帳號:guest(3.141.4.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊博仲
作者(外文):Yang, Bo Zhong
論文名稱(中文):接觸型有機半導體電摩擦奈米元件之特性研究
論文名稱(外文):Study on the characterizations of contact electricfication organic semiconductive nano-devices
指導教授(中文):吳志明
指導教授(外文):Wu, Jyh Ming
口試委員(中文):徐文光
林宗宏
口試委員(外文):Hsu, Wen Kuang
Lin, Zong Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031519
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:有機半導體聚(3-己烷基噻吩)電摩擦薄膜電晶體軟性基板
外文關鍵詞:organic semiconductorPoly(3-hexylthiophene) (P3HT)electricficationthin film transistorflexible substrate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:450
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗使用滴定塗佈的方式,在PET基板上製作分別以P3HT與PCBM為主動層的有機薄膜電晶體,並利用靜電摩擦奈米發電機的原理,加入RH-SiO2與PTFE這兩個移動層,取代傳統閘極電壓的供應,做成接觸摩擦型的有機薄膜電晶體,藉由移動層與PEO介電層的摩擦,讓PEO可以帶有正電或負電,使元件內部產生的電場影響主動層的導電通道大小,控制流經源極與汲極之間的電流。以P3HT為主動層的元件,可以藉由改變移動層與PEO的間距,控制電流從1µA至12µA,最大與最小電流比例為12倍,而以PCBM為主動層的元件,改變移動層與PEO的間距可以控制電流從0.6µA至1.7µA,最大與最小電流比例約為3倍。
實驗上進一步使用旋轉塗佈將P3HT與PCBM結合作為pn接面的元件,研究雙層模的元件特性,並加入RH-SiO2與PTFE移動層,藉由改變移動層與元件之間的距離,調控P3HT與PCBM之間的空乏層大小,可以控制量測到的電流從2nA至63nA,其最大與最小電流比例約為30倍。
By combining the FET and the pn-junction with the triboelectric nanogenerator, we success to fabricate the organic tunable, force-controlled contact electrification field-effect transistor (CE-FET) and pn-junction switcher by using the conductive polymer, Poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM), as the active layers. As the inner field formed by the triboelectric potential between the gate and the moving layers, polytetrafluoroethene (PTFE) and RH-SiO2, the drain current can be enhanced from 2.29µA to 11.61µA in the enhancement mode, and decreased from 3.75µA to 0.98µA in the depletion mode. We can also control the depletion zone in the P3HT/PCBM pn-junction by the produced triboelectric potential. The current can be controlled from 2.84nA to 62.31nA.
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 5
2.1 有機半導體 5
2.2 聚(3-己烷基噻吩) (Poly(3-hexylthiophene), P3HT) 7
2.3 (6,6)-苯基-碳61-丁酸甲酯 (Phenyl-C61-butyric acid methyl ester, PCBM) 9
2.4 靜電摩擦奈米發電機 (triboelectric nanogenerator, TENG) 10
2.4.1 垂直分離模式 (Vertical contact-separation mode) 12
2.4.2 水平滑動模式 (Lateral sliding mode) 13
2.4.3 單電極模式 (single-electrode mode) 14
2.4.4 獨立靜電摩擦層模式 (Freestanding triboelectric-layer mode) 15
2.5 靜電摩擦發電機觸碰感測元件 16
2.6 靜電摩擦材料Rice Husk SiO2 (RH-SiO2) 18
2.7 元件結合摩擦奈米發電機 20
2.7.1 光感測元件結合摩擦奈米發電機 20
2.7.2 薄膜電晶體結合摩擦奈米發電機 22
第三章 實驗方法與步驟 26
3.1 有機半導體溶液配置 27
3.2 P3HT與PCBM薄膜電晶體元件的製作 28
3.3 P3HT/PCBM pn接面元件的製作 30
3.4 材料特性分析儀器 31
3.4.1 冷場發射掃描式電子顯微鏡暨能量散佈分析儀器 31
3.4.2 WAG廣角X光繞射分析 32
3.4.3 拉曼光譜儀分析 33
3.5 電性量測系統 34
第四章 結果與討論 36
4.1 薄膜特性分析 36
4.1.1 冷場發射掃描電子顯微鏡分析 36
4.1.2 WAG廣角X光繞射分析 37
4.1.3 拉曼光譜儀分析 38
4.2 有機薄膜電晶體特性分析 39
4.2.1 P3HT傳統薄膜電晶體特性分析 39
4.2.2 增強型P3HT接觸有機薄膜電晶體特性分析 41
4.2.3 空乏型P3HT接觸有機薄膜電晶體特性分析 44
4.2.4 PCBM傳統薄膜電晶體特性分析 47
4.2.5 增強型PCBM接觸有機薄膜電晶體特性分析 49
4.2.6 空乏型PCBM接觸有機薄膜電晶體特性分析 52
4.3 P3HT/PCBM pn接面元件特性分析 55
4.3.1 增強型P3HT/PCBM pn接面元件特性分析 56
4.3.2 空乏型P3HT/PCBM pn接面元件特性分析 59
第五章 結論 62
第六章 未來展望 63
第七章 參考文獻 64
1. Beyond, T.C., Anti-static agnet.
2. Chemla, D.S., Nonlinear optical properties of organic molecules and crystals. Vol. 1. 2012: Elsevier.
3. Forrest, S.R., The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004. 428(6986): p. 911-918.
4. Sundar, V.C., et al., Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science, 2004. 303(5664): p. 1644-1646.
5. Katz, H., et al., A soluble and air-stable organic semiconductor with high electron mobility. nature, 2000. 404(6777): p. 478-481.
6. 黃桂武, 共軛性導電高分子材料技術簡介. 工業材料雜誌, 2010. 288.
7. Liu, C., Y. Xu, and Y.-Y. Noh, Contact engineering in organic field-effect transistors. Materials Today, 2015. 18(2): p. 79-96.
8. Min, S.-Y., et al., Large-scale organic nanowire lithography and electronics. Nature communications, 2013. 4: p. 1773.
9. Dediu, V., et al., Room temperature spin polarized injection in organic semiconductor. Solid State Communications, 2002. 122(3): p. 181-184.
10. Colle, R., et al., Structure and X‐ray spectrum of crystalline poly (3‐hexylthiophene) from DFT‐van der Waals calculations. physica status solidi (b), 2011. 248(6): p. 1360-1368.
11. Machui, F., et al., Determination of the P3HT: PCBM solubility parameters via a binary solvent gradient method: Impact of solubility on the photovoltaic performance. Solar Energy Materials and Solar Cells, 2012. 100: p. 138-146.
12. Panzer, M.J. and C.D. Frisbie, Polymer electrolyte-gated organic field-effect transistors: Low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. Journal of the American Chemical Society, 2007. 129(20): p. 6599-6607.
13. Chae, G.J. and J.H. Seo. Characteristics of P3HT: PCBM bilayer middle-contact transistors incorporating a conjugated polyelectrolyte layer. in SPIE NanoScience+ Engineering. 2013. International Society for Optics and Photonics.
14. Vanlaeke, P., et al., P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics. Solar energy materials and solar cells, 2006. 90(14): p. 2150-2158.
15. Chi, D., et al., High efficiency P3HT: PCBM solar cells with an inserted PCBM layer. Journal of Materials Chemistry C, 2014. 2(22): p. 4383-4387.
16. Fan, F.-R., Z.-Q. Tian, and Z.L. Wang, Flexible triboelectric generator. Nano Energy, 2012. 1(2): p. 328-334.
17. Fan, F.-R., et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano letters, 2012. 12(6): p. 3109-3114.
18. Wang, S., L. Lin, and Z.L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy, 2015. 11: p. 436-462.
19. Zhu, G., et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano letters, 2012. 12(9): p. 4960-4965.
20. Wang, S., L. Lin, and Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano letters, 2012. 12(12): p. 6339-6346.
21. Zhong, J., et al., Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up LEDs. Nano Energy, 2013. 2(4): p. 491-497.
22. Zhu, G., et al., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano letters, 2013. 13(2): p. 847-853.
23. Zheng, Q., et al., In Vivo Self-Powered Wireless Cardiac Monitoring Via Implantable Triboelectric Nanogenerator. ACS nano, 2016.
24. Niu, S., et al., Theory of sliding‐mode triboelectric nanogenerators. Advanced Materials, 2013. 25(43): p. 6184-6193.
25. Zhu, G., et al., Linear-grating triboelectric generator based on sliding electrification. Nano letters, 2013. 13(5): p. 2282-2289.
26. Wang, S., et al., Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano letters, 2013. 13(5): p. 2226-2233.
27. Lin, L., et al., Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano letters, 2013. 13(6): p. 2916-2923.
28. Yang, Y., et al., Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. Acs Nano, 2013. 7(8): p. 7342-7351.
29. Su, Y., et al., Fully enclosed cylindrical single-electrode-based triboelectric nanogenerator. ACS applied materials & interfaces, 2013. 6(1): p. 553-559.
30. Niu, S., et al., Theoretical Investigation and Structural Optimization of Single‐Electrode Triboelectric Nanogenerators. Advanced Functional Materials, 2014. 24(22): p. 3332-3340.
31. Zhang, H., et al., Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. Acs Nano, 2013. 8(1): p. 680-689.
32. Li, Y., et al., Single-electrode-based rotationary triboelectric nanogenerator and its applications as self-powered contact area and eccentric angle sensors. Nano Energy, 2015. 11: p. 323-332.
33. Zhu, G., et al., Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano letters, 2014. 14(6): p. 3208-3213.
34. Wang, S., et al., Freestanding Triboelectric‐Layer‐Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non‐contact Modes. Advanced Materials, 2014. 26(18): p. 2818-2824.
35. Wang, S., et al., Quantitative measurements of vibration amplitude using a contact-mode freestanding triboelectric nanogenerator. ACS nano, 2014. 8(12): p. 12004-12013.
36. Su, Y., et al., Triboelectric sensor for self-powered tracking of object motion inside tubing. ACS nano, 2014. 8(4): p. 3843-3850.
37. Yang, W., et al., Triboelectrification based motion sensor for human-machine interfacing. ACS applied materials & interfaces, 2014. 6(10): p. 7479-7484.
38. Wang, Z.L., Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS nano, 2013. 7(11): p. 9533-9557.
39. Lee, K.Y., et al., Fully Packaged Self‐Powered Triboelectric Pressure Sensor Using Hemispheres‐Array. Advanced Energy Materials, 2016.
40. Wu, J.M., C.K. Chang, and Y.T. Chang, High-output current density of the triboelectric nanogenerator made from recycling rice husks. Nano Energy, 2016. 19: p. 39-47.
41. Lin, Z.H., et al., Triboelectric nanogenerator as an active UV photodetector. Advanced Functional Materials, 2014. 24(19): p. 2810-2816.
42. Su, L., et al., High-Performance Organolead Halide Perovskite-Based Self-Powered Triboelectric Photodetector. ACS nano, 2015. 9(11): p. 11310-11316.
43. Zhang, C., et al., Contact electrification field-effect transistor. ACS nano, 2014. 8(8): p. 8702-8709.
44. Zhang, C., et al., Organic Tribotronic Transistor for Contact‐Electrification‐Gated Light‐Emitting Diode. Advanced Functional Materials, 2015. 25(35): p. 5625-5632.
45. Xue, F., et al., MoS2 Tribotronic Transistor for Smart Tactile Switch. Advanced Functional Materials, 2016.
46. Wu, J.M., Y.H. Lin, and B.-Z. Yang, Force-pad made from contact-electrification poly (ethylene oxide)/InSb field-effect transistor. Nano Energy, 2016. 22: p. 468-474.
47. Peng, W., et al., Theoretical Study of Triboelectric-Potential Gated/Driven Metal-Oxide-Semiconductor Field-Effect-Transistor. ACS nano, 2016.
48. Li, J., et al., Flexible Organic Tribotronic Transistor Memory for a Visible and Wearable Touch Monitoring System. Advanced Materials, 2016. 28(1): p. 106-110.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *