帳號:guest(3.135.216.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許晉瑜
作者(外文):Hsu, Chin Yu
論文名稱(中文):銅/銀核殼結構奈米線製備分析及其於透明導電薄膜之應用研究
論文名稱(外文):Synthesis and characterization of Cu−Ag core-shell nanowires for transparent conductive film applications
指導教授(中文):廖建能
指導教授(外文):Liao, Chien Neng
口試委員(中文):吳文偉
林皓武
口試委員(外文):Wu, Wen Wei
Lin, Hao Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031535
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:銅奈米線奈米雙晶核殼結構奈米線透明導電薄膜
外文關鍵詞:Copper nanowiresNanotwinCore-shell nanowiresTransparent conductive films
相關次數:
  • 推薦推薦:0
  • 點閱點閱:144
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
透明導電薄膜為許多光電元件的關鍵零組件。氧化銦錫 (indium tin oxide, ITO) 因為兼具低片電阻 ( < 10 Ω/sq) 與高透光度 ( > 90 T%) 而成為目前透明導電膜最主要的材料系統。但是隨著可撓式電子產品的發展,真空製程濺鍍生產效率難以提升、塑膠基板鍍膜困難度高且機械性質硬脆的氧化銦錫將面臨被淘汰的可能。尋找下一世代透明導電薄膜材料變成一件勢在必行的事情。在許多相近的競爭技術中,使用銅奈米線所製備的透明導電薄膜具有相當的開發潛力。銅奈米線具備良好的導電率與延展性,而且在銅奈米線導入奈米雙晶結構 (nanotwin structure) 可以有效提升機械性質,同時維持良好的導電特性。此外,銅內部的雙晶結構也被發現能夠遲滯電遷移的現象,進而延長元件的使用壽命。綜合上述優點,奈米雙晶銅無疑是優異的導線材料。但是銅奈米線表面生成之氧化物易造成導電薄膜元件片電阻上升或是可靠度下降等問題。
本實驗以模板輔助低溫脈衝電鍍製備出奈米雙晶銅奈米線。為提高銅奈米線的抗氧化能力,本研究成功開發以伽凡尼置換反應均勻沉積銀殼層至銅奈米線表面的技術。除利用穿透式電子顯微鏡分析銅奈米線與銀殼層微結構外,並利用四點探針量測單根奈米線的電阻,分析銀殼層對於銅銀核殼奈米線導電性質的影響。最後則是利用抽濾轉印的方式將奈米線製備成透明導電膜,透過調控不同轉印壓力以最佳化透明導電膜製程。所製備出銅銀核殼結構奈米線透明導電薄膜之片電阻為41 Ω/sq,透光度為88.9 T%,其 Figure of merit 可達70,並且在85度高溫環境下持續觀察300小時後仍維持良好導電性。此結果說明銀殼層能有效保護內部銅線不受氧化。另外,在經過1000次的循環撓曲條件下,薄膜片電阻值仍沒有改變,顯示銀殼層並不影響奈米線的可撓性。綜合上述結果,銅銀核殼結構奈米線具有極佳的化學穩定性,能夠幫助提升奈米線透明導電薄膜之性能與可靠度。
Transparent conductive films (TCFs) are essential components in many optoelectronic devices. Indium tin oxide (ITO) that possesses high transmittance ( > 90 T%) and low sheet resistances ( <10 Ωsq−1 ) has been widely employed in TCFs. The development of flexible electronic devices drives the need of the TCFs on flexible substrates. However, the brittleness of ITO and the low throughput of the vapor-phase sputtering process on plastic substrate restricted the applicability of ITO on the flexible electronic devices. Looking for alternatives to the next-generation TCFs becomes imperative. Cu nanowires (NWs) have become a promising alternative solution for TCFs by forming a NW network on a transparent substrate. Cu NWs have superior electrical conductivity and flexibility. Nano-twinned Cu NWs have exhibited high mechanical strength, good conductivity, and moreover, superior electromigration resistance, which can be an excellent material to the NW-based TCFs. Still, the sheet resistance of Cu NWs films can easily increase due to the formation of copper oxides and leads to a severe reliability issue.
In this study, Cu NWs were synthesized by pulsed electrodeposition with porous anodic aluminum oxide (AAO) templates at low temperature. To improve their anti-oxidation property, we develop a method that can uniformly coat a thin layer of silver on the Cu NWs through a galvanic replacement reaction. The microstructure of Cu NWs and silver shell have been examined by transmission electron microscopy (TEM). The evolution of electrical resistivity for single Cu-Ag NWs was measured as a function of time by a four-point probe method. A transfer printing approach was used to fabricate the TCFs with Cu-Ag NWs. The pressure applied for the transfer printing process has been optimized to obtain a TCF with RS = 41 Ω/sq and T = 88.9 %, which gives a good figure of merit (FOM) up to 70. The Cu-Ag NWs film has demonstrated good anti-oxidation ability after thermal aging at 85 °C for 300 hours. Meanwhile, the sheet resistance of Cu-Ag NWs film remained unchanged after 1000 bending cycles, which shows the film has excellent flexibility. In summary, the Cu-Ag core-shell NWs show the good chemical stability that are able to improve the performance and reliability of the Cu NWs-based TCFs.
目錄
摘要 II
Abstract III
誌謝 V
圖目錄 IX
表目錄 XIII
第一章、緒論 1
1.1研究背景 1
1.2研究動機 2
第二章、文獻回顧 3
2.1 陽極氧化鋁模板輔助電鍍製程 3
2.1.1 多孔性模板輔助奈米線電鍍製程 3
2.1.2 陽極氧化鋁模板結構與表面形貌 4
2.1.3 陽極氧化鋁模板生成機制 5
2.1.4 陽極氧化處理參數對模板之影響 7
2.2銅奈米線製程、結構與特性 9
2.2.1銅奈米線製備 9
2.2.2奈米雙晶結構銅奈米線 14
2.2.3銅基核殼結構奈米線 16
2.2.4銅銀伽凡尼置換反應 19
2.3 奈米線透明導電薄膜 21
2.3.1透明導電薄膜發展與變遷 21
2.3.2透明導電薄膜製程 23
2.3.3透明導電薄膜光學與導電特性 25
第三章、實驗流程 28
3.1實驗設計與流程 28
3.1.1陽極氧化鋁模板製備 28
3.1.2雙晶結構銅奈米線製備 30
3.1.3銅銀核殼結構奈米線製備 31
3.1.4金屬奈米線透明導電薄膜製備 32
3.2金屬奈米線及透明導電薄膜之微結構與特性量測分析 33
3.2.1 X光結晶繞射 (XRD) 分析 33
3.2.2掃描式電子顯微鏡 (SEM) 分析 33
3.2.3穿透式電子顯微鏡 (TEM) 分析 34
3.2.4紫外光-可見光 (UV-Visible) 光譜儀分析 34
3.2.5金屬奈米線電性分析 34
3.2.6透明導電薄膜特性分析 35
3.3實驗設備與儀器 36
第四章、結果與討論 37
4.1銅奈米線電鍍製程與結構分析 37
4.2銅銀核殼結構奈米線之製備與特性量測分析 40
4.2.1 銅銀核殼結構奈米線製程 40
4.2.2銅銀核殼層結構奈米線之化學特性分析 42
4.2.3銅銀核殼層奈米線電性量測 44
4.2.4銅銀核殼層奈米線微結構分析 47
4.2.5銅銀核殼層奈米線之銀置換反應機制 54
4.3透明導電薄膜特性分析 56
4.3.1 奈米線抽濾轉印之製程 56
4.3.2薄膜透光度與導電度量測分析 58
4.3.3透明導電薄膜之氧化特性分析 60
4.3.4透明導電薄膜之機械特性分析 61
第五章、結論 62
參考文獻 63

[1] D.C. Jang, X.Y. Li, H.J. Gao and J.R. Greer, Deformation mechanisms in nanotwinned metal nanopillars, Nature Nanotech., 2012, 7, 594
[2] K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K.N. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper, Science, 2008, 321
[3] T.C. Liu, C.M. Liu, Y.S. Huang, C. Chen, and K.N. Tu, Eliminate Kirkendall voids in solder reactions on nanotwinned copper, Scripta Mater, 2013, 68, 241
[4] I.E. Stewart, S.R.Ye, Z.F. Chen, P.F. Flowers, and B.J. Wiley, Synthesis of Cu−Ag, Cu−Au, and Cu−Pt core−shell nanowires and their use in transparent conducting films, Chem. Mater., 2015, 27, 7788
[5] X.H. Xia , Y. Wang , A. Ruditskiy, and Y.N. Xia, 25th Anniversary article: Galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties, Adv. Mater., 2013, 25, 6313
[6] L.Y. Liang, Y. Xu, C.L. Wang, L.Y. Wen, Y.G. Fang, Y. Mi, M. Zhou, H.P. Zhao and Y. Lei, Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries, Energy Environ. Sci., 2015, 8, 2954
[7] A.M.M. Jani , D. Losic , N.H. Voelcker, Nanoporous anodic aluminium oxide: Advances in surface engineering and emerging applications, Prog Mater Sci, 2013, 58, 636
[8] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina, J Appl Phys., 1998, 84, 6023
[9] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, Highly ordered monocrystalline silver nanowire arrays, J Appl Phys., 2002, 91, 3243
[10] S. Bhanushali, P. Ghosh, A. Ganesh, and W.L. Cheng, 1D Copper nanostructures: progress, challenges and opportunities, Small, 2015, 11, 1232
[11] T.C. Chan, Y.M. Lin, H.W. Tsai, Z.M. Wang, C.N. Liao and Y.L. Chueh, Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance., Nanoscale, 2014, 9, 7332
[12] D. Xu, W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņ, and K.N. Tu, Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition, Appl. Phys. Lett.,2007, 91, 254105
[13] S. Zhong, T. Koch, M. Wang, T. Scherer, S. Walheim, H. Hahn, and T. Schimmel, Nanoscale twinned copper nanowire formation by direct electrodeposition, Small, 2009, 20, 2265
[14] L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science, 2004, 304, 422
[15] L. Lu, X. Chen, X. Huang, K. Lu, Revealing the maximum strength
in nanotwinned copper, Science, 2009, 323, 607
[16] M. E. Toimil Molares, E.M. Höhberger, C. Schaeflein, R.H. Blick, R. Neumann, and C. Trautmann, Electrical characterization of electrochemically grown single copper nanowires, Appl. Phys. Lett., 2003, 82, 2139
[17] A.R. Rathmell and B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates, Adv. Mater., 2011, 23, 4798
[18] S.R. Ye, I.E. Stewart, Z.F. Chen, B. Li, A.R. Rathmell, and B.J. Wiley, How copper nanowires grow and how to control their properties, Acc. Chem. Res. 2016, 49, 442
[19] C.M. Cobley, Q. Zhang, W.B. Song, and Y.N. Xia, The role of surface nonuniformity in controlling the initiation of a galvanic replacement reaction, Chem. Asian J., 2011, 6, 1479
[20] S.E. Skrabalak, J.Y. Chen, Y.G. Sun, X.M. Lu, L.L. Au, C.M. Cobley, and Y.N. Xia, Gold nanocages: synthesis, properties, and applications, Acc. Chem. Res., 2008, 41,1587
[21] D. Seo and H.J. Song, Asymmetric hollow nanorod formation through a partial galvanic replacement reaction, J. Am. Chem. Soc., 2009, 131, 18210
[22] M. McEachran, D. Keogh, B. Pietrobon, N. Cathcart, I. Gourevich, N. Coombs, and V. Kitaev, Ultrathin gold nanoframes through surfactant-free templating of faceted pentagonal silver nanoparticles, J. Am. Chem. Soc., 2011, 133, 8066
[23] X.H. Xiaa, S.F. Xie, M.C. Liua, H.C. Peng, N. Lu, J.G. Wang, Moon, J. Kim, and Y.N. Xia, On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals, Proc. Natl. Acad. Sci. U.S.A., 2013, 110, 6669
[24] Indium tin oxide and alternative transparent conductor Markets , NanoMarkets, LC , 2009
[25] S.R. Ye , A.R. Rathmell, Z.F. Chen , I.E. Stewart, and B.J. Wiley, Metal nanowire networks: the next generation of transparent conductors, Adv. Mater., 2014, 26, 6670
[26] J.Y. Lee, S.T. Connor, Y. Cui, and P. Peumans, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett., 2008, 8, 689
[27] T. Tokuno, M. Nogi , M. Karakawa, J.T. Jiu, T.T. Nge, Y. Aso, and K. Suganuma, Fabrication of silver nanowire transparent electrodes at room temperature, Nano Res., 2011, 4, 1215
[28] Y.L. Won, A. Kim, D.G. Lee, W.S. Yang, K.H. Woo, S.H. Jeong, and J.H. Moon, Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics., NPG Asia Mater., 2014, 6, e105.
[29] T.B. Song, Y. Chen, C.H. Chung, M. Yang, B. Bob, H.S. Duan, G. Li, K.N. Tu, Y. Huang, and Y. Yang, Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts, ACS Nano, 2014, 8, 2804
[30] S.K. Duan, Q.L. Niu, J.F. Wei, J.B. He, Y.A. Yin, and Y. Zhang, Water-bath assisted convective assembly of aligned silver nanowire films for transparent electrodes, Phys.Chem.Chem.Phys., 2015, 17, 8106
[31] S.M. Bergin, Y.H. Chen, A.R. Rathmell, P. Charbonneau, Z.Y. Li and B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent,conducting nanowire films, Nanoscale, 2012, 4, 1996
[32] G.E. Pike and C.H. Seager, Percolation and conductivity: A computer study. I, Phys. Rev. B, 1974, 10, 1421
[33] R.M. Mutiso, M.C. Sherrott, A.R. Rathmell, B.J. Wiley, and K.I. Winey, Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors, ACS Nano, 2013, 7 ,7654
[34] I.E. Stewart, A.R. Rathmell, L. Yan, S.R. Ye, P.F. Flowers,W. You and B.J. Wiley, Solution-processed copper–nickel nanowire anodes for organic solar cells, Nanoscale, 2014, 6, 5980
[35] D.Q. Zeng, Y.Z. Chen, A.L. Lu, M. Li, H.Z. Guo, J.B. Wang
and D.L. Peng, Injection synthesis of Ni–Cu@Au–Cu nanowires with
tunable magnetic and plasmonic properties, Chem. Commun., 2013, 49, 11545
[36] 徐肇蔚, 國立清華大學碩士論文, 2015
[37] J.M. Roberts, A.P. Kaushik and J.S. Clarke, Resistivity of sub-30 nm Copper lines, Intel Corporation
[38] X.H. Chen, L. Lu, and K. Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins, 2007, 102, 083708
[39] Q.J. Huang, C.M. Lilley, M. Bode, and R. Divan, Surface and size effects on the electrical properties of Cu nanowires, J. Appl. Phys., 2008, 104, 023709
[40] J.Y. Chen, B. Wiley, J. McLellan, Y.J. Xiong, Z.Y. Li, and Y.N. Xia, Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions, Nano Lett., 2005, 5, 2058
[41] A. Bukaluk, Auger electron spectroscopy investigations of the effect of degradation of depth resolution and its influence on the interdiffusion data in thin film Au/Ag, Cu/Ag, Pd/Au, Pd/Cu multilayer structures, Appl. Surf. Sci., 2001, 175, 790
[42] E. González, F. Merkoçi, R. Arenal, J. Arbiol, J. Esteve, N.G. Bastúsa and V. Puntes, Enhanced reactivity of high-index surface platinum hollow nanocrystals, J. Mater. Chem. A, 2016, 4, 200
[43] J. Zeng, J. Tao,W.Y. Li, J. Grant, P. Wang,. Y.M. Zhu, and Y.N. Xia, A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions, Chem. Asian J. 2011, 6, 376
[44] Y. Bi and J.H. Ye, In situ oxidation synthesis of Ag/AgCl core–shell nanowires and their photocatalytic properties, Chem. Commun., 2009, 6551
[45] Y. Sun, and Y. Wang, Monitoring of galvanic replacement reaction between silver nanowires and HAuCl4 by in situ transmission X-ray microscopy, Nano Lett., 2011, 11, 4386
[46] M.S. Miller, J.C. O’Kane, A. Niec, R.S. Carmichael, and T.B. Carmichael, Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics, ACS Appl. Mater. Interfaces, 2013, 5, 10165
[47] Transparent conductive films - ITO and ZnO, Geomatec Corporation
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *