|
[1] R. S. Holli Riebeek. Global Mean Surface Temperature. Available: http://earthobservatory.nasa.gov/Features/GlobalWarming/page2.php [2] U. N. F. C. o. C. Change. (2014). First steps to a safer future: Introducing The United Nations Framework Convention on Climate Change. Available: http://unfccc.int/2860.php [3] A smart community. Available: https://www.mhi-global.com/discover/earth/issue/history/future/smartcommunity/future_energy.html [4] B. Lawson. (2005). Energy Density. Available: http://www.mpoweruk.com/chemistries.htm [5] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, pp. 6332-6341, 2010. [6] N. Nitta and G. Yushin, "High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles," Particle & Particle Systems Characterization, vol. 31, pp. 317-336, 2014. [7] H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano Today, vol. 7, pp. 414-429, 2012. [8] L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause, and J. R. Dahn, "Colossal reversible volume changes in lithium alloys," Electrochemical and Solid State Letters, vol. 4, pp. A137-A140, 2001. [9] T. D. Hatchard and J. R. Dahn, "In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon," Journal of the Electrochemical Society, vol. 151, pp. A838-A842, 2004. [10] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, "High-performance lithium-ion anodes using a hierarchical bottom-up approach," Nature Materials, vol. 9, pp. 353-358, 2010. [11] W. Wang, Z. Favors, R. Ionescu, R. Ye, H. H. Bay, M. Ozkan, et al., "Monodisperse Porous Silicon Spheres as Anode Materials for Lithium Ion Batteries," Scientific Reports, vol. 5, p. 6, 2015. [12] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang, and Y. Cui, "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes," Nano Letters, vol. 12, pp. 3315-3321, 2012. [13] Z. D. Lu, N. Liu, H. W. Lee, J. Zhao, W. Y. Li, Y. Z. Li, et al., "Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes," Acs Nano, vol. 9, pp. 2540-2547, 2015. [14] F. F. Cao, J. W. Deng, S. Xin, H. X. Ji, O. G. Schmidt, L. J. Wan, et al., "Cu-Si Nanocable Arrays as High-Rate Anode Materials for Lithium-Ion Batteries," Advanced Materials, vol. 23, pp. 4415, 2011. [15] J. W. Kim, J. H. Ryu, K. T. Lee, and S. M. Oh, "Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries," Journal of Power Sources, vol. 147, pp. 227-233, 2005. [16] S. Chae, M. Ko, S. Park, N. Kim, J. Ma, and J. Cho, "Micron-sized Fe-Cu-Si ternary composite anodes for high energy Li-ion batteries," Energy & Environmental Science, vol. 9, pp. 1251-1257, 2016. [17] K. Goldshtein, K. Freedman, D. Schneier, L. Burstein, V. Ezersky, E. Peled, et al., "Advanced Multiphase Silicon-Based Anodes for High-Energy-Density Li-Ion Batteries," Journal of the Electrochemical Society, vol. 162, pp. A1072-A1079, 2015. [18] M. T. Taschuk, M. M. Hawkeye, and M. J. Brett, "Chapter 13 - Glancing Angle Deposition - Martin, Peter M," in Handbook of Deposition Technologies for Films and Coatings (Third Edition), ed Boston: William Andrew Publishing, pp. 621-678, 2010. [19] H. Kwon, S. H. Lee, and J. K. Kim, "Three-Dimensional Metal-Oxide Nanohelix Arrays Fabricated by Oblique Angle Deposition: Fabrication, Properties, and Applications," Nanoscale Research Letters, vol. 10, p. 369, 2015. [20] S. R. Kennedy and M. J. Brett, "Porous broadband antireflection coating by glancing angle deposition," Applied Optics, vol. 42, pp. 4573-4579, 2003. [21] S. H. Lee, J. Kwon, D. Y. Kim, K. Song, S. H. Oh, J. Cho, et al., "Enhanced power conversion efficiency of dye-sensitized solar cells with multifunctional photoanodes based on a three-dimensional TiO2 nanohelix array," Solar Energy Materials and Solar Cells, vol. 132, pp. 47-55, 2015. [22] Z. Xie, X. Liu, W. Wang, C. Liu, Z. Li, and Z. Zhang, "Fabrication of TiN nanostructure as a hydrogen peroxide sensor by oblique angle deposition," Nanoscale Research Letters, vol. 9, pp. 1-5, 2014. [23] I. A. Shkrob, J. F. Wishart, and D. P. Abraham, "What Makes Fluoroethylene Carbonate Different?," The Journal of Physical Chemistry C, vol. 119, pp. 14954-14964, 2015. [24] G. A. Mabbott, "AN INTRODUCTION TO CYCLIC VOLTAMMETRY," Journal of Chemical Education, vol. 60, pp. 697-702, 1983. [25] U. Kasavajjula, C. Wang, and A. J. Appleby, "Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells," Journal of Power Sources, vol. 163, pp. 1003-1039, 2007. [26] P. K. Ng, J. Y. Cheng, B. Fisher, C. M. Lilley, and Ieee, In situ Electrical Resistivity Measurement of Self Assembled Cu3Si Nanowires on Si(111). New York: Ieee, 2013. [27] S. J. Jung, T. Lutz, A. P. Bell, E. K. McCarthy, and J. J. Boland, "Free-Standing, Single-Crystal Cu3Si Nanowires," Crystal Growth & Design, vol. 12, pp. 3076-3081, 2012. [28] C. H. Chiu, C. W. Huang, J. Y. Chen, Y. T. Huang, J. C. Hu, L. T. Chen, et al., "Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties," Nanoscale, vol. 5, pp. 5086-5092, 2013. [29] C. Bo, J. Yan-Hui, L. Gong-Ping, and C. Xi-Meng, "Atomic diffusion in annealed Cu/SiO2/Si (100) system prepared bymagnetron sputtering, 2010. [30] S. a. database, "Cu-Si phase diagram," ed, 2011. [31] D. M. Piper, J. J. Travis, M. Young, S. B. Son, S. C. Kim, K. H. Oh, et al., "Reversible High-Capacity Si Nanocomposite Anodes for Lithium-ion Batteries Enabled by Molecular Layer Deposition," Advanced Materials, vol. 26, pp. 1596-1601, 2014. [32] W. Yuan, M. Y. Wu, H. Zhao, X. Y. Song, and G. Liu, "Baseline Si electrode fabrication and performance for the battery for Advanced Transportation Technologies Program," Journal of Power Sources, vol. 282, pp. 223-227, 2015. [33] S. Jeong, J. P. Lee, M. Ko, G. Kim, S. Park, and J. Cho, "Etched Graphite with Internally Grown Si Nanowires from Pores as an Anode for High Density Li-Ion Batteries," Nano Letters, vol. 13, pp. 3403-3407, 2013. [34] Y. H. Xu, Y. J. Zhu, F. D. Han, C. Luo, and C. S. Wang, "3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li-Ion Batteries," Advanced Energy Materials, vol. 5, p. 7, 2015. [35] J. Y. Liu, N. Li, M. D. Goodman, H. G. Zhang, E. S. Epstein, B. Huang, et al., "Mechanically and Chemically Robust Sandwich-Structured C@Si@C Nanotube Array Li-Ion Battery Anodes," Acs Nano, vol. 9, pp. 1985-1994, 2015. [36] Z. L. Zhang, Y. H. Wang, W. F. Ren, Q. Q. Tan, Y. F. Chen, H. Li, et al., "Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as High-Performance Anodes of Lithium Ion Batteries," Angewandte Chemie-International Edition, vol. 53, pp. 5165-5169, 2014. [37] B. Wang, T. F. Qiu, X. L. Li, B. Luo, L. Hao, Y. B. Zhang, et al., "Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes," Journal of Materials Chemistry A, vol. 3, pp. 494-498, 2015. [38] Y. Y. Huang, D. Han, Y. B. He, Q. B. Yun, M. Liu, X. Y. Qin, et al., "Si Nanoparticles Intercalated into Interlayers of Slightly Exfoliated Graphite filled by Carbon as Anode with High Volumetric Capacity for Lithium-ion Battery," Electrochimica Acta, vol. 184, pp. 364-370, 2015. [39] S. Li, X. Qin, H. Zhang, J. Wu, Y.-B. He, B. Li, et al., "Silicon/carbon composite microspheres with hierarchical core–shell structure as anode for lithium ion batteries," Electrochemistry Communications, vol. 49, pp. 98-102, 2014. [40] T. M. Bandhauer, S. Garimella, and T. F. Fuller, "A Critical Review of Thermal Issues in Lithium-Ion Batteries," Journal of the Electrochemical Society, vol. 158, pp. R1-R25, 2011. [41] B. Kumar, J. Kumar, R. Leese, J. P. Fellner, S. J. Rodrigues, and K. M. Abraham, "A Solid-State, Rechargeable, Long Cycle Life Lithium-Air Battery," Journal of the Electrochemical Society, vol. 157, pp. A50-A54, 2010. [42] J. F. M. Oudenhoven, L. Baggetto, and P. H. L. Notten, "All-Solid-State Lithium-Ion Microbatteries: A Review of Various Three-Dimensional Concepts," Advanced Energy Materials, vol. 1, pp. 10-33, 2011. [43] P. H. L. Notten, F. Roozeboom, R. A. H. Niessen, and L. Baggetto, "3-D integrated all-solid-state rechargeable batteries," Advanced Materials, vol. 19, pp. 4564-4567, 2007. [44] S. Xu, Y. H. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, et al., "Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems," Nature Communications, vol. 4, p. 8, 2013. |