至多元銅合金薄膜擴散阻障層
外文關鍵詞:Unitary to Multi-component Copper Alloythin filmdiffusion barrier
相關次數:
  • 推薦推薦:0
  • 點閱點閱:94
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨半導體製程技術快速發展,銅導線之寬度及間距亦不斷縮小,為防止銅原子擴散進入矽元件中造成元件特性退化,因此須在銅導線與介電層之間加入一擴散阻障層。擴散阻障層材料發展中,使用二元以上過渡金屬化合物、疊層結構或高熵合金作為擴散阻障層材料皆已有許多良好的研究成果;但隨銅製程進入20 nm以下,擴散阻障層厚度亦須降至3 nm以下,然均勻鍍覆超薄擴散阻障層具有難度,因此近年研究指出,透過自形成法製作擴散阻障層,再經由極短時間低溫熱處理後,少量元素自銅膜分離偏析至銅與介電材料界面處,即可自形成奈米等級超薄膜之優點,但迄今仍未有文獻探討固溶合金元素分離偏析行為。本研究利用磁控濺鍍法製備單元至多元合金與銅合金薄膜,分析合金與銅合金膜性質,再經低溫退火處理單元至多元銅合金薄膜,以釐清固溶合金元素分離偏析之行為。研究結果顯示,單元至多元銅合金薄膜經由熱處理,元素添加數目不同,固溶合金元素分離偏析之行為不同;由能量觀點來探討固溶合金元素數目不同對於合金元素分離偏析之行為影響。
With the rapid development of copper metallization technology, the line spacing of integrated circuits is drastically reduced. To prevent rapid Cu diffusion and silicide formation in interconnect structures, diffusion barriers are strongly demanded. In recent years, more stable and diffusion-resistant barriers have been intensively studied, including those of ternary components, of layered structures and of multi-principal components (high-entropy materials and their stacking structures). Due to the difficulty in uniform depositions of ultrathin barrier layers in nanoscale trenches, self-forming diffusion barriers (barrierless metallization) have further been developed in the past few years. The segregation of minor alloying elements in Cu films to Cu/dielectric interfaces under thermal annealing will self-form an ultrathin barrier layer. Thus in this study, Cu alloy films were deposited on Si substrates by magnetron sputtering, and alloyed solute elements would segregate during thermal annealing. Experimental results indicated that, in the six Cu alloy films, different solute segregation behaviors were observed under the competition of mixing enthalpy and mixing entropy. For the Cu(V) alloy film, the solute segregated to the Cu/Si interface, dominated by the large positive mixing enthalpy of V and Cu. For the Cu(V,Nb), the Cu(V,Nb,Mo) and the Cu(V,Nb,Mo,Ta) alloy films, the solutes formed intermetallic compounds due to the negative mixing enthalpies and the low-to-medium mixing entropies of the solute elements. For the Cu(V,Nb,Mo,Ta,Cr) alloy film, the solutes again segregated to the Cu/Si interface owing to the high mixing entropy of the solute elements.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VIII
表目錄 XII
壹、 前言 1
貳、 文獻回顧 3
2-1積體電路多層內連線及擴散阻障層 3
2-1-1電阻-電容延遲效應 (RC Delay) 3
2-1-2 金屬內連線材料 4
2-1-3擴散阻障層 (Diffusion Barrier Layer) 5
2-1-4傳統擴散阻障層材料 6
2-1-5二元以上過渡金屬化合物擴散阻障層 7
2-1-6過渡金屬化合物疊層結構擴散阻障層 8
2-2多元合金及氮化物擴散阻障層 11
2-2-1多元合金及氮化物薄膜特性 12
2-2-2多元合金及氮化物擴散阻障層 15
2-2-3多元合金及氮化物擴散阻障機制 18
2-2-3-1擴散行為之基本理論 18
2-2-3-2原子大小對晶格扭曲之影響 22
2-2-3-3元素鍵結能對整體鍵結能之影響 24
2-2-3-4原子大小對堆積密度之影響 26
2-3自形成擴散阻障層 28
2-3-1自形成擴散阻障層之發展 28
2-3-2自形成擴散阻障層之材料選擇條件 30
2-3-3自形成擴散阻障層之微結構 31
2-3-4自形成擴散阻障層之多元合金材料 33
2-4研究目的 36
參、 實驗步驟 37
3-1實驗規劃 37
3-2實驗步驟 38
3-2-1靶材製備 38
3-2-2基板準備 38
3-2-3 1A-6A多元厚膜沉積 42
3-2-4 1A-6A多元薄膜沉積 42
3-2-5 銅合金薄膜沉積 44
3-2-6氣氛熱處理 44
3-3分析儀器 45
3-3-1場發射電子微探儀 (FE-EPMA) 45
3-3-2 X 光繞射儀 (XRD) 45
3-3-3場發射掃描式電子顯微鏡 (FE-SEM) 46
3-3-4四點探針 (Four-Point Probe) 46
3-3-5高解析穿透式電子顯微鏡 (HR-TEM) 46
肆、 結果與討論 47
4-1 靶材晶體結構分析 47
4-2 多元合金膜之性質分析 49
4-2-1多元合金厚膜之性質分析 (鍍膜功率:50W) 49
4-2-1-1多元合金厚膜之成分分析 49
4-2-1-2多元合金厚膜之晶體結構 51
4-2-1-3多元合金厚膜之表面形貌 53
4-2-2多元合金薄膜之性質分析 (鍍膜功率:15W) 55
4-2-2-1多元合金薄膜之成分分析 55
4-2-2-2多元合金薄膜之晶體結構 57
4-2-2-3多元合金薄膜之表面形貌 59
4-2-3多元合金膜之綜合比較 61
4-2-3-1多元合金薄膜之電阻率 61
4-3銅合金薄膜分析 63
4-3-1成分分析與表面形貌 63
4-3-2晶體結構 66
4-3-3電阻率 68
4-4銅合金薄膜 (熱處理後) 之性質分析 70
4-4-1晶體結構 70
4-4-2表面形貌 72
4-4-3電阻率 74
4-4-4微結構 76
伍、 結論 85
陸、 參考文獻 87
柒、 附錄 94
[1] S. P. Murarka and S. W. Hymes, “Copper metallization for ULSL and beyond”, Critical Reviews in Solid State and Material Sciences, 20 (1995) 87-124
[2] R. S. Muller, T. I. Kamins, M. Chan, and P. K. Ko, “Device electronics for integrated circuits”, (1986)
[3] K. H. Min, K. C. Chun, and K. B. Kim, “Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization”, Journal of Vacuum Science & Technology B, 14 (1996) 3263-3269
[4] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN microstructure on diffusion barrier properties in Cu metallization”, Journal of The Electrochemical Society, 145 (1998) 2164-2167
[5] R. Hübner, M. Hecker, N. Mattern, V. Hoffmann, K. Wetzig, H. Heuer, et al., “Effect of nitrogen content on the degradation mechanisms of thin Ta–Si–N diffusion barriers for Cu metallization”, Thin Solid Films, 500 (2006) 259-267
[6] S.-H. Kwon, O.-K. Kwon, J.-S. Min, and S.-W. Kang, “Plasma-Enhanced Atomic Layer Deposition of Ru–TiN Thin Films for Copper Diffusion Barrier Metals”, Journal of The Electrochemical Society, 153 (2006) G578-G581
[7] S. Rawal, D. Norton, H. Ajmera, T. Anderson, and L. McElwee-White, “Properties of Ta-Ge-(O) N as a diffusion barrier for Cu on Si”, Applied physics letters, 90 (2007) 51913-51913
[8] P. Majumder and C. G. Takoudis, “Investigation on the diffusion barrier properties of sputtered Mo/WN thin films in Cu interconnects”, Applied Physics Letters, 91 (2007) 162108-162108
[9] X.-P. Qu, J.-J. Tan, M. Zhou, T. Chen, Q. Xie, G.-P. Ru, et al., “Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization”, Applied physics letters, 88 (2006) 1912
[10] S.-Y. Chang and D.-S. Chen, “10-nm-thick quinary (AlCrTaTiZr) N film as effective diffusion barrier for Cu interconnects at 900 C”, Applied Physics Letters, 94 (2009) 231909
[11] S.-Y. Chang, C.-Y. Wang, M.-K. Chen, and C.-E. Li, “Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers”, Journal of Alloys and Compounds, 509 (2011) L85-L89
[12] S.-Y. Chang and D.-S. Chen, “Ultrathin (AlCrTaTiZr) N x/AlCrTaTiZr bilayer structures with high diffusion resistance for Cu interconnects”, Journal of The Electrochemical Society, 157 (2010) G154-G159
[13] S.-Y. Chang, C.-E. Li, S.-C. Chiang, and Y.-C. Huang, “4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr) N x as robust diffusion barrier for Cu interconnects”, Journal of Alloys and Compounds, 515 (2012) 4-7
[14] S. P. Murarka, “Multilevel interconnections for ULSI and GSI era”, Materials Science and Engineering: R: Reports, 19 (1997) 87-151
[15] R. Rosenberg, D. Edelstein, C.-K. Hu, and K. Rodbell, “Copper metallization for high performance silicon technology”, Annual review of materials science, 30 (2000) 229-262
[16] Y. Shacham-Diamand and S. Lopatin, “Integrated electroless metallization for ULSI”, Electrochimica Acta, 44 (1999) 3639-3649
[17] A. Noya and K. Sasaki, “Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System”, Japanese journal of applied physics, 30 (1991) L1760
[18] M. Stavrev, D. Fischer, A. Preuß, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta (N, O) diffusion barriers for use in Cu metallization”, Microelectronic engineering, 33 (1997) 269-275
[19] T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi, and M. Murakami, “Diffusion barrier property of TaN between Si and Cu”, Applied Surface Science, 99 (1996) 265-272
[20] J. Fang, J. Lin, B. Chen, and T. Chin, “Ultrathin Ru–Ta–C Barriers for Cu Metallization”, Journal of The Electrochemical Society, 158 (2011) H97-H102
[21] J.-S. Fang, C.-F. Chiu, J.-H. Lin, T.-Y. Lin, and T.-S. Chin, “Failure Mechanism of 5 nm Thick Ta–Si–C Barrier Layers Against Cu Penetration at 750–800° C”, Journal of The Electrochemical Society, 156 (2009) H147-H152
[22] B. Liu, J. Chen, X. Li, K. Wang, M. Li, D. Zhao, et al., “Investigation of amorphous Ni–Al–N film as diffusion barrier between Cu and SiO 2”, Journal of Alloys and Compounds, 509 (2011) 8093-8096
[23] Y.-L. Kuo, F.-C. Kung, and T.-L. Su, “Superior Stability of Ultrathin and Nanocrystalline TiZrN Films as Diffusion Barriers for Cu Metallization”, Nanoscience and Nanotechnology Letters, 1 (2009) 37-41
[24] W. Sari, T.-K. Eom, S.-H. Choi, and S.-H. Kim, “Ru/WNx Bilayers as Diffusion Barriers for Cu Interconnects”, Japanese Journal of Applied Physics, 50 (2011) 05EA08
[25] C.-X. Yang, S.-J. Ding, D. W. Zhang, P.-F. Wang, X.-P. Qu, and R. Liu, “Improvement of Diffusion Barrier Performance of Ru Thin Film by Incorporating a WHfN Underlayer for Cu Metallization”, Electrochemical and Solid-State Letters, 14 (2011) H84-H87
[26] B. Zhao, K. Sun, Z. Song, and J. Yang, “Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization”, Applied Surface Science, 256 (2010) 6003-6006
[27] S.-H. Kim, H. T. Kim, S.-S. Yim, D.-J. Lee, K.-S. Kim, H.-M. Kim, et al., “A bilayer diffusion barrier of ALD-Ru/ALD-TaCN for direct plating of Cu”, Journal of The Electrochemical Society, 155 (2008) H589-H594
[28] D.-C. Perng, J.-B. Yeh, and K.-C. Hsu, “Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization”, Applied Surface Science, 256 (2009) 688-692
[29] K.-C. Hsu, D.-C. Perng, and Y.-C. Wang, “Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier”, Journal of Alloys and Compounds, 516 (2012) 102-106
[30] P. Majumder and C. Takoudis, “Reactively sputtered Mo–V nitride thin films as ternary diffusion barriers for copper metallization”, Journal of The Electrochemical Society, 155 (2008) H703-H706
[31] Y.-L. Kuo, C. Lee, J.-C. Lin, Y.-W. Yen, and W.-H. Lee, “Evaluation of the thermal stability of reactively sputtered (Ti, Zr) N x nano-thin films as diffusion barriers between Cu and Silicon”, Thin Solid Films, 484 (2005) 265-271
[32] Q. Xie, Y.-L. Jiang, K. De Keyser, C. Detavernier, D. Deduytsche, G.-P. Ru, et al., “The effect of sputtered W-based carbide diffusion barriers on the thermal stability and void formation in copper thin films”, Microelectronic Engineering, 87 (2010) 2535-2539
[33] J. Chu, T. Yu, C. Wu, C. Lin, S. Wang, and Q. Chen, “Ultrathin diffusion barrier for copper metallization: A thermally stable amorphous rare-earth scandate”, Journal of The Electrochemical Society, 157 (2010) H384-H388
[34] L. Leu, D. Norton, L. McElwee-White, and T. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects”, Applied Physics Letters, 92 (2008) 111917-111917
[35] P. Majumder and C. Takoudis, “Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in Cu interconnects”, Nanotechnology, 19 (2008) 205202
[36] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, et al., “Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes”, Advanced Engineering Materials, 6 (2004) 299-303
[37] A. L. Greer, “Confusion by design”, Nature: International weekly journal of science, 366 (1993) 303-304
[38] Metals Handbook, 1992.
[39] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, et al., “Microstructures and properties of high-entropy alloys”, Progress in Materials Science, 61 (2014) 1-93
[40] B. Murty, J.-W. Yeh, and S. Ranganathan, High-entropy alloys: Butterworth-Heinemann, 2014.
[41] O. Senkov, G. Wilks, D. Miracle, C. Chuang, and P. Liaw, “Refractory high-entropy alloys”, Intermetallics, 18 (2010) 1758-1765
[42] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta materialia, 48 (2000) 279-306
[43] M.-H. Tsai, J.-W. Yeh, and J.-Y. Gan, “Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon”, Thin Solid Films, 516 (2008) 5527-5530
[44] M.-H. Tsai, C.-W. Wang, C.-H. Lai, J.-W. Yeh, and J.-Y. Gan, “Thermally stable amorphous (AlMoNbSiTaTiVZr) 50N50 nitride film as diffusion barrier in copper metallization”, Applied Physics Letters, 92 (2008) 52109-52109
[45] M.-H. Tsai, C.-W. Wang, C.-W. Tsai, W.-J. Shen, J.-W. Yeh, J.-Y. Gan, et al., “Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization”, Journal of the Electrochemical Society, 158 (2011) H1161-H1165
[46] S.-Y. Chang, M.-K. Chen, and D.-S. Chen, “Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization”, Journal of The Electrochemical Society, 156 (2009) G37-G42
[47] S.-Y. Chang, C.-Y. Wang, C.-E. Li, and Y.-C. Huang, “5 nm-Thick (AlCrTaTiZrRu) N0. 5 Multi-Component Barrier Layer with High Diffusion Resistance for Cu Interconnects”, Nanoscience and Nanotechnology Letters, 3 (2011) 289-293
[48] S.-Y. Chang and D.-S. Chen, “(AlCrTaTiZr) N/(AlCrTaTiZr) N 0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900° C”, Materials Chemistry and Physics, 125 (2011) 5-8
[49] W. D. Callister and D. G. Rethwisch, Materials science and engineering: an introduction vol. 7: Wiley New York, 2007.
[50] H. Mehrer, Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes vol. 155: Springer Science & Business Media, 2007.
[51] Y. Zhao and G. Lu, “First-principles simulations of copper diffusion in tantalum and tantalum nitride”, Physical Review B, 79 (2009) 214104
[52] L. Tsetseris, S. Logothetidis, and S. Pantelides, “Migration of species in a prototype diffusion barrier: Cu, O, and H in TiN”, Applied Physics Letters, 94 (2009) 161903
[53] L. Tsetseris, S. Logothetidis, and S. T. Pantelides, “Atomic-scale mechanisms for diffusion of impurities in transition-metal nitrides”, Surface and Coatings Technology, 204 (2010) 2089-2094
[54] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, “Solid‐solution phase formation rules for multi‐component alloys”, Advanced Engineering Materials, 10 (2008) 534-538
[55] A. Miedema, P. De Chatel, and F. De Boer, “Cohesion in alloys—fundamentals of a semi-empirical model”, Physica B+ C, 100 (1980) 1-28
[56] A. Takeuchi and A. Inoue, “Quantitative evaluation of critical cooling rate for metallic glasses”, Materials Science and Engineering: A, 304 (2001) 446-451
[57] M. Danisch, Y. Jin, and H. A. Makse, “Model of random packings of different size balls”, Physical Review E, 81 (2010) 051303
[58] J. Koike and M. Wada, “Self-forming diffusion barrier layer in Cu–Mn alloy metallization”, Applied Physics Letters, 87 (2005) 041911
[59] S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, and M. Murakami, “Formation of Ti diffusion barrier layers in thin Cu (Ti) alloy films”, Journal of electronic materials, 34 (2005) 592-599
[60] Y. Wang, F. Cao, M.-l. Zhang, and T. Zhang, “Property improvement of Cu–Zr alloy films with ruthenium addition for Cu metallization”, Acta Materialia, 59 (2011) 400-404
[61] J. Chu, C. Lin, P. Sun, and W. Leau, “Cu (ReN x) for Advanced Barrierless Interconnects Stable Up To 730° C”, Journal of The Electrochemical Society, 156 (2009) H540-H543
[62] M. He and T.-M. Lu, Metal-dielectric interfaces in gigascale electronics: thermal and electrical stability vol. 157: Springer Science & Business Media, 2012.
[63] J. Harper and K. Rodbell, “Microstructure control in semiconductor metallization”, Journal of Vacuum Science & Technology B, 15 (1997) 763-779
[64] S. Hong, S. Lee, H. Yang, H. Lee, Y. Ko, H. Hong, et al., “Effects of the dissolved oxygen in Ti films on Ti reactions in Cu/Ti/SiO2/Si system upon annealing”, Semiconductor science and technology, 19 (2004) 1315
[65] S. Tsukimoto, T. Kabe, K. Ito, and M. Murakami, “Effect of annealing ambient on the self-formation mechanism of diffusion barrier layers used in Cu (Ti) interconnects”, Journal of electronic materials, 36 (2007) 258-265
[66] J. C. Chuang, S. L. Tu, and M. C. Chen, “Sputtered Cr and reactively sputtered CrN x serving as barrier layers against copper diffusion”, Journal of The Electrochemical Society, 145 (1998) 4290-4296
[67] J.-P. Manaud, A. Poulon, S. Gomez, and Y. Le Petitcorps, “A comparative study of CrN, ZrN, NbN and TaN layers as cobalt diffusion barriers for CVD diamond deposition on WC–Co tools”, Surface and Coatings Technology, 202 (2007) 222-231
[68] X. Dai, L. Zhang, Z. Feng, X. Li, J. Guo, Y. Fu, et al., “Barrier performance of ultrathin amorphous Nb–Ni film between copper and silicon”, Materials Letters, 159 (2015) 94-97
[69] C.-W. Chen, J.-S. Chen, and J.-S. Jeng, “Improvement on the Diffusion Barrier Performance of Reactively Sputtered Ru–N Film by Incorporation of Ta”, Journal of The Electrochemical Society, 155 (2008) H438-H442
[70] M. Damayanti, T. Sritharan, S. Mhaisalkar, and Z. Gan, “Effects of dissolved nitrogen in improving barrier properties of ruthenium”, Applied physics letters, 88 (2006) 4101
[71] M. Wang, Y. Lin, and M. Chen, “Barrier properties of very thin Ta and TaN layers against copper diffusion”, Journal of The Electrochemical Society, 145 (1998) 2538-2545
[72] M. B. Takeyama, T. Itoi, and A. Noya, “Evolution of Microstructures in Nanocrystalline VN Barrier Leading to Failure in Cu/VN/SiO2/Si Systems”, Japanese Journal of Applied Physics, 49 (2010) 05FA05
[73] T. Massalski, “Binary alloy phase diagrams American Society for Metals, 1990”, Metals Park, OH: American Society for Metals,
[74] Y. Chen, T. Duval, U. Hung, J. Yeh, and H. Shih, “Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel”, Corrosion science, 47 (2005) 2257-2279
[75] D. W. Smith, Inorganic substances: a prelude to the study of descriptive inorganic chemistry: Cambridge university press, 1990.
[76] A. Takeuchi and A. Inoue, “Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element”, Materials Transactions, 46 (2005) 2817-2829
[77] D. B. Butrymowicz, J. R. Manning, and M. E. Read, “Diffusion in Copper and Copper Alloys. Part I. Volume and Surface Self‐Diffusion in Copper”, Journal of Physical and Chemical Reference Data, 2 (1973) 643-656
[78] N. Benouattas, A. Mosser, D. Raiser, J. Faerber, and A. Bouabellou, “Behaviour of copper atoms in annealed Cu/SiO x/Si systems”, Applied surface science, 153 (2000) 79-84
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *