帳號:guest(3.144.45.234)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):董芝安
作者(外文):Tung, Shih An
論文名稱(中文):可低溫共燒之雙元玻璃-陶瓷系統之結晶動力學機制及介電性質之研究
論文名稱(外文):Devitrification Kinetics and Dielectric Properties of a Low-Temperature Cofirable Binary Glass-Ceramics System
指導教授(中文):簡朝和
指導教授(外文):Jean, Jau Ho
口試委員(中文):簡朝和
李嘉甄
許志雄
口試委員(外文):Jean, Jau Ho
Li, Chia Chen
Hsi, Chi Shiung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031547
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:50
中文關鍵詞:低溫共燒玻璃-陶瓷結晶介電性質
外文關鍵詞:LTCCglass-ceramiccrystallizationdielectric
相關次數:
  • 推薦推薦:0
  • 點閱點閱:74
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
本研究結合CaO-Al2O3-SiO2及CaO-B2O3-SiO2兩種玻璃-陶瓷,經由燒結後達到能夠於短時間緻密及結晶的低溫共燒陶瓷系統。其中,兩者玻璃之間沒有明顯的反應發生,CAS扮演如同助燒劑的角色;CBS則為晶種。而此雙元玻璃-陶瓷系統經燒結後會產生結晶相wollastonite。當添加適當比例之氧化鋁至此系統中,前述的結晶相完全被抑制,並伴隨著新結晶相anorthite的生成;同時,系統的起泡現象大幅地被改善。上述結果係由於氧化鋁於高溫燒結時,會逐漸溶解並擴散至玻璃中並於其周圍形成富鋁反應層,進而生成anorthite結晶相;又氧化鋁與玻璃的反應速率在動力學上遠較wollastonite的形成為快,因而造成此結果。而後進行此系統產生之anorthite結晶動力學分析,結果顯示,其表觀活化能(apparent activation energy)與Al-O鍵強度相當,表示anorthite形成為反應控制的動力學(reaction-controlled kinetics)機制。最後,量測此系統的介電性質,發現隨燒結時間增加,介電損失隨之降低。可能原因為高介電損失的純玻璃相減少伴隨低介電損失的結晶相anorthite的生成。至於系統之介電常數則維持在8左右,隨著時間增加而未有顯著的變化。
High degree of densification and crystallization with a relatively short sintering time can be achieved by combining two glass-ceramics (CaO-Al2O3-SiO2 and CaO-B2O3-SiO2). The crystallization kinetics and dielectric properties of this low-temperature and cofirable binary glass-ceramics have also been investigated. Wollastonite is formed during firing. By adding alumina, however, wollastonite is replaced by anorthite. This result is attributed to the dissolution of Al into the glass, which is much faster than that of crystallization. The crystallization kinetics of anorthite follows the analysis of Avrami equations, and the result show an apparent activation energy closed to Al-O bonding strength. With increasing amount of anorthite formed in the dielectric composite, the dielectric loss decreased without significant change of the dielectric constant.
第一章 前言 1
第二章 實驗方法 5
2.1 CAS和CBS玻璃粉體基本性質 5
2.2 試片製備 5
2.2.1 雙元玻璃系統 5
2.2.2 雙元玻璃+氧化鋁系統 6
2.3 性質量測 6
2.3.1 微熱分析(DTA) 6
2.3.2 X光繞射分析(XRD) 7
2.3.3 微結構觀察 7
2.3.4 相對燒結密度 7
2.3.5 介電性質量測 8
第三章 結果與討論 9
3.1 單元玻璃-陶瓷系統 9
3.1.1 玻璃之結晶相與潛伏期 9
3.1.2 玻璃的緻密行為 9
3.2 雙元玻璃-陶瓷系統 10
3.2.1 CAS與CBS之最佳比例 11
3.2.2 結晶相之鑑定 11
3.2.3 CAS與CBS間無明顯反應發生 12
3.3 玻璃+氧化鋁系統 13
3.3.1 氧化鋁含量對系統之緻密度影響 13
3.3.2 結晶行為之比較 14
3.3.3 CBS與氧化鋁間的反應 15
3.3.3.1 CBS與氧化鋁間的反應動力學 16
3.3.3.2反應時間與潛伏期之比較 17
3.3.4 Anorthite的結晶動力學 18
3.4 玻璃+氧化鋁系統的介電性質 21
第四章 結論 23
第五章 參考文獻 25

[1] R. R. Tummala, "Ceramic and Glass-Ceramic Packaging in the 1990s," J. Am.
Ceram. Soc., 74 [5] 895-908 (1991).

[2] Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology; pp. 1-17. Springer Science & Business Media, New York, 2005.

[3] M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna and J. J. Santiago-Avilés, "Overview of Low Temperature Co-Fired Ceramics Tape Technology For Meso-System Technology (MsST)," Sens. Actuators A Phys., 89 [3] 222-41 (2001).

[4] M. T. Sebastian, Dielectric Materials for Wireless Communication; pp. 445-512. Elsevier, Amsterdam, 2008.

[5] T. K. Gupta and J. H. Jean, "Principles of the Development of a Silica Dielectric For Microelectronics Packaging," J. Mater. Res., 11 [1] 243-63 (1996).

[6] Y. M. Sung and J. S. Park, "Sintering and Crystallization of (SrO•SiO2)-(SrO• Al2O3• 2SiO2) Glass-Ceramics," J. Mater. Sci., 34 [23] 5803-09 (1999).

[7] A. H. Kumar, P. W. McMillan, and R. R. Tummala, "Glass-Ceramic Structures and Sintered Multilayer Substrates Thereof with Circuit Patterns of Gold, Silver or Copper," U.S. Pat. No. 4 301 324, 1981.

[8] C. R. Chang and J. H. Jean, "Crystallization Kinetics and Mechanism of Low-Dielectric, Low-Temperature, Cofirable CaO‐B2O3‐SiO2 Glass‐Ceramics," J. Am. Ceram. Soc., 82 [7] 1725-32 (1999).

[9] J. H. Jean, Y. C. Fang, S. X. Dai, and D. L. Wilcox, "Devitrification Kinetics and Mechanism of K2O–CaO–SrO–BaO–B2O3–SiO2 Glass-Ceramic," J. Am. Ceram. Soc., 84 [6] 1354-1360 (2001).

[10] J. H. Jean and T. K. Gupta, "Design of Low Dielectric Glass+Ceramics for Multilayer Ceramic Substrate," IEEE Trans. Compon., Packag., Manuf. Technol., Part B: Adv. Packag., 17 [2] 228-33 (1994).

[11] M. Z. Jhou and J. H. Jean, "Low-Fire Processing of Microwave BaTi4O9 Dielectric with BaO–ZnO–B2O3 Glass," J. Am. Ceram. Soc., 89 [3] 786-91 (2006).

[12] J. H. Jean, Y. C. Fang, S. X. Dai, and D. L. Wilcox, "Sintering of a Crystallizable K2O–CaO–SrO–BaO–B2O3–SiO2 Glass with Titania Present," J. Mater. Res., 17 [7] 1772-78 (2002).

[13] Y. J. Seo, D. J. Shin, and Y. S. Cho, "Phase Evolution and Microwave Dielectric Properties of Lanthanum Borate-Based Low-Temperature Co-Fired Ceramics Materials," J. Am. Ceram. Soc., 89 [7] 2352-55 (2006).

[14] R. Müller, R. Meszaros, B. Peplinski, S. Reinsch, M. Eberstein, W. A. Schiller, and J. Deubener, "Dissolution of Alumina, Sintering, and Crystallization in Glass Ceramic Composites for LTCC," J. Am. Ceram. Soc., 92 [8] 1703-08 (2009).

[15] J. H. Jean, Y. C. Fang,S. X. Dai, and D. L. Wilcox, "Effects of Alumina on Devitrification Kinetics and Mechanism of K2O–CaO–SrO–BaO–B2O3–SiO2 Glass," Jpn. J. Appl. Phys., 42 [7A] 4438-43 (2003).

[16] C. W. Wu and J. H. Jean, "Crystallization Kinetics and Dielectric Properties of a Low-Fire CaO–Al2O3–SiO2 Glass+Alumina System," J. Am. Ceram. Soc., 1-8 (2016).

[17] S. Nishigaki, J. Fukuda, S. Yano, and H. Kawabe, "Multilayer Ceramic Substrate with Circuit Patterns," US Pat. No. 4 795 670, 1989.

[18] C. R. Chang and J. H. Jean, "Effects of Silver-Paste Formulation on Camber Development during the Cofiring of a Silver-Based, Low-Temperature-Cofired Ceramic Package," J. Am. Ceram. Soc., 81 [11] 2805-14 (1998).

[19] S. Budd, V. Exelby, and J. Kirwan, "The Formation of Gas Bubbles in Glass at High Temperature," Glass Tech., 3 [4] 124-29 (1962).

[20] C. Rasul and M. Cable, "Spontaneous Bubble Formation in Silicate Melts at High Temperatures," J. Am. Ceram. Soc., 49[10] 568-71 (1966).

[21] Y. C. Fang and J. H. Jean, "Effects of Alumina on Densification of a Low-Temperature Cofired Crystalllizable Glass+Alumina System," Jpn. J. Appl. Phys., 46[6A] 3475-80 (2007).

[22] J. H. Jean and T. K. Gupta, "Kinetics of Interfacial Reaction between Borosilicate Glass and Sapphire Substrate," J. Mater. Res., 7 [9] 2514-20 (1992).

[23] E. E. Underwood, A. R. Colcord, and R. C. Waugh, "Quantitative Relationships for RandomMicrostructures"; Chapter 1, in Ceramic Microstructures, Edited by R. M. Fulrath and J. A. Pask. Westview Press, Boulder, Colorado, 1968.

[24] M. Avrami, "Kinetics of Phase Change. I General Theory," J. Chem. Phys., 7 [12] 1103-12 (1939).

[25] M. Avrami, "Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei," J. Chem. Phys., 8 [2] 212-24 (1940).

[26] M. Avrami, "Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III," J. Chem. Phys., 9 [2] 177-84 (1941).

[27] D. W. Henderson, "Experimental Analysis of Non-Isothermal Transformations Involving Nucleation and Growth," J. Therm. Anal. Calorim., 15 [2] 325-31 (1979).

[28] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics 2nd ed.; pp. 99. Wiley, New York City, New York,1976.

[29] R. D. Shannon, J. E. Dickinson, and G. R. Rossman, "Dielectric Constants of Crystalline and Amorphous Spodumene, Anorthite and Diopside and the Oxide Additivity Rule," Phys. Chem. Miner., 19 [3] 148-56 (1992).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *