帳號:guest(18.118.193.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳鄭仁武
作者(外文):Chen-Cheng, Ren-Wu
論文名稱(中文):有機發光應用中的新型放光機制與透明電極
論文名稱(外文):Novel Emission Mechanism and Transparent Conductive Layers for Organic Light Emitting Applications
指導教授(中文):林皓武
指導教授(外文):Lin, Hao-Wu
口試委員(中文):張志豪
季昀
吳忠幟
口試委員(外文):Chang, Chih-Hao
Chi, Yun
Wu, Chung-Chih
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031520
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:143
中文關鍵詞:白光有機發光二極體基態-激態複合物熱活化延遲螢光發光偶極矩紅外光聚集誘導發光
外文關鍵詞:white OLEDexciplexthermally activated delay fluorescenceemission dipoleinfraredaggregation induced emission
相關次數:
  • 推薦推薦:0
  • 點閱點閱:636
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文主要研究有機發光應用中前瞻發光機制並開發新型可撓曲透明電極。所探討的前瞻性發光機制如基態-激態複合物發光(exciplex emission)、熱活化延遲螢光(thermally activated delay fluorescence, TADF)和聚集誘導發光(aggregation induced emission, AIE)都是本篇論文討論的範圍。
首先,在本篇論文的序論將對有機發光二極體的發展歷史做回顧並簡述其於顯示器和固態照明之應用,接著對有機發光元件放光原理、製程方式做一有系統的介紹。
論文的第二部分我使用濕式製程製備有機發光二極體,利用工業技術研究院開發之紅色磷光材料PR-02製備高效率紅光元件,最終將其應用於白光元件製作。此外exciplex發光也將於此部分探討,一般兩有機材料交互作用之exciplex發光行為並沒有一定準則,因此兩相異材料間之exciplex放光通常都要經由實際量測才能得知其是否具有高效率。為了快速檢測不同材料系統配對是否有效,於元件製備前導入光致發光量子產率(photoluminescence quantum yield, PLQY)量測。將兩相異材料使用濕式製程旋轉塗佈於基板上並量測其PLQY值和光致發光頻譜(PL spectrum)。使用上述兩種方法可以確定是否有高效率exciplex放光形成,提供一初期且快速的exciplex材料系統篩選方法。
論文第三部分,我將對於近年新興之TADF發光做一有系統介紹,並展示兩種TADF材料,PyC-TAZ電激發光元件以及CLY-01電激發光元件。TADF的優勢在於可以使電激發光中之三重激發態激子傳回單重激發態並以輻射能量釋放(radiative decay)的形式回到基態,藉由此種發光機制,內部量子效率可以是傳統螢光材料的4倍之多。
論文第四部分我介紹軟性透明電極之開發,使用nucleation-inducing seed layer的協助降低熱蒸鍍銀的percolation limit,進而使熱蒸鍍銀低厚度下就可以擁有較低的片電阻同時具有高穿透度。由於本章節使用的nucleation-inducing seed layer為導電高分子,本身是可饒取的,再加上金屬銀本身的延展特性,這種透明電極對於未來低成本可撓曲式元件的開發將有許多助益。
論文第五部分我介紹發光偶極矩之量測方式、原理和本量測的儀器架設。發光層內之發光偶極矩排列方向往往對元件外部耦合效率影響甚鉅,適當的發光偶極矩排列可以使外部耦合效率高出兩倍以上,因此對於外部量子效率的提升非常重要。使用變角度光致發光強度量測系統可以得知發光層發光偶極矩如何分佈,提供未來元件製備前更仔細的分析。本章節將展示以相同元件結構之CBP摻雜Ir(ppy)3和CBP摻雜Ir(ppy)2acac為發光層之電激發光元件,並配合變角度光致發光強度量測系統證明發光偶極矩分佈量測對於外部耦合效率研究之重要性。
論文第六部分我介紹AIE發光,AIE材料和傳統材料不同之處在於一般有機分子在分散的狀態時有高的發光效率,然而AIE分子則是聚集且結晶時有更高的PLQY。藉由結晶的特性可以控制分子排列進而控制發光偶極矩排列方向得到一更高外部耦合效率。本部分將使用AIE放光材料K093、K094和K095進行光學物理分析並製備成電激發光元件。K093、K094和K095所製備之電激發光元件外部量子效率可達23.5%、20.9%和23.7%。其中以K093分子所製備之元件電激發光波長峰值為736 nm,此為迄今擁有最高外部量子效率之紅外光元件。
論文第七部分為上述研究之未來展望。
In this thesis, I focus on the organic light emitting applications utilizing advanced light emitting mechanisms and novel flexible transparent electrodes. The above-mentioned advanced light emitting mechanisms include exciplex emission, thermally activated delay fluorescence (TADF) and aggregation induced emission (AIE).
First, I briefly introduce the history of organic light emitting diodes (OLEDs) and their applications in both solid-state lighting and displays. Then I discuss the working mechanism and the manufacturing processes of OLEDs.
In chapter two, I use spin coating process to fabricate solution process based OLEDs. A red phosphorescent emitter PR-02 supplied by Industrial Technology Research institute (ITRI), Taiwan is used and the solution-processed PR-02 devices achieve decent external quantum efficiencies. I also use PR-02 as a red emitter in white OLEDs. Furthermore, exciplex emission is discussed in this chapter. I use photoluminescence spectrum analysis and photoluminescence quantum yield measurement (PLQY) to investigate the efficiency of the exciplex formation pairs.
In chapter three, I do a study on TADF, which is one of the very promising emission mechanisms in OLEDs recently. The advantage of TADF is that it can harvest triplet excitons, thus it has the internal quantum efficiency four times higher than traditional fluorescent emitters. Two kinds of devices utilizing TADF emitters PyC-TAZ and CLY-01 are demonstrated.
In the fourth part of the thesis I develop a new type of flexible transparent electrode. Continuous thin Ag layers are achieved by the assistance of nucleation-inducing seed layers, making the thin metal electrodes highly transparent with low sheet resistances.
In chapter five, I focus on the emission dipole orientation of the emitting layers in OLEDs. The measuring methods, instrument set-ups and emission theory are discussed. The orientations of emission dipoles usually have a large influence on out-coupling efficiency. I fabricate two kinds of OLEDs with same device structure but different emitters which are Ir(ppy)3 and Ir(ppy)2acac. Variable angle PL intensity measurement is executed to analyze the emission dipoles in these systems. By the assistance of variable angle PL intensity measurement I prove that the different external quantum efficiencies of these two devices result from their emission dipole orientations.
In the sixth part of the thesis I investigate the novel emission called aggregation induced emission (AIE). Traditionally, organic molecules are preferred to be isolated to have a high PLQY, however AIE molecules show high PLQY from the aggregate and ordered crystal states. With preferred molecule alignment, orientation of emitting dipoles can also be manipulated and achieve higher out-coupling efficiency. I use AIE molecules K093, K094 and K095 to fabricate devices and they show high external quantum efficiencies of 23.5%, 20.9% and 23.7%, respectively. It should be noted that device fabricated utilizing K093 has an emission peak of 736 nm, which is by far the most efficient infrared OLEDs nowadays.
Finally I summarize all the works above and give some future prospects.
摘要 i
Abstract iii
目錄 v
圖目錄 x
表目錄 xvi
分子式目錄 xvii
第一章 序論 1
1-1 前言 1
1-2 有機電致發光元件發展歷史 3
1-3 OLED工作原理 6
1-4 濕式製程OLED製程介紹 9
1-4.1 旋轉塗佈製程 9
1-4.2 刮刀塗佈製程 9
1-4.3 Slot-Die Coating 10
1-4.4 噴墨塗佈製程 10
1-5 真空熱蒸鍍製程OLED介紹 11
1-6 實驗製程和量測 12
1-6.1 濕式製程OLED元件製備 12
1-6.2 真空熱蒸鍍製程OLED元件製備 12
1-6.3 元件量測 12
1-6.4 光致發光頻譜和光致發光量子產率量測 13
1-6.5 吸收頻譜量測 13
1-6.6 瞬態光致發光延遲量測 13
1-6.7 變角度光致發光強度量測系統 14
1-6.8 Photoelectron Spectrometer量測 14
1-6.9 同步輻射GIWAXS/GISAXS量測 14
1-7 論文架構 15
第二章 濕式製程白光有機發光元件 16
2-1 介紹 16
2-1.1 白光OLED概述 16
2-2 磷光材料之紅光元件 20
2-2.1 製程與量測 20
2-2.2 結果與討論 22
2-3 磷光材料之藍光元件 25
2-3.1 製程與量測 25
2-3.2 結果與討論 27
2-4 磷光材料之白光元件 30
2-4.1 製程與量測 30
2-4.2 結果與討論 32
2-5 基態-激態複合物材料系統 36
2-5.1 基態-激態複合物介紹與運作原理 36
2-5.2 文獻回顧 38
2-5.3 製程與量測 39
2-5.4 結果與討論 39
2-6 章節結論 42
第三章 熱活化延遲螢光有機發光元件 43
3-1 介紹 43
3-1.1 前言 43
3-1.2 運作原理和機制 44
3-1.3 文獻回顧 45
3-2 深藍光熱活化延遲螢光有機發光二極體 46
3-2.1 製程 46
3-2.2 結果與討論 48
3-3 藍綠光熱活化延遲螢光有機發光二極體 51
3-3.1 製程 51
3-3.2 結果與討論 54
3-4 章節結論 62
第四章 薄銀透明電極 63
4-1 介紹 63
4-2 Metal-Based (Semi-) Transparent Electrodes 65
4-2.1 Ultrathin Metal Layers 65
4-2.2 Dielectric/Thin-Metal/Dielectric Electrodes 65
4-2.3 Metal Grids 66
4-3 Polymeric Transparent Conductors 67
4-4 Nanomaterials as Transparent Electrodes 67
4-4.1 Carbon Nanotubes 68
4-4.2 Graphene 69
4-4.3 Metal Nanowires 70
4-5 不同底層材料對銀薄膜之影響 72
4-5.1 製程 72
4-5.2 結果與討論 72
4-6 不同薄銀蒸鍍速率與薄銀厚度對薄銀電極表現之影響 76
4-6.1 製程 76
4-6.2 結果與討論 76
4-7 章節結論 78
第五章 發光偶極矩排列分析 79
5-1 介紹 79
5-1.1 前言 79
5-1.2 文獻回顧 80
5-1.3 原理 80
5-2 變角度光致發光強度量測辦法 83
5-2.1 儀器架設 83
5-2.2 待測薄膜製備 87
5-2.3 量測方法 89
5-3 實驗結果與討論 89
5-4 章節結論 95
第六章 聚集誘導發光紅光-近紅外光有機發光元件 96
6-1 介紹 96
6-1.1 前言 96
6-1.2 運作原理和機制 97
6-1.3 文獻回顧 99
6-2 K093、K094、K095系列有機材料結果與討論 101
6-2.1 K093、K094、K095光學物理 101
6-2.2 K093 exciplex元件 111
6-2.3 K093元件結果討論 117
6-2.4 K094元件結果討論 121
6-2.5 K095元件結果討論 125
6-3 K093、K094、K095元件總結與討論 129
第七章 未來展望 135
參考文獻 136

[1] http://oled.lcdtvbuyingguide.com/oled-tv-articles/sony-ces-2011.html.
[2] http://www.whathifi.com/news/ifa-2012-samsung-55in-oled-tv-marks-a-new, http://www.samsungces.com/.
[3] http://www.oled-info.com/tags/ihs.
[4] https://www1.eere.energy.gov/buildings/ssl/highlights_ge.html.
[5] https://www.kanekaoled.jp/en/product/product01.html.
[6] http://www.bmwblog.com/2015/01/09/2016-bmw-will-launch-m-car-oled/.
[7] J. B. Birks, J. H. Appleyard, R. Pope, Photochem. Photobiol. 1963, 2, 493.
[8] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
[9] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 1988, 27, L269.
[10] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
[11] S. R. Forrest, M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, Nature 1998, 395, 151.
[12] K. H. Kim, J. Y. Lee, T. J. Park, W. S. Jeon, G. P. Kennedy, J. H. Kwon, Synth. Met. 2010, 160, 631.
[13] S.-J. Kim, Y. Zhang, C. Zuniga, S. Barlow, S. R. Marder, B. Kippelen, Org. Electron. 2011, 12, 492.
[14] C. W. Lee, J. Y. Lee, Adv. Mater. 2013, 25, 596.
[15] R. Wang, D. Liu, R. Zhang, L. Deng, J. Li, J. Mater. Chem. 2012, 22, 1411.
[16] H.-C. Yeh, H.-F. Meng, H.-W. Lin, T.-C. Chao, M.-R. Tseng, H.-W. Zan, Org. Electron. 2012, 13, 914.
[17] J.-D. You, S.-R. Tseng, H.-F. Meng, F.-W. Yen, I. F. Lin, S.-F. Horng, Org. Electron. 2009, 10, 1610.
[18] H. Y. Lin, W. C. Huang, Y. C. Chen, H. H. Chou, C. Y. Hsu, J. T. Lin, H. W. Lin, Chem. Commun. 2012, 48, 8913.
[19] J.-H. Chang, Y.-H. Chen, H.-W. Lin, Y.-T. Lin, H.-F. Meng, E.-C. Chen, Org. Electron. 2012, 13, 705.
[20] L.-C. Ko, T.-Y. Liu, C.-Y. Chen, C.-L. Yeh, S.-R. Tseng, Y.-C. Chao, H.-F. Meng, S.-C. Lo, P. L. Burn, S.-F. Horng, Org. Electron. 2010, 11, 1005.
[21] L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, Y. Cui, ACS Nano 2010, 4, 2955.
[22] J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, Adv. Funct. Mater. 2011, 21, 4784.
[23] Y.-F. Chang, Y.-C. Chiu, H.-C. Yeh, H.-W. Chang, C.-Y. Chen, H.-F. Meng, H.-W. Lin, H.-L. Huang, T.-C. Chao, M.-R. Tseng, H.-W. Zan, S.-F. Horng, Org. Electron. 2012, 13, 2149.
[24] H. Youn, K. Jeon, S. Shin, M. Yang, Org. Electron. 2012, 13, 1470.
[25] D. Braga, N. C. Erickson, M. J. Renn, R. J. Holmes, C. D. Frisbie, Adv. Funct. Mater. 2012, 22, 1623.
[26] A. Teichler, Z. Shu, A. Wild, C. Bader, J. Nowotny, G. Kirchner, S. Harkema, J. Perelaer, U. S. Schubert, Eur. Polym. J. 2013, 49, 2186.
[27] S.-C. Chang, J. Liu, J. Bharathan, Y. Yang, J. Onohara, J. Kido, Adv. Mater. 1999, 11, 734.
[28] F. Villani, P. Vacca, R. Miscioscia, G. Nenna, G. Burrasca, T. Fasolino, C. Minarini, D. d. Sala, Macromol. Symp. 2009, 286, 101.
[29] F. Ely, C. O. Avellaneda, P. Paredez, V. C. Nogueira, T. E. A. Santos, V. P. Mammana, C. Molina, J. Brug, G. Gibson, L. Zhao, Synth. Met. 2011, 161, 2129.
[30] G. J. McGraw, S. R. Forrest, Adv. Mater. 2013, 25, 1583.
[31] J. C. de Mello, H. F. Wittmann, R. H. Friend, Adv. Mater. 1997, 9, 230.
[32] M. S. Rea, J. P. Freyssinier-Nova, Color Res. Appl. 2008, 33, 192.
[33] M. S. Rea, J. P. Freyssinier, Color Res. Appl. 2010, 35, 401.
[34] W. A. Thornton, J. Opt. Soc. Am. 1972, 62, 191.
[35] K. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, P. Hanselaer, Opt. Express 2011, 19, 8151.
[36] K. Hashimoto, T. Yano, M. Shimizu, Y. Nayatani, Color Res. Appl. 2007, 32, 361.
[37] J. P. Freyssinier, M. Rea, Tenth International Conference on Solid State Lighting 2010, 7784, 77840V.
[38] G. Zhou, W.-Y. Wong, S. Suo, J. Photochem. Photobiol. C-Photochem. Rev. 2010, 11, 133.
[39] B. W. D'Andrade, R. J. Holmes, S. R. Forrest, Adv. Mater. 2004, 16, 624.
[40] B. Zhang, G. Tan, C. S. Lam, B. Yao, C. L. Ho, L. Liu, Z. Xie, W. Y. Wong, J. Ding, L. Wang, Adv. Mater. 2012, 24, 1873.
[41] J. Kido, K. Hongawa, K. Okuyama, K. Nagai, Appl. Phys. Lett. 1994, 64, 815.
[42] M. C. Gather, A. Kohnen, K. Meerholz, Adv. Mater. 2011, 23, 233.
[43] H. A. Al Attar, A. P. Monkman, M. Tavasli, S. Bettington, M. R. Bryce, Appl. Phys. Lett. 2005, 86, 121101.
[44] Y. Sun, S. R. Forrest, Appl. Phys. Lett. 2007, 91, 263503.
[45] Y.-L. Chang, Y. Song, Z. Wang, M. G. Helander, J. Qiu, L. Chai, Z. Liu, G. D. Scholes, Z. Lu, Adv. Funct. Mater. 2013, 23, 705.
[46] J. Yu, H. Lin, F. Wang, Y. Lin, J. Zhang, H. Zhang, Z. Wang, B. Wei, J. Mater. Chem. 2012, 22, 22097.
[47] G. Cheng, Y. Zhang, Y. Zhao, Y. Lin, C. Ruan, S. Liu, T. Fei, Y. Ma, Y. Cheng, Appl. Phys. Lett. 2006, 89, 043504.
[48] H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast, N. Langer, O. Molt, E. Fuchs, C. Lennartz, J. Kido, Adv. Mater. 2010, 22, 5003.
[49] J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
[50] F.-S. Juang, L.-A. Hong, S.-H. Wang, Y.-S. Tsai, M.-H. Gao, Y. Chi, H.-P. Shieh, J.-S. Hsu, Jpn. J. Appl. Phys. 2011, 50, 04DK04.
[51] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, Nature 2009, 459, 234.
[52] J. S. Park, B. R. Lee, J. M. Lee, J.-S. Kim, S. O. Kim, M. H. Song, Appl. Phys. Lett. 2010, 96, 243306.
[53] T.-W. Lee, T. Noh, B.-K. Choi, M.-S. Kim, D. W. Shin, J. Kido, Appl. Phys. Lett. 2008, 92, 043301.
[54] C.-C. Chang, J.-F. Chen, S.-W. Hwang, C. H. Chen, Appl. Phys. Lett. 2005, 87, 253501.
[55] H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. H. Jeong, K. I. Kim, T.-Y. Seong, Appl. Phys. Lett. 2005, 86, 183503.
[56] H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, S. R. Forrest, Adv. Mater. 2006, 18, 339.
[57] M. C. Gather, A. Köhnen, A. Falcou, H. Becker, K. Meerholz, Adv. Funct. Mater. 2007, 17, 191.
[58] S. Höfle, T. Lutz, A. Egel, F. Nickel, S. W. Kettlitz, G. Gomard, U. Lemmer, A. Colsmann, ACS Photonics 2014, 1, 968.
[59] K.-H. Kim, S.-J. Yoo, J.-J. Kim, Chem. Mater. 2016, 28, 1936.
[60] H. Shin, S. Lee, K. H. Kim, C. K. Moon, S. J. Yoo, J. H. Lee, J. J. Kim, Adv. Mater. 2014, 26, 4730.
[61] K.-H. Kim, J.-Y. Ma, C.-K. Moon, J.-H. Lee, J. Y. Baek, Y.-H. Kim, J.-J. Kim, Adv. Opt. Mater. 2015, 3, 1191.
[62] Y.-S. Park, S. Lee, K.-H. Kim, S.-Y. Kim, J.-H. Lee, J.-J. Kim, Adv. Funct. Mater. 2013, 23, 4914.
[63] K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim, J. J. Kim, Adv. Mater. 2014, 26, 3844.
[64] J.-H. Lee, S. Lee, S.-J. Yoo, K.-H. Kim, J.-J. Kim, Adv. Funct. Mater. 2014, 24, 4681.
[65] S. Lee, K.-H. Kim, D. Limbach, Y.-S. Park, J.-J. Kim, Adv. Funct. Mater. 2013, 23, 4105.
[66] S.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brütting, J.-J. Kim, Adv. Funct. Mater. 2013, 23, 3896.
[67] K. H. Kim, S. Lee, C. K. Moon, S. Y. Kim, Y. S. Park, J. H. Lee, J. Woo Lee, J. Huh, Y. You, J. J. Kim, Nat. Commun. 2014, 5, 4769.
[68] B. Zhao, T. Zhang, B. Chu, W. Li, Z. Su, H. Wu, X. Yan, F. Jin, Y. Gao, C. Liu, Sci. Rep. 2015, 5, 10697.
[69] X. K. Liu, Z. Chen, C. J. Zheng, M. Chen, W. Liu, X. H. Zhang, C. S. Lee, Adv. Mater. 2015, 27, 2025.
[70] K.-H. Kim, C.-K. Moon, J. W. Sun, B. Sim, J.-J. Kim, Adv. Opt. Mater. 2015, 3, 895.
[71] K. Goushi, C. Adachi, Appl. Phys. Lett. 2012, 101, 023306.
[72] T. Zhang, B. Chu, W. Li, Z. Su, Q. M. Peng, B. Zhao, Y. Luo, F. Jin, X. Yan, Y. Gao, H. Wu, F. Zhang, D. Fan, J. Wang, ACS Appl. Mater. Interfaces 2014, 6, 11907.
[73] Y.-S. Park, K.-H. Kim, J.-J. Kim, Appl. Phys. Lett. 2013, 102, 153306.
[74] W. Y. Hung, G. C. Fang, S. W. Lin, S. H. Cheng, K. T. Wong, T. Y. Kuo, P. T. Chou, Sci. Rep. 2014, 4, 5161.
[75] W. Y. Hung, G. C. Fang, Y. C. Chang, T. Y. Kuo, P. T. Chou, S. W. Lin, K. T. Wong, ACS Appl. Mater. Interfaces 2013, 5, 6826.
[76] J. Li, H. Nomura, H. Miyazaki, C. Adachi, Chem. Commun. 2014, 50, 6174.
[77] K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photon. 2012, 6, 253.
[78] X. K. Liu, Z. Chen, C. J. Zheng, C. L. Liu, C. S. Lee, F. Li, X. M. Ou, X. H. Zhang, Adv. Mater. 2015, 27, 2378.
[79] T. Zhang, B. Zhao, B. Chu, W. Li, Z. Su, X. Yan, C. Liu, H. Wu, Y. Gao, F. Jin, F. Hou, Sci. Rep. 2015, 5, 10234.
[80] D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, J. P. Spindler, J. Appl. Phys. 2009, 106, 124510.
[81] A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Adv. Mater. 2009, 21, 4802.
[82] H. Kaji, H. Suzuki, T. Fukushima, K. Shizu, K. Suzuki, S. Kubo, T. Komino, H. Oiwa, F. Suzuki, A. Wakamiya, Y. Murata, C. Adachi, Nat. Commun. 2015, 6, 8476.
[83] C. A. Parker, C. G. Hatchard, Trans. Faraday Soc. 1961, 57, 1894.
[84] G. Blasse, D. R. McMillin, Chem. Phys. Lett. 1980, 70, 1.
[85] M. N. Berberan-Santos, J. M. M. Garcia, J. Am. Chem. Soc. 1996, 118, 9391.
[86] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
[87] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nat. Photon. 2014, 8, 326.
[88] J. W. Sun, J. H. Lee, C. K. Moon, K. H. Kim, H. Shin, J. J. Kim, Adv. Mater. 2014, 26, 5684.
[89] J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki, C. Adachi, Adv. Mater. 2013, 25, 3319.
[90] C. Baleizao, S. Nagl, M. Schaferling, M. N. Berberan-Santos, O. S. Wolfbeis, Anal. Chem. 2008, 80, 6449.
[91] V. Augusto, C. Baleizão, M. N. Berberan-Santos, J. P. S. Farinha, J. Mater. Chem. 2010, 20, 1192.
[92] S. R. Forrest, Nature 2004, 428, 911.
[93] J. Xue, Polym. Rev. 2010, 50, 411.
[94] W. Cao, J. Xue, Energy Environ. Sci. 2014, 7, 2123.
[95] N. Espinosa, M. Hösel, D. Angmo, F. C. Krebs, Energy Environ. Sci. 2012, 5, 5117.
[96] G. Li, R. Zhu, Y. Yang, Nat. Photon. 2012, 6, 153.
[97] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovoltaics Res. Appl. 2015, 23, 1.
[98] W. Cao, J. Li, H. Chen, J. Xue, J. Photon. Energy 2014, 4, 040990.
[99] S. Wilken, T. Hoffmann, E. von Hauff, H. Borchert, J. Parisi, Sol. Energy Mater. Sol. Cells 2012, 96, 141.
[100] H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Nat. Commun. 2015, 6, 6503.
[101] S. Schubert, J. Meiss, L. Müller-Meskamp, K. Leo, Adv. Energy Mater. 2013, 3, 438.
[102] S. Schubert, M. Hermenau, J. Meiss, L. Müller-Meskamp, K. Leo, Adv. Funct. Mater. 2012, 22, 4993.
[103] H. M. Stec, R. J. Williams, T. S. Jones, R. A. Hatton, Adv. Funct. Mater. 2011, 21, 1709.
[104] J. Zou, C. Z. Li, C. Y. Chang, H. L. Yip, A. K. Jen, Adv. Mater. 2014, 26, 3618.
[105] J. C. C. Fan, Appl. Phys. Lett. 1974, 25, 693.
[106] K. Ellmer, Nat. Photon. 2012, 6, 809.
[107] M.-G. Kang, M.-S. Kim, J. Kim, L. J. Guo, Adv. Mater. 2008, 20, 4408.
[108] R. Po, C. Carbonera, A. Bernardi, N. Camaioni, Energy Environ. Sci. 2011, 4, 285.
[109] D. A. Mengistie, M. A. Ibrahem, P. C. Wang, C. W. Chu, ACS Appl. Mater. Interfaces 2014, 6, 2292.
[110] R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787.
[111] E. C. Ou, L. Hu, G. C. Raymond, O. K. Soo, J. Pan, Z. Zheng, Y. Park, D. Hecht, G. Irvin, P. Drzaic, G. Gruner, ACS Nano 2009, 3, 2258.
[112] M. S. Dresselhaus, P. T. Araujo, ACS Nano 2010, 4, 6297.
[113] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, ACS Nano 2010, 4, 43.
[114] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, A. K. Geim, Science 2008, 320, 1308.
[115] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
[116] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
[117] Y. Zhang, J. P. Small, W. V. Pontius, P. Kim, Appl. Phys. Lett. 2005, 86, 073104.
[118] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574.
[119] S. Lee, J. S. Yeo, Y. Ji, C. Cho, D. Y. Kim, S. I. Na, B. H. Lee, T. Lee, Nanotechnology 2012, 23, 344013.
[120] T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, T.-W. Lee, Nat. Photon. 2012, 6, 105.
[121] L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, C. Zhou, ACS Nano 2010, 4, 2865.
[122] D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. Bradley, J. C. de Mello, Adv. Mater. 2011, 23, 4371.
[123] J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G. J. Matt, E. Spiecker, C. J. Brabec, Adv. Funct. Mater. 2013, 23, 1711.
[124] D. Y. Choi, H. W. Kang, H. J. Sung, S. S. Kim, Nanoscale 2013, 5, 977.
[125] M. Reinhard, R. Eckstein, A. Slobodskyy, U. Lemmer, A. Colsmann, Org. Electron. 2013, 14, 273.
[126] T. Stubhan, J. Krantz, N. Li, F. Guo, I. Litzov, M. Steidl, M. Richter, G. J. Matt, C. J. Brabec, Sol. Energy Mater. Sol. Cells 2012, 107, 248.
[127] L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, W. You, ACS Appl. Mater. Interfaces 2011, 3, 4075.
[128] J.-H. Lee, H.-S. Shin, Y.-J. Noh, S.-I. Na, H.-K. Kim, Sol. Energy Mater. Sol. Cells 2013, 114, 15.
[129] J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Lett. 2010, 10, 1276.
[130] J. Zhao, H. Sun, S. Dai, Y. Wang, J. Zhu, Nano Lett. 2011, 11, 4647.
[131] J. L. Elechiguerra, L. Larios-Lopez, C. Liu, D. Garcia-Gutierrez, A. Camacho-Bragado, M. J. Yacaman, Chem. Mater. 2005, 17, 6042.
[132] L. Cattin, Y. Lare, M. Makha, M. Fleury, F. Chandezon, T. Abachi, M. Morsli, K. Napo, M. Addou, J. C. Bernède, Sol. Energy Mater. Sol. Cells 2013, 117, 103.
[133] S. Möller, S. R. Forrest, J. Appl. Phys. 2002, 91, 3324.
[134] T. Del Rosso, J. E. Sanchez, S. Carvalho Rdos, O. Pandoli, M. Cremona, Opt. Express 2014, 22, 18914.
[135] P. Liehm, C. Murawski, M. Furno, B. r. Lüssem, K. Leo, M. C. Gather, Appl. Phys. Lett. 2012, 101, 253304.
[136] T. D. Schmidt, D. S. Setz, M. Flämmich, J. r. Frischeisen, D. Michaelis, B. C. Krummacher, N. Danz, W. Brütting, Appl. Phys. Lett. 2011, 99, 163302.
[137] M. Taneda, T. Yasuda, C. Adachi, Appl. Phys. Express 2011, 4, 071602.
[138] J. r. Frischeisen, D. Yokoyama, C. Adachi, W. Brütting, Appl. Phys. Lett. 2010, 96, 073302.
[139] K. H. Kim, J. L. Liao, S. W. Lee, B. Sim, C. K. Moon, G. H. Lee, H. J. Kim, Y. Chi, J. J. Kim, Adv. Mater. 2016, 28, 2526.
[140] C.-Y. Lu, M. Jiao, W.-K. Lee, C.-Y. Chen, W.-L. Tsai, C.-Y. Lin, C.-C. Wu, Adv. Funct. Mater. 2016, 26, 3250.
[141] R. Furue, T. Nishimoto, I. S. Park, J. Lee, T. Yasuda, Angew. Chem. Int. Ed. 2016, 55, 7171.
[142] J. V. Caspar, E. M. Kober, B. P. Sullivan, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 630.
[143] W. Siebrand, J. Chem. Phys. 1967, 46, 440.
[144] S. D. Cummings, R. Eisenberg, J. Am. Chem. Soc. 1996, 118, 1949.
[145] J. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang, B. Z. Tang, Adv. Mater. 2014, 26, 5429.
[146] J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
[147] D. Yokoyama, J. Mater. Chem. 2011, 21, 19187.
[148] J. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, B. Z. Tang, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, Chem. Commun. 2001, 1740.
[149] Z. Zhao, B. He, B. Z. Tang, Chem. Sci. 2015, 6, 5347.
[150] B. K. An, J. Gierschner, S. Y. Park, Acc. Chem. Res. 2012, 45, 544.
[151] Z. Zhao, J. W. Y. Lam, B. Z. Tang, J. Mater. Chem. 2012, 22, 23726.
[152] S. Y. Kim, Y. J. Cho, G. F. Jin, W. S. Han, H. J. Son, D. W. Cho, S. O. Kang, Phys. Chem. Chem. Phys. 2015, 17, 15679.
[153] K. Kokado, Y. Chujo, Macromolecules 2009, 42, 1418.
[154] K. Kokado, Y. Chujo, J. Org. Chem. 2011, 76, 316.
[155] J. J. Peterson, M. Werre, Y. C. Simon, E. B. Coughlin, K. R. Carter, Macromolecules 2009, 42, 8594.
[156] L. Weber, J. Kahlert, R. Brockhinke, L. Bohling, A. Brockhinke, H. G. Stammler, B. Neumann, R. A. Harder, M. A. Fox, Chem. Eur. J. 2012, 18, 8347.
[157] M. Cocchi, J. Kalinowski, D. Virgili, J. A. G. Williams, Appl. Phys. Lett. 2008, 92, 113302.
[158] K. R. Graham, Y. Yang, J. R. Sommer, A. H. Shelton, K. S. Schanze, J. Xue, J. R. Reynolds, Chem. Mater. 2011, 23, 5305.
[159] X. Du, J. Qi, Z. Zhang, D. Ma, Z. Y. Wang, Chem. Mater. 2012, 24, 2178.
[160] S. Wang, X. Yan, Z. Cheng, H. Zhang, Y. Liu, Y. Wang, Angew. Chem. Int. Ed. 2015, 54, 13068.
[161] L. Yao, S. Zhang, R. Wang, W. Li, F. Shen, B. Yang, Y. Ma, Angew. Chem. Int. Ed. 2014, 53, 2119.
[162] X. Han, Q. Bai, L. Yao, H. Liu, Y. Gao, J. Li, L. Liu, Y. Liu, X. Li, P. Lu, B. Yang, Adv. Funct. Mater. 2015, 25, 7521.
[163] K. Li, G. S. Ming Tong, Q. Wan, G. Cheng, W.-Y. Tong, W.-H. Ang, W.-L. Kwong, C.-M. Che, Chem. Sci. 2016, 7, 1653.
[164] D. Escudero, W. Thiel, Inorg. Chem. 2014, 53, 11015.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *