帳號:guest(18.191.95.74)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林偉勝
作者(外文):Lin, Wei Sheng
論文名稱(中文):氧化鎢薄膜還原於後硒化製程製備大面積多層二硒化鎢之研究
論文名稱(外文):Investigation into the reduction of WOx films for the formation of large-area and a few WSe2 monolayers using a post-selenization process
指導教授(中文):闕郁倫
沈昌宏
指導教授(外文):Chueh, Yu Lun
Shen, Chang Hong
口試委員(中文):韋光華
莊豐權
闕郁倫
沈昌宏
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031523
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:54
中文關鍵詞:氧化鎢二硒化鎢後硒化低溫
外文關鍵詞:tungsten oxidetungsten diselenidepost-selenizationlow temperature
相關次數:
  • 推薦推薦:0
  • 點閱點閱:460
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗藉由兩步驟化學氣相沉積方式,成功地在攝氏600度合成二硒化鎢薄膜,於八吋預長二氧化矽的矽晶圓上,相較於傳統的化學氣相沉積,此方法可達到大面積二硒化鎢薄膜生成,其製程包含兩步驟:金屬氧化物薄膜沉積以及硒氧離子交換反應,藉由控制氧化物薄膜的厚度,可精確對二硒化鎢的層數進行調變,目前最少層數可達到單層,單層結構時為直接能隙,具備良好的光電轉換效率,能運用於光電子元件領域。
合成二硒化鎢的部分,我們也以材料分析手段,包含拉曼、X射線光電子能譜儀以及電子顯微鏡,對前驅物種類、硒化時間、製程溫度以及製程氣體比例進行參數優化,進而生成高品質二硒化鎢,判斷方式包含以拉曼特徵峰的半高寬及相對強度去決定結晶性、以X射線光電子能譜儀特徵峰的面積比去探討二硒化鎢轉化程度,以及用電子顯微鏡拍攝二硒化鎢薄膜的表面影像,進而以快速傅立葉轉換方式判斷晶粒大小,達到參數優化之目的。
相較於其它過渡金屬硫化物薄膜製備的研究,目前最大的尺寸為長在四吋晶圓大小的二硫化鉬,相較之下,我們所合成的八吋矽晶圓尺寸大小的二硒化鎢,相當具有突破性,此外,N型過渡金屬硫化物中,MoS2已經達到攝氏500度的製程溫度,而P型過渡金屬硫化物,在降低製程溫度的研究上較少,但在此研究我們成功地在攝氏500度製備出高品質二硒化鎢,期待未來能夠朝更低的製程溫度邁進,能夠在軟性電子元件應用有更大的突破。
In this work, we have successfully demonstrated the fabrication of a few WSe2 monolayers on the 8-inch Si/SiO2 wafer by the two-step CVD methods. Compared to conventional CVD ways, the two-step CVD method used in this work, including metal oxide deposition and chalcogenization, can achieve a large-area synthesis with precise thickness control by tuning the thickness of the as-deposited metal oxide. In addition, the thinnest thickness of the WSe2 film obtained by our method approaches to a single monolayer with some mixed bilayer areas and yet displaying photoluminescence due to the transition to direct band gap with the potential for optoelectronic applications.
For the synthesis of WSe2, different parameters were optimized including oxide deposition and quality, substrate temperature, selenization time, forming gas ratio. For the optimization, the films were characterized under several material analysis, including Raman, XPS and TEM. In Raman spectrum, the relative intensity ratio and the full width at half maxima (FWHM) of characteristic peaks served as a criteria to judge the crystallinity of as-grown WSe2. XPS analysis was used to determine the WSe2 transformation rate. Besides, we made a use of fast Fourier transformation(FFT) to judge the grain size of as-grown WSe2 based on the TEM plane-view image. Then, after optimization we demonstrate large area growth with controlled thickness of high quality WSe2 judged from the material characterization.
In the literature review of TMDCs material, the largest size of TMDCs fabrication is at the scale of 4-inch wafer so far. Here we demonstrate the formations of WSe2 with good uniformity in 8-inch wafer size. Besides, only sulfide based TMDCs such MoS2 has been synthesized at temperature closer to 500℃. However, TMDCs based on selenides are usually growth at higher temperatures. We successfully fabricated the high-quality thin layer WSe2 at temperatures as low as 500℃. We also expected to constantly lower the fabrication temperature of TMDCs in the future, especially for some flexible electronic applications.
Contents
Abstract(Chinese) I
Abstract(English) II
Acknowledgement(Chinese) IV
Contents V
Table caption VI
Figure caption VII
Introduction 1
Chapter 1 The properties of TMDCs material 4
1.1 Composition, crystal phases and electronic structure 4
1.2 Optical and vibrational properties 9
1.3 Application of TMDCs material 13
1.3.1 Field effect transistor 13
1.3.2 Optoelectronic devices 15
1.3.3 Other TMDCs devices application 18
Chapter 2 Fabrication processes of TMDCs material 22
2.1 Exfoliation 22
2.2 Chemical vapor deposition 24
2.3 Laser annealing 26
Chapter3 WSe2 fabrication and characterization 28
3.1 Experiment 28
3.2 Parameters optimization 30
3.2.1 Oxide effect 30
3.2.2 Selenization time effect 40
3.2.3 Substrate temperature effect 41
3.2.4 Forming gas ratio effect 42
Chapter 4 Large scale and thickness control 45
4.1 Large scale 45
4.2 Thickness control 46
4.2.1 Approach to WSe2 monolayer 47
Chapter5 Conclusion 48
Chapter6 Future work 49
Chapter7 Reference 51

1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. science 2004, 306 (5696), 666-669.
2. Lv, R.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y.; Mallouk, T. E.; Terrones, M., Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single-and few-layer nanosheets. Accounts of chemical research 2014, 48 (1), 56-64.
3. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry 2013, 5 (4), 263-275.
4. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology 2012, 7 (11), 699-712.
5. Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Kelly, P. J.; van den Brink, J., Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review B 2007, 76 (7), 073103.
6. McKee, R.; Walker, F.; Chisholm, M., Crystalline oxides on silicon: the first five monolayers. Physical Review Letters 1998, 81 (14), 3014.
7. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G.-H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature materials 2013, 12 (6), 554-561.
8. Zeng, Z.; Yin, Z.; Huang, X.; Li, H.; He, Q.; Lu, G.; Boey, F.; Zhang, H., Single‐Layer Semiconducting Nanosheets: High‐yield preparation and device fabrication. Angewandte Chemie International Edition 2011, 50 (47), 11093-11097.
9. Kang, K.; Xie, S.; Huang, L.; Han, Y.; Huang, P. Y.; Mak, K. F.; Kim, C.-J.; Muller, D.; Park, J., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520 (7549), 656-660.
10. Li, H.; Wu, J.; Yin, Z.; Zhang, H., Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Accounts of chemical research 2014, 47 (4), 1067-1075.
11. Li, H.; Lu, G.; Wang, Y.; Yin, Z.; Cong, C.; He, Q.; Wang, L.; Ding, F.; Yu, T.; Zhang, H., Mechanical Exfoliation and Characterization of Single‐and Few‐Layer Nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9 (11), 1974-1981.
12. Kevin Erik Krymowski, Electronic Mobilities of Two-Dimensional Transition Metal Dichalcogenides, Thesis 2015.
13. Browning, P.; Eichfeld, S.; Zhang, K.; Hossain, L.; Lin, Y.-C.; Wang, K.; Lu, N.; Waite, A.; Voevodin, A.; Kim, M., Large-area synthesis of WSe2 from WO3 by selenium–oxygen ion exchange. 2D Materials 2015, 2 (1), 014003.
14. Zhou, H.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Weiss, N. O.; Lin, Z.; Huang, Y., Large area growth and electrical properties of p-type WSe2 atomic layers. Nano letters 2014, 15 (1), 709-713.
15. Liu, B.; Fathi, M.; Chen, L.; Abbas, A.; Ma, Y.; Zhou, C., Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS nano 2015, 9 (6), 6119-6127.
16. Chen, L.; Liu, B.; Ge, M.; Ma, Y.; Abbas, A. N.; Zhou, C., Step-Edge-Guided Nucleation and Growth of Aligned WSe2 on Sapphire via a Layer-over-Layer Growth Mode. ACS nano 2015, 9 (8), 8368-8375.
17. Huang, J.-K.; Pu, J.; Hsu, C.-L.; Chiu, M.-H.; Juang, Z.-Y.; Chang, Y.-H.; Chang, W.-H.; Iwasa, Y.; Takenobu, T.; Li, L.-J., Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS nano 2013, 8 (1), 923-930.
18. Eichfeld, S. M.; Hossain, L.; Lin, Y.-C.; Piasecki, A. F.; Kupp, B.; Birdwell, A. G.; Burke, R. A.; Lu, N.; Peng, X.; Li, J., Highly scalable, atomically thin WSe2 grown via metal–organic chemical vapor deposition. ACS nano 2015, 9 (2), 2080-2087.
19. Huang, J.; Yang, L.; Liu, D.; Chen, J.; Fu, Q.; Xiong, Y.; Lin, F.; Xiang, B., Large-area synthesis of monolayer WSe 2 on a SiO 2/Si substrate and its device applications. Nanoscale 2015, 7 (9), 4193-4198.
20. Campbell, P. M.; Tarasov, A.; Joiner, C. A.; Tsai, M.-Y.; Pavlidis, G.; Graham, S.; Ready, W. J.; Vogel, E. M., Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe 2. Nanoscale 2016, 8 (4), 2268-2276.
21. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331 (6017), 568-571.
22. Zhao, W.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G., Lattice dynamics in mono-and few-layer sheets of WS 2 and WSe 2. Nanoscale 2013, 5 (20), 9677-9683.
23. Zeng, H.; Liu, G.-B.; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W., Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Scientific reports 2013, 3.
24. Podzorov, V.; Gershenson, M.; Kloc, C.; Zeis, R.; Bucher, E., High-mobility field-effect transistors based on transition metal dichalcogenides. Applied Physics Letters 2004, 84 (17), 3301-3303.
25. Novoselov, K.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (30), 10451-10453.
26. Pradhan, N.; Rhodes, D.; Memaran, S.; Poumirol, J.; Smirnov, D.; Talapatra, S.; Feng, S.; Perea-Lopez, N.; Elias, A.; Terrones, M., Hall and field-effect mobilities in few layered p-WSe2 field-effect transistors. Scientific reports 2015, 5.
27. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, i. V.; Kis, A., Single-layer MoS2 transistors. Nature nanotechnology 2011, 6 (3), 147-150.
28. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C., Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS nano 2014, 8 (2), 1102-1120.
29. The International Technology Roadmap for Semiconductors. http://www.itrs.net/Links/2011ITRS/Home2011.htm (Semiconductor Industry Association, 2011).
30. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A., Ultrasensitive photodetectors based on monolayer MoS2. Nature nanotechnology 2013, 8 (7), 497-501.
31. Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.; Mandrus, D.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 pn junctions. Nature nanotechnology 2014, 9 (4), 268-272.
32. Lee, K.; Gatensby, R.; McEvoy, N.; Hallam, T.; Duesberg, G. S., High‐performance sensors based on molybdenum disulfide thin films. Advanced materials 2013, 25 (46), 6699-6702.
33. Wang, H.; Kong, D.; Johanes, P.; Cha, J. J.; Zheng, G.; Yan, K.; Liu, N.; Cui, Y., MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano letters 2013, 13 (7), 3426-3433.
34. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J.; Chen, J. G.; Pandelov, S.; Stimming, U., Trends in the exchange current for hydrogen evolution. Journal of The Electrochemical Society 2005, 152 (3), J23-J26.
35. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science 2007, 317 (5834), 100-102.
36. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M., Photoluminescence from chemically exfoliated MoS2. Nano letters 2011, 11 (12), 5111-5116.
37. Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J., Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials 2012, 24 (17), 2320-2325.
38. Lin, Y.-C.; Zhang, W.; Huang, J.-K.; Liu, K.-K.; Lee, Y.-H.; Liang, C.-T.; Chu, C.-W.; Li, L.-J., Wafer-scale MoS 2 thin layers prepared by MoO 3 sulfurization. Nanoscale 2012, 4 (20), 6637-6641.
39. Liu, K.-K.; Zhang, W.; Lee, Y.-H.; Lin, Y.-C.; Chang, M.-T.; Su, C.-Y.; Chang, C.-S.; Li, H.; Shi, Y.; Zhang, H., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano letters 2012, 12 (3), 1538-1544.
40. Castellanos-Gomez, A.; Barkelid, M.; Goossens, A.; Calado, V. E.; van der Zant, H. S.; Steele, G. A., Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano letters 2012, 12 (6), 3187-3192.
41. Chen, Y.-Z.; Medina, H.; Su, T.-Y.; Li, J.-G.; Cheng, K.-Y.; Chiu, P.-W.; Chueh, Y.-L., Ultrafast and low temperature synthesis of highly crystalline and patternable few-layers tungsten diselenide by laser irradiation assisted selenization process. ACS nano 2015, 9 (4), 4346-4353.
42. Chen, H.-C.; Jan, D.-J.; Chen, C.-H.; Huang, K.-T., Bond and electrochromic properties of WO 3 films deposited with horizontal DC, pulsed DC, and RF sputtering. Electrochimica Acta 2013, 93, 307-313.
43. Shpak, A.; Korduban, A.; Medvedskij, M.; Kandyba, V., XPS studies of active elements surface of gas sensors based on WO 3− x nanoparticles. Journal of electron spectroscopy and related phenomena 2007, 156, 172-175.
44. Corrêa, D. S.; Pazinato, J. C.; Freitas, M. A. d.; Dorneles, L. S.; Radtke, C.; Garcia, I. T., Tungsten oxide thin films grown by thermal evaporation with high resistance to leaching. Journal of the Brazilian Chemical Society 2014, 25 (5), 822-830.
45. Zhang, X.; Qin, J.; Xue, Y.; Yu, P.; Zhang, B.; Wang, L.; Liu, R., Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Scientific reports 2014, 4.
46. Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A., High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano letters 2012, 12 (7), 3788-3792.
47. Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R., Photoluminescence emission and Raman response of monolayer MoS 2, MoSe 2, and WSe 2. Optics express 2013, 21 (4), 4908-4916.
48. Wu, T.-T.; Chang, C.-h.; Hsu, C.-H.; Tsai, W.-C.; Tsai, H.-S.; Yen, Y.-T.; Shen, C.-H.; Shieh, J.-M.; Chueh, Y.-L., 30× 40cm 2 flexible Cu (In, Ga) Se 2 solar panel by low temperature plasma enhanced selenization process. Nano Energy 2016, 24, 45-55.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *