帳號:guest(3.146.176.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳筱玲
作者(外文):Chen, Hsiao Ling
論文名稱(中文):奈米碳管/PEDOT:PSS複合材作為海水電池陰極之研究
論文名稱(外文):Study on carbon nanotubes/PEDOT:PSS composite as cathode material for seawater batteries
指導教授(中文):徐文光
指導教授(外文):Hsu, Wen Kuang
口試委員(中文):林樹均
呂昇益
口試委員(外文):Lin, Su Jien
Lu, Sheng Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031524
出版年(民國):105
畢業學年度:104
論文頁數:71
中文關鍵詞:海水電池陰極
外文關鍵詞:seawater batterycathode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:119
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
1945年美國貝爾實驗室設計、通用電氣公司製造出以鎂為陽極,氯化銀為陰極之海水電池作為魚雷電源及照明設備。但由於氯化銀成本昂貴,隨後有許多不含銀的材料被研究做為替代的海水電池陰極。
我們提出一個製程簡單、高電流密度的海水電池陰極。將奈米碳管與導電高分子混合後,經由超音波震盪達到良好的分散性,再將導電高分子/單壁碳管溶液經由塗佈棒塗佈在鎳網作為陰極。接著將陽極鎂合金與陰極複合電極組裝成海水電池,以恆電位/恆電流儀測量,可以得到1.4 V。實驗證實,奈米碳管的高導電性可以提高陰極的電性,有效地降低陰極之內電阻及電荷轉移的阻抗,進而增大海水電池輸出電流,製造出一個製成簡單且有高放電率的陰極。
In 1945, Bell lab and GM had together developed a seawater battery using Mg and AgCl as anode and cathode for powering torpedo and lighting devices. The AgCl, however, is expensive and non-ecofriendly. Therefore, various materials have been later studied and tested as cathode, including carbon-made cathodes.
We have proposed a low- cost process to manufacture seawater bat-teries which display a high density of discharging. A mixed solution of single-walled carbon nantubes (SWCNTs) and conductive polymer (PEDOT:PSS) is coated onto nickel mesh as cathode by a coating roll. We then assemble a seawater battery cell with magnesium/aluminum alloy as anode and PEDOT:PSS/SWCNTs/nickel mesh composite as cathode. A single seawater battery cell is measured by potentiostat and exhibits 1.4 voltage. Experiments confirm that SWCNTs/PEDOT:PSS coating im-proves corrosion rate of Nickel mesh in seawater and internal resistance and facilitates charge transfer at electrode/electrolyte interfaces, allowing seawater batteries to yield higher current. We have here developed a new type of cathode for
seawater battery that is a low-cost process with high powering efficiency.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 文獻回顧 1
1.1前言 ……1
1.2 海水電池 ……2
1.2.1海水電池的發展 2
1.2.2海水電池的組成 5
1.2.3海水電池化學反應式 8
1.3奈米碳管 ….9
1.3.1奈米碳管的結構 10
1.3.2奈米碳管的電性 12
1.3.3奈米碳管的機械性質 13
1.4 PEDOT:PSS導電高分子 …14
1.4.1導電高分子 14
1.4.2 PEDOT:PSS 15
第二章 研究動機 18
第三章 實驗技術與原理 19
3.1實驗流程 ….19
3.2藥品與儀器 ….19
3.2.1藥品 19
3.2.2儀器 20
3.3實驗步驟 ….21
3.3.1混合奈米碳管及導電高分子 21
3.3.2鎳網複合電極製備 21
3.4實驗分析 ….22
3.4.1 粒徑分析與多分散性指標 22
3.4.2 掃描式電子顯微鏡分析(SEM) 25
3.4.3 X-ray 繞射分析 25
3.4.4 腐蝕性質量測 26
3.4.5 定電流放電 28
3.4.6 線性伏安量測 28
3.4.7 電化學阻抗分析 29
3.4.8 LED放電測試 32
第四章 結果與討論 34
4.1奈米碳管/導電高分子混合液性質量測 .…34
4.1.2 多分散性指標 38
4.2複合電極分析 .…39
4.2.1 場發射掃描式電子顯微鏡(FE-SEM) 39
4.2.2 腐蝕性質量測 45
4.2.3 X-ray 繞射分析 47
4.3海水電池分析 ….49
4.3.1 海水電池組成介紹 49
4.3.2 線性掃描伏安法 50
4.3.3 定電流放電測試 51
4.3.4 電化學阻抗分析 53
4.3.5 海水濃度影響電池性能分析 56
4.3.6 海水溫度影響電池性能分析 59
4.3.7 陰陽極間距影響電池性能測試 60
4.3.8循環海水影響電池性能分析 63
4.3.9 LED燈放電測試 66
第五章 結論……………….. 67
參考文獻 68
參考文獻
1. 維基百科, 潛艇 ;
Available form: https://zh.wikipedia.org/wiki/%E6%BD%9B%E8%89%87
2. Raymond L. Tayloig'Summit, N. J., assigner to Bell Telephone Laboratories, Incor-porated, New York, N. Y., a corporation of New York, UNITED STATES PATENT OFFICE‐SEA‐WATER BATTERY. 1945.
3. Hasvold Ø, Henriksen H, Melvær E, Citi G, Johansen BØ, Kjønigsen T, et al. Sea water battery for subsea control systems. J Power Sources 1997;65(1-2):253-61.
4. 馮 豔, 王日初, 彭超群, 海水電池用鎂陽極的研究與應用, The Chinese Journal of Nonferrous Metals 2011; 21(2)
5. Koontz, R., et al., Magnesium water-activated batteries, in Handbook of batteries. 2002, McGraw-Hill: New York. p. 17.1-17.27
6. Hasvold,Ø.;Henriksen,H.;Melv˦r,E.;Citi,G.;Johansen,B.Ø.;Kjønigsen,T.;Galetti,R.,Sea‐water battery for subsea control systems. Journal of Power Sources 1997, 65 (1–2), 253‐261.
7. Hasvold,Ø.; Lian, T.; Haakaas, E.; Størkersen, N.; Perelman, O.; Cordier, S., CLIP-PER: a long‐range, autonomous underwater vehicle using magnesium fuel and oxy-gen from the sea. Journal of power sources 2004, 136 (2), 232‐239.
8. Koontz, RF, et al., Magnesium water-activated batteries, in Handbook of batteries. 2002, McGraw-Hill: New York. p. 17.1-17.27 (原2)
9. Medeiros MG, Dow EG, Magesium-solution phase catholyte seawater electrochemi-cal system, J Power Sources 1999; 80(1-2); 78-82
10. Cao, D.; Wu, L.; Wang, G.; Lv, Y., Electrochemical oxidation behavior of Mg–Li–Al–Ce–Zn and Mg–Li–Al–Ce–Zn–Mn in sodium chloride solution. Journal of Power Sources 2008, 183 (2), 799‐804.
11. 戴昌鳳, 台灣區域海洋學, p243, 2014
12. Hasvold,Ø, in T. Keily and B.W. Baxter (eds.), Power Sources 13,International Power Sources Committee, Crowborough, UK, 1991, pp.307-318.
13. ∅istein Hasvold , et al., Sea-water battery for subsea control systems , Journal of Power Sources 1997, 65, 253-261
14. Ono S, Asami K, Osaka T, Masuko N. Structure of aodic films on magnesium. J Electrochem Soc 1996; 143(3); L62-3
15. Science, M.A. What is Zeta Potential?A brief description.; Available from: http://www.matecappliedsciences.com/mas/applications/WhatIsZetaPotential/.
16. 馬振基, 高分子複合材料, 國立編譯館, 1999, 235-244
17. T. W. Odom, J L. Huang, P. Kim, C. M. Leiber, “Structure and Electronic Properties of Carbon Nanotubes”, Journal of Physical Chemistry B 104, 2794, 2000
18. M. J Treacy, T.W.Ebbesen, J.M. Gibson, “Exceptionally high Young’s modulus ob-served for individual CNT”, Nature 381, 20, 1996
19. 陳會明,納米碳管製備,結構,物性及應用, 化學工業出版社,北京, 2002
20. Thostenson, E.T., Z. Ren, and T.W. Chou, Advance in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technol-ogy, 2001. 61(13): P. 1899-1912
21. Hassanien A., et al., Geometrical structure and electronic properties of atomically re-solved multiwall carbon nanotubes. Applied Physics Letters, 1999.75(18): p.2755-2757
22. Lambin P., Electronic structure of carbon nanotubes. Comptes Rendus Physique, 2003.4(9): p. 1009-1019
23. W. Dacheng, Y. Liu, The Intromolecular Junctions of Carbon Nanotubes, Adv. Mater., 9999, 2008; 1-27
24. Ebbesen, T. W. & Ajatan, P.M., Large-scale synthesis of carbon nanotubes, Nature 358, 1992; 220-222
25. 馬振基, 奈米材料原理與應用, 全華科技圖書公司, 2003
26. Li Y F. Conducting polymers[J] , Progress in Chemistry , 2002 , 14 : 2072211Stenger-Smith J D, Intrinsically electronically conducting polymers. Synthe-sis, characterization and their applications [J]. Prog. Polym. Sci., 1998 ,23:57-79.
27. Kanatzldls M G. Conducting polymers[J] . Chem. & Engin., 1990, (12):36254.
28. Shi G Q, Li C, Liang Y Q. High quality conducting polymers[J]. University Chemis-try, 1998, (1):1-5.
29. Zhu D B,Wang F S. Organic Solids[M]. Shanghai:Shanghai Press of Science and Technology. 1999. 89-136 ,274-296.
30. 徐景坤, 胡秀傑, 新型導電高分子抗劑電劑進展, Photographic Science and Pho-tochemistry 2005; 23(3)
31. 張正華, 李陵嵐, 馬振基, 有機與塑膠太陽能電池, 五南圖書出版公司, 2007
32. 陳一帆, The Study of Conducting Polymer Polyaniline in Organic Solar Cells,國立中山大學光電工程學系博士論文, 2012
33. 陳建清, LiNi0.8Co0.2O2 陰極材料製程與改質研究,國立中央大學化學工程與材料工程研究所 碩士論文, 2002
34. Hu H, Zhang C, Liu Z, Zhou X, Pang S, et al. Nanostructured titanium ni-tride/PEDOT:PSS composite films as counter electrodes of dye-sensitized solar cells. ACS Appl Mater Interfaces 2012;4(2):1087-92
35. Hou J, Zhu G, Xu J, Liu H, Anticorrosion performance of epoxy coatings containing small amount of inherently conducting PEDOT/PSS on hull steel in seawater . J Ma-ter Sci Technol 2013;290(7):678-84
36. Shi H, Liu C, Xu J, Song H, Lu B, Jiang F, et al. Facile fabrication of PE-DOT:PSS/polythiophenes bilayered nonofilms on pure organic electrodes and their thermoelectric performance. ACS Appl Mater Interfaces 2013; 5(24):12811-9.
37. Xu H, Wang Y, Luo Z, Pan Y. A miniature all-solid-state calcium electrode applied to in situ seawater measurement. Mean Sci Technol 2013; 24(12):125105
38. 黃桂武, 軟性印製透明導電高分子材料技術發展,光連雙月刊, No.102, 2013
39. Wang T J ,Qi Y Q ,Chen P , et al. Effect of addition of poly (ethylene glycol) on electrical conductivity of poly (3 ,4-ethylenedioxythiophene)-poly (styrene sulfonate) hybrid[J]. Chinese Science Bulletin , 2003 , 48(22) : 244422445.
40. Frank L . 3 ,4-alkylenedioxy2thiophene copolymer[P] . EP , 1 323 763 , 2003.
41. Worldwide, M. I., Dynamic Light Scattering Introduction.
42. (a) Dresselhaus, M.; Eklund, P., Phonons in carbon nanotubes. Advances in Physics 2000, 49 (6), 705‐814; (b) Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Physical properties of carbon nanotubes. World cientific: 1998; Vol. 4; (c) Chico, L.; Crespi, V. H.; Benedict, L. X.; Louie, S. G.; Cohen, M. L., ure carbon nanoscale devices: nanotube heterojunctions. Physical Review Letters 1996, 76 (6), 971.
43. 陳士堃,雙極板腐蝕性質量測
44. William F. Smith, Principles of Material Science and Engineering, 707, 1996.
45. 鮮祺振,金屬腐蝕及其控制,徐氏基金會出版,1990
46. 田福助,電化學理論與應用,新科技書局出版, 2014
47. C. Gabrielli, Identification of Electrochemical Processes by Frequency Response Analysis, Technical Report Number, 004/83, August 1984
48. W.Plieth, Electrochemistry for Material Science. 2007

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *