帳號:guest(3.15.22.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘怡宣
作者(外文):Pan, Yi Hsuan
論文名稱(中文):多孔聚丙烯腈/奈米碳管複合材之電雙層結構研究
論文名稱(外文):Study on electric double layer structure of porous PAN/carbon nanotubes composites
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen Kuang
口試委員(中文):呂昇益
林樹均
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031539
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:65
中文關鍵詞:超級電容電雙層
外文關鍵詞:supercapacitors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:309
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
超級電容的性能取決於電極材料的選擇,碳材料具備易取得、低成本、高比表面積等優勢,因此廣泛使用於電雙層電容電極材料。聚丙烯腈是製造碳纖維的主要材料,本研究利用聚丙烯腈加入氯化鋰得到多孔性薄膜,高溫碳化後得到多孔性碳粉製成電極。此外,製程加入奈米碳管所得電極作為對照組,研究碳管對電容的影響。電極的表面形貌及結構組成經由X光繞射儀、拉曼光譜儀、場發射掃描式電子顯微鏡、霍氏轉換紅外光譜儀和高解析比表面積分析儀得到資訊。電極的電性、電容特性及電化學性質透過Van Der Pauw 四點量測、循環伏安法與阻抗分析,得到電阻率、比電容、倍率性能、充放電循環壽命及系統阻抗。本研究顯示,聚丙烯腈加入50%氯化鋰以及碳化溫度900℃得到多孔粉末所製成的電極擁有最佳比表面積和比電容值,此外加入適當濃度的奈米碳管可以提升電極比電容值。
The performance of supercapacitors depends on the selection of electrode materials. Carbon materials are widely used in the electrode of electrochemical double-layer capacitor (EDLC), because of its availability, low cost and high surface area. Polyacrylonitrile (PAN) is the primary source used to produce carbon fibers which possess above advantages and thus has a potential to be a candidate for supercapacitors. In this study, lithium chloride (LiCl) is mixed with PAN to create porous film, followed by carbonization to form porous carbon as the electrode. Additionally, carbon nanotubes (CNTs) are added into LiCl/PAN to form additional electrode for a comparison. The morphology and structure of electrodes are characterized by X-ray diffraction (XRD), Raman measurement, field emission scanning electron microscopy (FE-SEM), fourier-transform infrared spectrometer (FTIR) and high-resolution surface area and porosimetry analyser. The electrical and electrochemical properties of electrodes, including resistivity, capacitance, rate capability, and cycle life, are studied by van der pauw method, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) in Autolab. Results indicate that the porous electrodes which are made with 50% LiCl in PAN and carbonized at 900℃show the highest surface area and capacitance. Moreover, addition of a certain amount of CNTs into electrodes may promote capacitance.
目錄
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 文獻回顧 1
1-1 超級電容器 1
1-1-1超級電容器簡介 1
1-1-2電化學性質分析方法 5
1-1-3超級電容效能 7
1-2 超級電容的電極材料 8
1-2-1碳系材料 8
1-2-2過渡金屬氧化物 8
1-2-3聚丙烯腈 9
1-2-4多孔薄膜形成機制 13
1-3 奈米碳管 16
1-3-1奈米碳管簡介 16
1-3-2奈米碳管之導電特性 18
第二章 研究動機 21
第三章 實驗流程與儀器設備 22
3-1 實驗流程圖 23
3-2 藥品與儀器 24
3-2-1使用藥品及材料 24
3-2-2製程儀器及器材 25
3-3 實驗步驟 26
3-3-1氯化鋰/聚丙烯腈薄膜製備 26
3-3-2多壁奈米碳管/氯化鋰/聚丙烯腈薄膜製備 27
3-3-3薄膜熱處理 28
3-3-4酸化多孔碳粉 29
3-3-5多孔碳電極製備 30
3-4 分析儀器 31
3-4-1材料性質與結構測定 31
3-4-2電性及電化學性質測定 32
第四章 結果與討論 34
4-1 多孔聚丙烯腈材料性質與結構測定 34
4-1-1孔洞結構形成機制 34
4-1-2氯化鋰濃度選定 35
4-1-3電阻率量測 39
4-1-4碳化溫度選定與酸化影響 40
4-1-5X光繞射分析(XRD) 42
4-1-6拉曼光譜分析(Raman) 43
4-1-7霍氏轉換紅外光譜(FTIR) 44
4-2 奈米碳管對多孔聚丙烯腈之影響 45
4-2-1電阻率的改變 45
4-2-2場發射掃描式電子顯微鏡(FE-SEM) 46
4-2-3高解析比表面積分析(BET) 48
4-3 電化學性質測定 52
4-3-1比電容測試 53
4-3-2電化學阻抗測試 55
4-3-3倍率性能測試 58
4-3-4循環壽命測試 60
第五章 結論 62
第六章 參考文獻 63

第六章 參考文獻
1. Kötz, R.; Carlen, M. Electrochimica Acta 2000, 45, 2483-2498.
2. Zhao, X.; Sanchez, B. M.; Dobson, P. J.; Grant, P. S. Nanoscale 2011, 3, 839-855.
3. Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. International Journal of Hydrogen Energy 2009, 34, 4889-4899.
4. An, K. H.; Jeon, K. K.; Heo, J. K.; Lim, S. C.; Bae, D. J.; Lee, Y. H. Journal of the Electrochemical Society 2002, 149, A1058-A1062.
5. Pandolfo, A. G.; Hollenkamp, A. F. Journal of Power Sources 2006, 157, 11-27.
6. Sekar, N.; Ramasamy, R. P. Journal of Microbial & Biochemical Technology 2013, 2013.
7. González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206.
8. Inagaki, M.; Konno, H.; Tanaike, O. Journal of Power Sources 2010, 195, 7880-7903.
9. Miller, J. R.; Simon, P. Science 2008, 321, 651-652.
10. Yan, J.; Wei, T.; Cheng, J.; Fan, Z.; Zhang, M. Materials Research Bulletin 2010, 45, 210-215.
11. Patil, U. M.; Salunkhe, R. R.; Gurav, K. V.; Lokhande, C. D. Applied Surface Science 2008, 255, 2603-2607.
12. Kandalkar, S. G.; Gunjakar, J. L.; Lokhande, C. D. Applied Surface Science 2008, 254, 5540-5544.
13. 林建中. 高分子材料性質與應用; 高立圖書, 2008.
14. 國立編譯館. 高分子複合材料; 國立編譯館出版, 2009.
15. Liu, J.; Wang, P. H.; Li, R. Y. Journal of Applied Polymer Science 1994, 52, 945-950.
16. Watt, W. Carbon 1972, 10, 121-&.
17. Watt, W. Nature-Physical Science 1972, 236, 10-&.
18. Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. Polymer Degradation and Stability 2007, 92, 1421-1432.
19. David, L. I. B.; Ismail, A. F. Journal of Membrane Science 2003, 213, 285-291.
20. Wiles, K. B. 2002.
21. Freeman, J. J. Journal of Chemical Technology & Biotechnology 1990, 48, 240-241.
22. Manocha, L.; Bahl, O. Fibre Science and Technology 1980, 13, 199-212.
23. Watt, W. Strong Fibre, 1, 327.
24. 趙文元;王亦軍. 功能高分子材料化學; 化學工業, 1996.
25. Yu, X.; Xiang, H.; Long, Y.; Zhao, N.; Zhang, X.; Xu, J. Materials Letters 2010, 64, 2407-2409.
26. Rayleigh. Nature 1911, 86, 416-418.
27. Falkirk, A. Nature 1911, 86, 516-517.
28. Bunz, U. H. F. Advanced Materials 2006, 18, 973-989.
29. Widawski, G.; Rawiso, M.; Francois, B. Nature 1994, 369, 387-389.
30. Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Science 2001, 292, 79-83.
31. Iijima, S. nature 1991, 354, 56-58.
32. Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Physical Review Letters 2000, 84, 5552-5555.
33. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Science 1996, 273, 483-487.
34. Hone, J.; Llaguno, M. C.; Biercuk, M. J.; Johnson, A. T.; Batlogg, B.; Benes, Z.; Fischer, J. E. Applied Physics a-Materials Science & Processing 2002, 74, 339-343.
35. de Heer, W. A. Mrs Bulletin 2004, 29, 281-285.
36. Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Chemical Physics Letters 1999, 313, 91-97.
37. Dresselhaus, M. S.; Eklund, P. C. Advances in Physics 2000, 49, 705-814.
38. Scarselli, M.; Castrucci, P.; Crescenzi, M. D. Journal of Physics: Condensed Matter 2012, 24, 313202.
39. Dresselhaus, M.; Dresselhaus, G.; Jorio, A. Annu Rev Mater Res 2004, 34, 247-278.
40. Dai, H. Surface Science 2002, 500, 218-241.
41. 陳盈字. 國立清華大學, 2012.
42. Garcı́a, A. B.; Cuesta, A.; Montes-Morán, M. A.; Martı́nez-Alonso, A.; Tascón, J. M. D. Journal of Colloid and Interface Science 1997, 192, 363-367.
43. Esumi, K.; Ishigami, M.; Nakajima, A.; Sawada, K.; Honda, H. Carbon 1996, 34, 279-281.
44. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Carbon 2008, 46, 833-840.
45. Yoo, H. D.; Jang, J. H.; Ryu, J. H.; Park, Y.; Oh, S. M. Journal of Power Sources 2014, 267, 411-420.
46. van der PAUYV, L. Philips Res Rep 1958, 13, 1-9.
47. Banaszczyk, J.; Schwarz, A.; De Mey, G.; Van Langenhove, L. Journal of Applied Polymer Science 2010, 117, 2553-2558.
48. Everett, D. H. In Pure and Applied Chemistry, 1972, Vol. 31, pp 577.
49. Mathur, R. B.; Bahl, O. P.; Mittal, J.; Nagpal, K. C. Carbon 1991, 29, 1059-1061.
50. Bai, D. H. C. W. Y.; Zhu, B.
51. Coleman, J. N.; Curran, S.; Dalton, A.; Davey, A.; McCarthy, B.; Blau, W.; Barklie, R. Physical Review B 1998, 58, R7492.
52. Li, S.; Qin, Y.; Shi, J.; Guo, Z.-X.; Li, Y.; Zhu, D. Chemistry of materials 2005, 17, 130-135.
53. Dettlaff‐Weglikowska, U.; Kaempgen, M.; Hornbostel, B.; Skakalova, V.; Wang, J.; Liang, J.; Roth, S. physica status solidi (b) 2006, 243, 3440-3444.
54. Zhang, L. L.; Zhao, X. Chemical Society Reviews 2009, 38, 2520-2531.
55. Randles, J. E. B. Discussions of the Faraday Society 1947, 1, 11-19.
56. Abeykoon, N. C.; Bonso, J. S.; Ferraris, J. P. RSC Advances 2015, 5, 19865-19873.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *