|
1. Wang, C.F., et al., Ultraviolet-durable superhydrophobic zinc oxide-coated mesh films for surface and underwater-oil capture and transportation. Langmuir, 2012. 28(26): p. 10015-10019. 2. Chu, Z., Y. Feng, and S. Seeger, Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed Engl, 2015. 54(8): p. 2328-2338. 3. Padaki, M., et al., Membrane technology enhancement in oil–water separation. A review. Desalination, 2015. 357: p. 197-207. 4. Lasalle, A., et al., Ice-Templating of Alumina Suspensions: Effect of Supercooling and Crystal Growth During the Initial Freezing Regime. Journal of the American Ceramic Society, 2012. 95(2): p. 799-804. 5. Deville, S., E. Saiz, and A.P. Tomsia, Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(32): p. 5480-5489. 6. Szepes, A., et al., Freeze-casting technique in the development of solid drug delivery systems. Chemical Engineering and Processing: Process Intensification, 2007. 46(3): p. 230-238. 7. Frank, G., E. Christian, and K. Dietmar, A Novel Production Method for Porous Sound-Absorbing Ceramic Material for High-Temperature Applications. International Journal of Applied Ceramic Technology, 2011. 8(3): p. 646-652. 8. Cable, T.L., et al., Regenerative Performance of the NASA Symmetrical Solid Oxide Fuel Cell Design. International Journal of Applied Ceramic Technology, 2011. 8(1): p. 1-12. 9. Lee, S.-H., et al., Fabrication of Porous PZT-PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene-Based Freeze Casting. Journal of the American Ceramic Society, 2007. 90(9): p. 2807-2813. 10. Deville, S., Freeze-Casting of Porous Ceramics: A Review of Current Achievements and Issues. Advanced Engineering Materials, 2008. 10(3): p. 155-169. 11. Wen, L., Y. Tian, and L. Jiang, Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed Engl, 2015. 54(11): p. 3387-3399. 12. Israelachvili, J.N., Adhesion forces between surfaces in liquids and condensable vapours. Surface Science Reports, 1992. 14(3): p. 109-159. 13. Young, T., An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 1805. 95: p. 65-87. 14. Wang, S. and L. Jiang, Definition of Superhydrophobic States. Advanced Materials, 2007. 19(21): p. 3423-3424. 15. Cebeci, F.Ç., et al., Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings. Langmuir, 2006. 22(6): p. 2856-2862. 16. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994. 17. Cassie, A.B.D. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40(0): p. 546-551. 18. Jung, Y.C. and B. Bhushan, Wetting Behavior of Water and Oil Droplets in Three-Phase Interfaces for Hydrophobicity/philicity and Oleophobicity/philicity. Langmuir, 2009. 25(24): p. 14165-14173. 19. Wang, B., et al., Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chemical Society Reviews, 2015. 44(1): p. 336-361. 20. Feng, L., et al., A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed Engl, 2004. 43(15): p. 2012-2014. 21. Wang, L., et al., Fabrication of superhydrophobic TPU film for oil–water separation based on electrospinning route. Materials Letters, 2011. 65(5): p. 869-872. 22. Crick, C.R., J.A. Gibbins, and I.P. Parkin, Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation. Journal of Materials Chemistry A, 2013. 1(19): p. 5943. 23. Zhang, J. and S. Seeger, Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Advanced Functional Materials, 2011. 21(24): p. 4699-4704. 24. Wu, L., et al., Mimic nature, beyond nature: facile synthesis of durable superhydrophobic textiles using organosilanes. Journal of Materials Chemistry B, 2013. 1(37): p. 4756-4763. 25. Wu, L., et al., Mechanical- and oil-durable superhydrophobic polyester materials for selective oil absorption and oil/water separation. Journal of Colloid and Interface Science, 2014. 413: p. 112-117. 26. Zhu, Q., et al., Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. Journal of Materials Chemistry A, 2013. 1(17): p. 5386-5393. 27. Xue, Z., et al., A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation. Advanced Materials, 2011. 23(37): p. 4270-4273. 28. Zhang, F., et al., Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Advanced Materials, 2013. 25(30): p. 4192-4198. 29. Chen, P.C. and Z.K. Xu, Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation. Scientific Reports, 2013. 3: p. 2776. 30. Zhang, E., et al., Anti-corrosive hierarchical structured copper mesh film with superhydrophilicity and underwater low adhesive superoleophobicity for highly efficient oil–water separation. Journal of Materials Chemistry A, 2015. 3(25): p. 13411-13417. 31. Christensen, T., The Diatoms. Biology and Morphology of the Genera. Phycologia, 1991. 30(2): p. 233-235. 32. Fowler, C.E., et al., An aqueous route to organically functionalized silica diatom skeletons. Applied Surface Science, 2007. 253(12): p. 5485-5493. 33. Inglethorpe, S., Industrial minerals laboratory manual: diatomite. 1993: British Geological Survey. 34. Gordon, R. and R.W. Drum, The Chemical Basis of Diatom Morphogenesis†, in International Review of Cytology, G. Richard, Editor. 1994, Academic Press. p. 243-372. 35. Yang, Y.X., R.S. Chen, and A.B. Dai, A study on structure of local diatomites. Acta Chimica Sinica, 1996. 54(1): p. 57-64. 36. Ha, J.-H., E. Oh, and I.-H. Song, The fabrication and characterization of sintered diatomite for potential microfiltration applications. Ceramics International, 2013. 39(7): p. 7641-7648. 37. Fang, J., et al., Elaboration of new ceramic membrane from spherical fly ash for microfiltration of rigid particle suspension and oil-in-water emulsion. Desalination, 2013. 311: p. 113-126. 38. Madaeni, S.S., et al., Coke removal from petrochemical oily wastewater using γ-Al2O3 based ceramic microfiltration membrane. Desalination, 2012. 293: p. 87-93. 39. Serieyssol, K.K., Diatoms: Unnoticed living jewels in water. Diatom Research, 2013. 28(3): p. 333-333. 40. Kashcheev, I.D., A.G. Popov, and S.E. Ivanov, Improving the thermal insulation of high-temperature furnaces by the use of diatomite. Refractories and Industrial Ceramics, 2009. 50(2): p. 98-100. 41. Şan, O. and A. İmaretli, Preparation and filtration testing of diatomite filtering layer by acid leaching. Ceramics International, 2011. 37(1): p. 73-78. 42. Yeom, H.-J., et al., Processing of alumina-coated clay–diatomite composite membranes for oily wastewater treatment. Ceramics International, 2016. 42(4): p. 5024-5035. 43. Ediz, N., İ. Bentli, and İ. Tatar, Improvement in filtration characteristics of diatomite by calcination. International Journal of Mineral Processing, 2010. 94(3-4): p. 129-134. 44. Gaddis, C.S. and K.H. Sandhage, Freestanding microscale 3D polymeric structures with biologically-derived shapes and nanoscale features. Journal of Materials Research, 2011. 19(09): p. 2541-2545. 45. Zhang, H., et al., Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Materials, 2005. 4(10): p. 787-793. 46. Wegst, U.G., et al., Biomaterials by freeze casting. Philos Trans A Math Phys Eng Sci, 2010. 368(1917): p. 2099-2121. 47. Porter, M.M., J. McKittrick, and M.A. Meyers, Biomimetic Materials by Freeze Casting. Jom, 2013. 65(6): p. 720-727. 48. Deville, S., et al., Freezing as a Path to Build Complex Composites. Science, 2006. 311(5760): p. 515-518. 49. Deville, S., E. Saiz, and A.P. Tomsia, Ice-templated porous alumina structures. Acta Materialia, 2007. 55(6): p. 1965-1974. 50. Lottermoser, A., Über das Ausfrieren von Hydrosolen. Berichte der deutschen chemischen Gesellschaft, 1908. 41(3): p. 3976-3979. 51. Maxwell, W., R. Gurnick, and A. Francisco, Preliminary Investigation of the'freeze-casting'Method for Forming Refractory Powders. NACA Research Memorandum, Lewis Flight Propulsion Laboratory, 1954. 52. Fukasawa, T., et al., Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 2001. 36(10): p. 2523-2527. 53. Fukasawa, T., et al., Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process. Journal of the American Ceramic Society, 2002. 85(9): p. 2151-2155. 54. Blindow, S., et al., Hydroxyapatite/SiO2 Composites via Freeze Casting for Bone Tissue Engineering. Advanced Engineering Materials, 2009. 11(11): p. 875-884. 55. Moon, J.-W., et al., Preparation of NiO–YSZ tubular support with radially aligned pore channels. Materials Letters, 2003. 57(8): p. 1428-1434. 56. Koh, Y.-H., J.-J. Sun, and H.-E. Kim, Freeze casting of porous Ni–YSZ cermets. Materials Letters, 2007. 61(6): p. 1283-1287. 57. Sofie, S.W., Fabrication of Functionally Graded and Aligned Porosity in Thin Ceramic Substrates With the Novel Freeze-Tape-Casting Process. Journal of the American Ceramic Society, 2007. 90(7): p. 2024-2031. 58. Ren, L., Y.-P. Zeng, and D. Jiang, Fabrication of Gradient Pore TiO2 Sheets by a Novel Freeze-Tape-Casting Process. Journal of the American Ceramic Society, 2007. 90(9): p. 3001-3004. 59. Chino, Y. and D.C. Dunand, Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 2008. 56(1): p. 105-113. 60. Yook, S.-W., et al., Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries. Materials Letters, 2008. 62(30): p. 4506-4508. 61. Yook, S.-W., H.-E. Kim, and Y.-H. Koh, Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters, 2009. 63(17): p. 1502-1504. 62. Driscoll, D., A.J. Weisenstein, and S.W. Sofie, Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates. Materials Letters, 2011. 65(23-24): p. 3433-3435. 63. Schoof, H., et al., Control of pore structure and size in freeze-dried collagen sponges. Journal of Biomedical Materials Research, 2001. 58(4): p. 352-357. 64. Kuberka, M., et al., Magnification of the pore size in biodegradable collagen sponges. The International Journal of Artificial Organs, 2002. 25(1): p. 67-73. 65. Zhang, Y., L. Hu, and J. Han, Preparation of a Dense/Porous BiLayered Ceramic by Applying an Electric Field During Freeze Casting. Journal of the American Ceramic Society, 2009. 92(8): p. 1874-1876. 66. Porter, M.M., et al., Magnetic freeze casting inspired by nature. Materials Science and Engineering: A, 2012. 556: p. 741-750. 67. Lee, P.-H., Synthesis of Hierarchically Porous Structured Bio-Inspired Composites by Diatomites and Freeze Casting, in Department of Materials Science and Engineering. 2015, National Tsing Hua University: Unpublished Results. 68. Ojuva, A., et al., Mechanical performance and CO2 uptake of ion-exchanged zeolite A structured by freeze-casting. Journal of the European Ceramic Society, 2015. 35(9): p. 2607-2618. 69. da Silva, L.L. and F. Galembeck, Morphology of latex and nanocomposite adsorbents prepared by freeze-casting. Journal of Materials Chemistry A, 2015. 3(14): p. 7263-7272. 70. Waschkies, T., R. Oberacker, and M.J. Hoffmann, Investigation of structure formation during freeze-casting from very slow to very fast solidification velocities. Acta Materialia, 2011. 59(13): p. 5135-5145. 71. Perma-Guard, I. Certificate of analysis: FOSSIL SHELL FLOUR®. 2014; Available from: http://www.denz.co.nz/_literature_177307/Certificate_of_Analysis_July_2014. 72. Yang, Y.X., R.S. Chen, and A.B. Dai, A study on structure of local diatomites. Acta Chimica Sinica, 1996. 54(1): p. 57-64. 73. Hammond, E.G., et al., Soybean Oil, in Bailey's Industrial Oil and Fat Products. 2005, John Wiley & Sons, Inc. 74. Speight, J.G., Lange's handbook of chemistry. Vol. 1. 2005: New York: McGraw-Hill. 75. O’Meara, M., Determination of the interfacial tension between oilsteam and oil-air at elevated temperatures. 2012, North Carolina State University, Raleigh, NC, USA. 76. Oliveira, N.M., R.L. Reis, and J.F. Mano, Superhydrophobic surfaces engineered using diatomaceous earth. ACS Appl Mater Interfaces, 2013. 5(10): p. 4202-4208. 77. Shirtcliffe, N.J., et al., Porous materials show superhydrophobic to superhydrophilic switching. Chemical Communications, 2005(25): p. 3135-3137. 78. Gondal, M.A., et al., Study of factors governing oil-water separation process using TiO(2) films prepared by spray deposition of nanoparticle dispersions. ACS Appl Mater Interfaces, 2014. 6(16): p. 13422-13429. 79. Cheryan, M. and N. Rajagopalan, Membrane processing of oily streams. Wastewater treatment and waste reduction. Journal of Membrane Science, 1998. 151(1): p. 13-28. 80. Gao, S.J., et al., Photoinduced Superwetting Single-Walled Carbon Nanotube/TiO2 Ultrathin Network Films for Ultrafast Separation of Oil-in-Water Emulsions. ACS Nano, 2014. 8(6): p. 6344-6352. 81. Zhu, Y., et al., A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. Journal of Materials Chemistry A, 2013. 1(18): p. 5758-5765. 82. Yuan, T., et al., A Scalable Method toward Superhydrophilic and Underwater Superoleophobic PVDF Membranes for Effective Oil/Water Emulsion Separation. ACS Applied Materials & Interfaces, 2015. 7(27): p. 14896-14904. 83. Dong, Y., et al., Underwater superoleophobic graphene oxide coated meshes for the separation of oil and water. Chemical Communications, 2014. 50(42): p. 5586-5589. 84. Kota, A.K., et al., Hygro-responsive membranes for effective oil-water separation. Nature Communications, 2012. 3: p. 1025.
|