|
1. Ruiyuan, L. and S. Baoquan, Silicon-based Organic/inorganic Hybrid Solar Cells. ACTA CHIMICA SINICA, 2015. 73(3): p. 225-236. 2. Huang, J.-H., et al., Controlled Growth of Nanofiber Network Hole Collection Layers with Pore Structure for Polymer− Fullerene Solar Cells. The Journal of Physical Chemistry C, 2008. 112(48): p. 19125-19130. 3. Zhang, F., T. Song, and B. Sun, Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application. Nanotechnology, 2012. 23(19): p. 194006. 4. Gong, X., et al., Hybrid tapered silicon nanowire/PEDOT: PSS solar cells. RSC Advances, 2015. 5(14): p. 10310-10317. 5. Kayes, B.M., H.A. Atwater, and N.S. Lewis, Comparison of the device physics principles of planar and radial pn junction nanorod solar cells. Journal of applied physics, 2005. 97(11): p. 114302. 6. Li, Y., et al., A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells. Scientific reports, 2015. 5. 7. Huang, Z., et al., Metal‐assisted chemical etching of silicon: a review. Advanced materials, 2011. 23(2): p. 285-308. 8. Lévy-Clément, C., Porous Silicon Formation by Metal Nanoparticle-Assisted Etching, in Handbook of Porous Silicon. 2014, Springer. p. 49-66. 9. Dehsari, H.S., et al., Efficient preparation of ultralarge graphene oxide using a PEDOT: PSS/GO composite layer as hole transport layer in polymer-based optoelectronic devices. RSC Advances, 2014. 4(98): p. 55067-55076. 10. Ouyang, J., et al., On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer, 2004. 45(25): p. 8443-8450. 11. Alemu, D., et al., Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy & environmental science, 2012. 5(11): p. 9662-9671. 12. Hu, X., et al., Tuning thermoelectric performance by nanostructure evolution of a conducting polymer. Journal of Materials Chemistry A, 2015. 3(42): p. 20896-20902. 13. Mengistie, D.A., P.-C. Wang, and C.-W. Chu, Effect of molecular weight of additives on the conductivity of PEDOT: PSS and efficiency for ITO-free organic solar cells. Journal of Materials Chemistry A, 2013. 1(34): p. 9907-9915. 14. Kim, Y.H., et al., Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells. Advanced Functional Materials, 2011. 21(6): p. 1076-1081. 15. Shi, H., et al., Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review. Advanced Electronic Materials, 2015. 1(4). 16. Yeo, J.-S., et al., Significant vertical phase separation in solvent-vapor-annealed poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. ACS applied materials & interfaces, 2012. 4(5): p. 2551-2560. 17. Avasthi, S., et al., Role of majority and minority carrier barriers silicon/organic hybrid heterojunction solar cells. Advanced Materials, 2011. 23(48): p. 5762-5766. 18. Liu, C.-Y., Z.C. Holman, and U.R. Kortshagen, Hybrid solar cells from P3HT and silicon nanocrystals. Nano letters, 2008. 9(1): p. 449-452. 19. Thiyagu, S., B.P. Devi, and Z. Pei, Fabrication of large area high density, ultra-low reflection silicon nanowire arrays for efficient solar cell applications. Nano Research, 2011. 4(11): p. 1136-1143. 20. Thiyagu, S., et al., Optical trapping enhancement from high density silicon nanohole and nanowire arrays for efficient hybrid organic–inorganic solar cells. RSC Advances, 2015. 5(17): p. 13224-13233. 21. Syu, H.J., et al., Influences of silicon nanowire morphology on its electro‐optical properties and applications for hybrid solar cells. Progress in Photovoltaics: Research and Applications, 2013. 21(6): p. 1400-1410. 22. Liang, Z., et al., Characteristics of a Silicon Nanowires/PEDOT: PSS Heterojunction and Its Effect on the Solar Cell Performance. ACS applied materials & interfaces, 2015. 7(10): p. 5830-5836. 23. Chen, T.-G., et al., Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency. Applied Physics Letters, 2012. 101(3): p. 033301. 24. Wang, W.-L., et al., Enhanced photovoltaic performance of organic/silicon nanowire hybrid solar cells by solution-evacuated method. Optics letters, 2014. 39(11): p. 3219-3222. 25. Thomas, J.P., et al., High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition. Journal of Materials Chemistry A, 2014. 2(7): p. 2383-2389. 26. Thomas, J.P. and K.T. Leung, Defect‐Minimized PEDOT: PSS/Planar‐Si Solar Cell with Very High Efficiency. Advanced Functional Materials, 2014. 24(31): p. 4978-4985. 27. Thomas, J.P., et al., Reversible structural transformation and enhanced performance of PEDOT: PSS-based hybrid solar cells driven by light intensity. ACS applied materials & interfaces, 2015. 7(14): p. 7466-7470. 28. Wei, W.-R., et al., Above-11%-efficiency organic–inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures. Nano letters, 2013. 13(8): p. 3658-3663. 29. Jeong, H., et al., Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells. Advanced Materials, 2014. 26(21): p. 3445-3450. 30. Jeong, S., et al., Hybrid silicon nanocone–polymer solar cells. Nano letters, 2012. 12(6): p. 2971-2976. 31. Pudasaini, P.R., et al., High Efficiency Hybrid Silicon Nanopillar–Polymer Solar Cells. ACS applied materials & interfaces, 2013. 5(19): p. 9620-9627. 32. Yu, P., et al., 13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. ACS nano, 2013. 7(12): p. 10780-10787. 33. He, J., et al., Realization of 13.6% efficiency on 20 μm thick Si/organic hybrid heterojunction solar cells via advanced nanotexturing and surface recombination suppression. ACS nano, 2015. 9(6): p. 6522-6531. 34. Zhang, Y., et al., High efficiency hybrid PEDOT: PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energy & Environmental Science, 2015. 8(1): p. 297-302. 35. He, L., et al., High efficiency planar Si/organic heterojunction hybrid solar cells. Applied Physics Letters, 2012. 100(7): p. 073503. 36. He, L., et al. 11.3% efficient planar Si-PEDOT: PSS hybrid solar cell with a thin interfacial oxide. in Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012. IEEE. 37. Jung, J.-Y., et al., A strong antireflective solar cell prepared by tapering silicon nanowires. Optics express, 2010. 18(103): p. A286-A292. 38. Jung, J.-Y., et al., A waferscale Si wire solar cell using radial and bulk p–n junctions. Nanotechnology, 2010. 21(44): p. 445303. 39. Zhu, J., et al., Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano letters, 2008. 9(1): p. 279-282. 40. Hanifah, M.F.R., et al., Synthesis of Graphene Oxide Nanosheets via Modified Hummers’ Method and Its Physicochemical Properties. Jurnal Teknologi, 2015. 74(1). 41. Shahriary, L. and A.A. Athawale, Graphene oxide synthesized by using modified hummers approach. IJREEE, 2014. 2(1): p. 58-63.
|