帳號:guest(3.143.205.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃致豪
作者(外文):Huang, Chih Hao
論文名稱(中文):低成本、高效能結合薄膜液相層析法與表面增強拉曼光譜技術的多功能晶片應用於生化快速篩檢
論文名稱(外文):A low-cost, high-performance ultra-thin layer chromatography/surface-enhanced Raman spectroscopy multifunctional chip for biochemical rapid screening
指導教授(中文):嚴大任
指導教授(外文):Ta, jen yen
口試委員(中文):王子威
林鼎晸
嚴大任
口試委員(外文):Wang, Tzu Wei
Lin, Ding Zheng
Ta, jen yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031546
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:85
中文關鍵詞:液相層析表面增強拉曼光譜
外文關鍵詞:liquid chromatographySurface-enhanced Raman spectroscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:412
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
拉曼散射是一種強而有力的分析技術,它能提供分子結構上的資訊並應用於快速的篩檢或是分子蹤跡的檢測上。然而,在實際檢測上,環境中的背景值將會模糊掉實際待測的拉曼訊號。因此,在幾年來,如何發展出一個簡單的檢測樣品前處理技術並應用於實際的分子蹤跡檢測上已經成了研究的顯學。在這個新興的領域當中,最常見的方法就是在檢測基板上結合液相層析方法與表面增強拉曼光譜技術,達到高信躁比的量測。

  在本論文中,我們提出了一個全新的液相層析/表面增強拉曼光譜技術結合的檢測基板。此基板是透過濕式蝕刻製程製備而成的銀奈米顆粒鑲嵌於矽奈米線陣列結構,在此論文中我們將以Ag@SiNWs通稱之。此Ag@SiNWs結構中富含豐富的銀顆粒,透過表面電漿子共振的方式能在特定區域形成電磁訊號增強的熱點,提升待測物拉曼訊號的強度。

  此外,結合液相層析法,能藉由混合樣品中各別分子對檢測基板與移動溶劑的極性差異,進行拉曼待測分子與混合物的分離,進而大幅提升其量測的信躁比。在此部分,我們將有顏色的染料混合物作為待測物,經液相層析後,在基板上形成許多不連續的顏色線條。透過此顏色的分布,驗證了分離的概念。此外,從拉曼線性掃描光譜中,我們也可以觀察到每個染料分子出現在不同的基板位置上。
透過三聚氰胺從牛奶中分離的實驗,我們證實了此基板能應用於實際的檢測上。
在液相層析作用後,三聚氰胺的分子將會出現在離一開始混合液滴定點幾毫米的地方。此外,我們也可以觀察到非常強的三聚氰胺訊號峰值源自於在雷射光點下牛奶分子的消失以及三聚氰胺分子本身的聚集。

  從分析物噴灑區域的研究當中發現到,結合液相層析發法發應用於拉曼待測分子的檢測不僅能提供更少的背景值干擾,也能解決液體在移轉到基板上所遭遇的點樣問題。再者,由於此基板的基底是由矽所組成,當中的矽的拉曼峰值也能當作是拉曼光譜的內建標定值,透過此知道在特定區域的表面電漿子共振增強程度。

  有著低成本製程、高信躁的檢測、拉曼內標等特性,我們相信此基板能有潛力應用於實際的生化快篩檢測上。
Raman scattering is a powerful analytical technique that reveals structural information of molecules to provide fast screening and trace detection applications. However, in practical detection, background signal from environments will blur the signals from real Raman targets. Therefore, developing a simple pre-treatment method for trace analyte detection in practice becomes a research focus in recent years. In this new research region, a common method is to couple traditional liquid chromatography (LC) technique with surface-enhanced Raman spectroscopy (SERS) on a chip for high signal-to-noise (S/N) ratio detection.

  Here, we propose a new LC/SERS substrate that is comprised of a silicon nanowire array decorated with silver particles fabricated by a simple chemical wet etching process and hereafter is denominated as Ag@SiNWs in this dissertation. Such Ag@SiNWs could provide abundant electromagnetic hot spots among silver nanoparticles to enhance target’s Raman signal via localized surface plasmon resonance (LSPR).

  Furthermore, by employing chromatography, a mixture of targets and other ingredients can be separated due to different molecular polarities toward the substrate and mobile solvent to dramatically increase the corresponding S/N ratio in Raman spectrum. In this part, we visually demonstrate the concept of separation in a colorful dye mixture with discrete color lines on the substrate. Also, from Raman line-scan spectrum, we observe the separation since each dye spectrum appears in different locations. In practical demonstration, we validate the concept of separation by extracting melamine from milk. After chromatography development, the location of melamine appears at several mini-meter far from original mixture spraying point. Besides, an incredible strong peak of melamine is also observed due to the disappearance of milk in laser beam spot area and melamine molecular concentration.

  From the study of analyte spraying region, it is believed that coupling with chromatography technique on ramnan targets detection can not only provide
less background noise from other molecules but also solve the spotting issue suffered in droplet transfer process. Further, since the substrate is fabricated from Si wafer, the existence of Si peak can also behaves as a inner marker in Raman spectrum to know the LSPR enhancement in defined area. With such low-cost fabrication , high S/N ratio detection, Raman inner marker (Si) property, we believe this substrate poses the potential for real world bio-chemical rapid screening use.
摘要………………………………………………………………………………....… I
Abstract……………………………………………………………………………..... II
Acknowledgements……………………………………………………………..……IV
Content………………………………………………………………………………..V
List of Figures……….………………………………………………………………VII
List of Tables……………………………………………………………………..…XV
Chapter 1 Introduction………………………………………………………………...1
Chapter 2 Literature review……………………………………………………………3
  2.1 Surfaced-enhanced Raman spectroscopy (SERS) …………………………...3
   2.1.1 Raman technique………………………………………………………...3
   2.1.2 Surface-enhanced Raman spectroscopy…………………………………5
   2.1.3 Plasmonic paper…………………………………………………………9
  2.2 Thin layer chromatography (TLC)……………………….…………………11
   2.2.1 Planar chromatography…………………….…………………………...11
   2.2.2 Evolution of the stationary phase……………………………………....15
   2.2.3 Ultra-thin layer chromatography……………………………………….16
  2.3 Combination of TLC and SERS…………………………………………….26
  2.4 Motivation…………………………………………………………………..31
Chapter 3 Design of Experiment……………………………………………………..33
  3.1 UTLC substrate fabrication procedure……………………………………...33
   3.1.1 Metal associated with chemical etching (MaCE)………………………33
   3.1.2 Silver (Ag) reduction reaction………………………………………….36
  3.2 Chromatography separation……………………………………...…………39
   3.2.1 Analyte preparation…..……………………………………...…………39
   3.2.2 Spotting technique…………………………………………...…………39
   3.2.3 Chromatography development…………………………………………44
  3.3 Raman measurement……………………………………………….…….…46
Chapter 4 Result and discussion……………………………………………………..47
  4.1 Benefit of Nanowire structure………………………………………………47
   4.1.1 Surface property --- Contact angle measurement………………………47
   4.1.2 Chromatography development comparison…………………………….49
   4.1.3 Raman measurement comparison………………………………………49
  4.2 Dye separation………………………………………………………………51
   4.2.1 Appearance of Dye separation………………………………………….51
   4.2.2 Raman measurement result………………………………………….....52
  4.3 Melamine milk mixture separation………………………………………….55
   4.3.1 Melamine milk sample pre-treatment…………………………………..55
   4.3.2 Melamine milk separation (50ppm, 30ppm , 5ppm)..………………….59
   4.3.3 Stationary phase study _ Length effect………………………………...61
   4.3.4 Mobile phase study_ Polarity effect……………………………………65
   4.3.5 Analyte concentration mechanism………………………………...……67
   4.3.6 Raman mapping measurement……………………………………...….68
  4.4 Mobile phase Raman spectrum……………………………………………..73
Chapter 5 Conclusions ………………………………………………………………74
References……………………………………………………………………………76
[1] John M. Chalmers, Howell G. M. Edwards, Michael D. Hargreaves (2012), " Infrared and Raman Spectroscopy in Forensic Science, " United Kingdom, John Wiley & Sons, Ltd.

[2] Liangbao Yang, Pan Liab and Jinhuai Liuab, " Progress in multifunctional surface-enhanced, " RSC Advances 4, 49635–49646 (2014)

[3] L. Kocsis, E. Horva´th, J. Kristo´f, R.L. Frostc, A´. Re´dey, J. Mink, " Effect of the preparation conditions on the surface-enhanced Raman-spectrometric identification of thin-layer-chromatographic spots, " J. Chromatogr. A 845, 197–202(1999)

[4] Jing Chen, Justin Abell, Yao-wen Huang and Yiping Zhao, " On-Chip Ultra-Thin Layer Chromatography and Surface Enhanced Raman Spectroscopy, " Lab Chip 12, 3096–3102 (2012)

[5] Jing Chen, Justin Abell, Yao-wen Huang and Yiping Zhao, " Ultra-Thin Layer Chromatography and Surface Enhanced Raman Spectroscopy on Silver Nanorod Array Substrates Prepared by Oblique Angle Deposition, " Proc. of SPIE Vol. 8366 836605-1 (2012)

[6] Wei W. Yu and Ian M. White, " Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates, " Analyst 138 , 3679 (2013)

[7] Challa S. S. R. Kumar, " Raman Spectroscopy for Nanomaterials Characterization, " United state of America, Springer (2012)

[8] Peter Vandenabeele, " Practical Raman Spectroscopy: An Introduction, " United kingdom, John Wiley & Sons, Ltd (2013)

[9] B. M. Auer and J. L. Skinner, " IR and Raman spectra of liquid water: Theory and interpretation, " J. Chem. Phys 128, 224511 (2008)

[10] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, " Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study, " J. Phys. Chem. C, 111, 13794-13803 (2007)

[11] Bhavya Sharma, Renee R. Frontiera, Anne-Isabelle Henry, Emilie Ringe, and Richard P. Van Duyne, " SERS: Materials, applications, and the future, " Materials Today 15, 1-2 (2012)

[12] The-Crankshaft, "Surface-Enhanced Raman Scattering (SERS) (Nanotechnology), " retrived Dec. 15, 2015 from
http://what-when-how.com/nanoscience-and-nanotechnology/surface-enhanced-Raman-scattering-sers-nanotechnology/

[13] Limei Tian, Saide Z. Nergiz, Mikella E. Farrell, Paul M. Pellegrino, Joseph M. Slocik, Rajesh R. Naik, and Srikanth Singamaneni, " Plasmonic paper for trace
detection of analytes, " SPIE Newsroom (2014)

[14] Chang H. Lee, Mikella E. Hankus, Limei Tian1, Paul M. Pellegrino and Srikanth Singamaneni," Plasmonic paper as a highly efficient SERS substrate, " Proc. of SPIE Vol. 8358, 835815-1 (2012)

[15] J Yang, J B Li, Q H Gong, J H Teng and M H Hong, " High aspect ratio SiNW arrays with Ag nanoparticles decoration for strong SERS detection, " Nanotechnology 25 , 465707 (2014)

[16] Virginia Merk , Alexander Nerz , Sebastian Fredrich , Kristjan Leosson , Janina Kneipp, " Design and characterization of new nanostructured surfaces as planar SERS sensors, " Paper session presented at the 15th International Symposium Molecular Plasmonics, Ipht Jena, Jena, Germany (2015)

[17] Ming Li, Scott K. Cushing and Nianqiang Wu* Surface, " Plasmon-enhanced optical sensors: a review, " Analyst 140, 386 (2014)

[18] Kexi Sun, Guowen Meng, Qing Huang, Xianglong Zhao, Chuhong Zhu,
Zhulin Huang, Yiwu Qian, Xiujuan Wang and Xiaoye Hu, " Gap-tunable Ag-nanorod arrays on alumina nanotip arrays as effective SERS substrates, "J. Mater. Chem. C 1,
5015 (2013)

[19] Huai-Hsien Wang, Chih-Yu Liu, Shr-Bin Wu, Nai-Wei Liu, Cheng-Yi Peng, Tsu-Hsin Chan,Chen-Feng Hsu, Juen-Kai Wang, and Yuh-Lin Wang, " Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps, " Adv. Mater. 18, 491–495 (2006)’

[20] Jessica Rodrı´guez-Ferna´ndez, Isabel Pastoriza-Santos, Jorge Pe´rez-Juste,
F. Javier Garcı´a de Abajo, and Luis M. Liz-Marza´n," The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres, " J. Phys. Chem. C 111, No. 36 (2007)

[21] Tsvet, Mikhail. " Adsorption analysis and chromatographic method. Application to the chemistry of chlorophyll, " Bot. Acta 24, 384–393 (1906)

[22] J. Sherma, " Review of advances in the thin layer chromatography of pesticides 2012-2014," J. Environ. Sci. Heal. B. 50, 301-316 (2015)

[23] W. Clark Still, Michael Kahn, Abhijit Mitra, " Rapid chromatographic technique for preparative separations with moderate resolution, " J. Org. Chem. 43 (14), 2923–2925 (1978)

[24] P.E. Wall, " Thin-Layer Chromatography: A modern practical approach, " United state of America, Royal Society of Chemistry (2005)

[25] J. Sherma, B. Fried, " Handbook of Thin-Layer Chromatography, " New York, Marcel Dekker [Taylor and Francis] (2003)

[26] G.E. Morlock, W. Schwack, " The contribution of planar chromatography to food analysis, " J. Planar Chromatogr. 20, 399–406 (2007)

[27] Generalic, Eni. " Paper chromatography." Retrieved Dec. 17, 2015 from http://glossary.periodni.com

[28] Waters , " Introduction of High Performance Liquid Chromatography " Retrieved Dec. 17, 2015 from
https://www.waters.com/waters/zh_TW/HPLC---High-Performance-Liquid-Chromatography-Beginner's-Guide/nav.htm?cid=10048919&locale=zh_TW

[29] Steven Richard Jim, " Nanoengineered Glancing Angle Deposition Thin Films for Ultrathin-Layer Chromatography, " published doctoral disseration, University of Alberta (2014)

[30] Evert-Jan Sneekes, Laurent Rieux, and Remco Swart, " Miniaturization of Liquid Chromatography: Why Do We Do It?, " Thermo Fisher Scientific, Amsterdam, The Netherlands,

[31] Weidong Wang, Yongguang Yin, Zhiqiang Tana and Jingfu Liu*, " Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis , " Nanoscale 6, 9588–9593 (2014)

[32] Jack Cazes, " Encyclopedia of Chromatography (Third Edition), " United state of America, marcel dekker inc (2009)

[33] H.E. Hauck, O. Bund, W. Fischer, M. Schulz, " Ultra-thin layer chromatography (UTLC) — A new dimension in thin-layer chromatography, " J. Planar Chromatogr. 14 , 234–236. (2001)

[34] H.E. Hauck, M. Schulz, " Ultrathin-layer chromatography, " J. Chromatogr. Sci. 40 550–552. (2002)

[35] H.E. Hauck, M. Schulz, " Ultra thin-layer chromatography, " Chromatographia. 57, S313–S315 (2003)

[36] G.E. Morlock, C. Oellig, L.W. Bezuidenhout, M.J. Brett, W. Schwack, " Miniaturized planar chromatography using office peripherals, " Anal. Chem. 82
2940–2946 (2010)

[37] R. Bakry, G.K. Bonn, D. Mair, F. Svec, " Monolithic porous polymer layer for the separation of peptides and proteins using thin-layer chromatography coupled with MALDI-TOF-MS, " Anal. Chem. 79 , 486–493 (2007)

[38] Tong Wang, Satish Kumar, " Electrospinning of Polyacrylonitrile Nanofibers, " J. Appl. Polym. Sci., 102, 1023–1029 (2006)

[39] Pitt Supaphol, Surawut Chuangchote, " On the Electrospinning of Poly(vinyl alcohol) Nanofiber Mats: A Revisit, " J. Appl. Polym. Sci. 108, 969–978 (2008)

[40] J.E. Clark, S. V Olesik, " Technique for ultrathin layer chromatography using an electrospun, nanofibrous stationary phase, " Anal. Chem. 81, 4121–4129 (2009)

[41] Pimolpun Kampalanonwat, Pitt Supaphol, Gertrud E. Morlock,∗ " Electrospun nanofiber layers with incorporated photoluminescenceindicator for chromatography and detection of ultraviolet-activecompounds, " J. Chromatogr. A 1299, 110– 117 (2013)

[42] Toni E. Newsome, Susan V. Olesik," Silica-based nanofibers for electrospun ultra-thin layer chromatography, " J. Chromatogr. A 1364, 261–270 (2014)

[43] Stephen B. Chaney, " Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, " Appl. Phys. Lett. 87, 031908 (2005)

[44] S.R. Jim, A.J. Oko, M.T. Taschuk, M.J. Brett, " Morphological modification of nanostructured ultrathin-layer chromatography stationary phases, " J. Chromatogr. A 1218 , 7203– 7210 (2011)

[45] J.Z. Hall, M.T. Taschuk, M.J. Brett, " Polarity-adjustable reversed phase ultrathin-layer chromatography, " J. Chromatogr. A, 1266 ,168– 174 (2012)

[46] Julia Wannenmacher, Steven R. Jim, Michael T. Taschuk, Michael J. Brett, GertrudE. Morlock, " Ultrathin-layer chromatography on SiO2, Al2O3, TiO2, and ZrO2 nanostructured thin films, " J. Chromatogr. A, 1318 , 234– 243 (2013)

[47] S.R. Jim, A. Foroughi-Abari, K.M. Krause, P. Li, M. Kupsta, M.T. Taschuka,K.C. Cadien, M.J. Brett, " Ultrathin-layer chromatography nanostructures modified by atomiclayer deposition, " J. Chromatogr. A, 1299 ,118– 125 (2013)

[48] S. R. Jim, M. T. Taschuk, G. E. Morlock,‡ L. W. Bezuidenhout, W. Schwack, and M. J. Brett, " Engineered Anisotropic Microstructures for Ultrathin-Layer Chromatography, " Anal. Chem., 82, 5349–5356 (2010)

[49] Wei W. Yu and Ian M. White, " Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates, " Analyst, 138, 3679 (2013)

[50] Dan Li, Qingxia Zhu, Diya Lv, Binxing Zheng, Yanhua Liu, Yifeng Chai, Feng Lu, " Silver-nanoparticle-based surface-enhanced Raman scattering wiper for the detection of dye adulteration of medicinal herbs, "Anal Bioanal Chem. 407, 6031–6039 (2015)

[51] FangGao, YaxiHu, DaChen , Eunice C.Y.Li-Chan , EdwardGrant , XiaonanLu,
"Determination of Sudan I inpaprika powder by molecularly imprinted polymers–thin layerchromatography–surface enhanced Raman spectroscopic biosensor," Talanta 143, 344-352 (2015)

[52] Volpatti, L. R.; Yetisen, A. K., "Commercialization of microfluidic devices". Trends Biotechnol. 32 (7), 347–350 (2014)

[53] Andrew Czyzewski, " Lab-on-chip device promises HIV diagnosis in 10 minutes " Retrieved Dec. 21, 2015, from
http://www.theengineer.co.uk/more-sectors/medical/news/lab-on-chip-device-promises-hiv-diagnosis-in-10-minutes/1008004.article#ixzz3sNSPMLTe (2011)

[54] Chia-Yun Chen, Chi-Sheng Wu, Chia-Jen Chou, and Ta-Jen Yen, "Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature, " Adv. Mater. 20, 3811–3815 (2008)

[55] Chia-Yun Chen, Duong Hong Phan, Cheng-ChouWong, and Ta-Jen Yen,
" Vertically-Aligned of Sub-Millimeter Ultralong Si Nanowire Arrays and Its Reduced Phonon Thermal Conductivity, " J. Electrochem. Soc. 158 (5) 302-306 (2011)

[56] Tien-Chung Yang, Tai-Yuan Huang, Hsin-Cheng Lee, Tien-Jen Lin, and Ta-Jen Yen, " Applying Silicon Nanoholes with Excellent Antireflection for Enhancing
Photovoltaic Performance, " J. Electrochem. Soc., 159 (2) 104-108 (2012)

[57] Peng, K., Lu, A., Zhang, R. and Lee, S.-T., " Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching, ".Adv. Funct. Mater. 18: 3026–3035 (2008)

[58] Marnix V. ten Kortenaar,z Jeroen J. M. de Goeij, Zvonimir I. Kolar, Gert Frens,
Pieter J. Lusse, Marc. R. Zuiddam, and Emile van der Driftc, " Electroless Silver Deposition in 100 nm Silicon Structures Marnix V., " J. Electrochem. Soc. 148 (1) 28-33 (2001)

[59] CAMAG, " Linomat 5 " Retrieved Dec. 21, 2015, from
http://www.camag.com/en/tlc_hptlc/products/sample_application/linomat_5.cfm

[60] Weidong Wang, Yongguang Yin, Zhiqiang Tan and Jingfu Liu, " Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for
trace analysis, ".Nanoscale 6 , 9588-9593 (2014)
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *