|
1. Walker, F.O., Huntington's disease. Lancet, 2007. 369(9557): p. 218-228. 2. Álvarez, X.A., J. Figueroa, and D. Muresanu, Peptidergic drugs for the treatment of traumatic brain injury. Future Neurology, 2013. 8(2): p. 175-192. 3. Riva, N., et al., Recent advances in amyotrophic lateral sclerosis. Journal of Neurology, 2016. 263(6): p. 1241-1254. 4. Ming, G.L. and H. Song, Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 2011. 70(4): p. 687-702. 5. Gould, E., Opinion - How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience, 2007. 8(6): p. 481-488. 6. Parent, J.M., Injury-Induced Neurogenesis in the Adult Mammalian Brain. The Neuroscientist, 2003. 9(4): p. 261-272. 7. Hallbergson, A.F., C. Gnatenco, and D.A. Peterson, Neurogenesis and brain injury: managing a renewable resource for repair. J Clin Invest, 2003. 112(8): p. 1128-33. 8. Arvidsson, A., et al., Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 2002. 8(9): p. 963-70. 9. Carmeliet, P., Angiogenesis in life, disease and medicine. Nature, 2005. 438(7070): p. 932-936. 10. Laschke, M.W., et al., Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes. Tissue Engineering, 2006. 12(8): p. 2093-2104. 11. Rouwkema, J., N.C. Rivron, and C.A. van Blitterswijk, Vascularization in tissue engineering. Trends Biotechnol, 2008. 26(8): p. 434-41. 12. Xiong, Y., A. Mahmood, and M. Chopp, Angiogenesis, neurogenesis and brain recovery of function following injury. Current Opinion in Investigational Drugs, 2010. 11(3): p. 298-308. 13. Font, M.A., A. Arboix, and J. Krupinski, Angiogenesis, Neurogenesis and Neuroplasticity in Ischemic Stroke. Current Cardiology Reviews, 2010. 6(3): p. 238-244. 14. Kojima, T., et al., Subventricular Zone-Derived Neural Progenitor Cells Migrate Along a Blood Vessel Scaffold Toward the Post-stroke Striatum. Stem Cells, 2010. 28(3): p. 545-554. 15. Maas, A.I.R., N. Stocchetti, and R. Bullock, Moderate and severe traumatic brain injury in adults. The Lancet Neurology, 2008. 7(8): p. 728-741. 16. Servadei, F., C. Compagnone, and J. Sahuquillo, The role of surgery in traumatic brain injury. Current Opinion in Critical Care, 2007. 13(2): p. 163-168. 17. Oladunjoye, A.O., et al., Decompressive craniectomy using gelatin film and future bone flap replacement. Journal of Neurosurgery, 2013. 118(4): p. 776-782. 18. McBride, D.W., et al., Reduction of Cerebral Edema after Traumatic Brain Injury Using an Osmotic Transport Device. Journal of Neurotrauma, 2014. 31(23): p. 1948-1954. 19. Khaing, Z.Z., et al., Advanced biomaterials for repairing the nervous system: what can hydrogels do for the brain? Materials Today, 2014. 17(7): p. 332-340. 20. Yang, Y.L., et al., Designer self-assembling peptide nanomaterials. Nano Today, 2009. 4(2): p. 193-210. 21. Lutolf, M.P. and J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 2005. 23(1): p. 47-55. 22. Jonker, A.M., D. Lowik, and J.C.M. van Hest, Peptide- and Protein-Based Hydrogels. Chemistry of Materials, 2012. 24(5): p. 759-773. 23. Kretsinger, J.K., et al., Cytocompatibility of self-assembled ss-hairpin peptide hydrogel surfaces. Biomaterials, 2005. 26(25): p. 5177-5186. 24. Khoe, U., Y.L. Yang, and S.G. Zhang, Synergistic Effect and Hierarchical Nanostructure Formation in Mixing Two Designer Lipid-Like Peptide Surfactants Ac-A(6)D-OH and Ac-A(6)K-NH2. Macromolecular Bioscience, 2008. 8(11): p. 1060-1067. 25. Bakota, E.L., et al., Injectable Multidomain Peptide Nanofiber Hydrogel as a Delivery Agent for Stem Cell Secretome. Biomacromolecules, 2011. 12(5): p. 1651-1657. 26. Tam, R.Y., et al., Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 2014. 39(1): p. 169-188. 27. De Keyser, J., Autologous mesenchymal stem cell transplantation in stroke patients. Annals of Neurology, 2005. 58(4): p. 653-+. 28. Kim, J.H., et al., Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature, 2002. 418(6893): p. 50-56. 29. Koch, P., et al., Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurology, 2009. 8(9): p. 819-829. 30. Kim, J.H., et al., Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials, 2013. 34(6): p. 1657-1668. 31. Reddy, D.S., Neurosteroids: Endogenous role in the human brain and therapeutic potentials, in Sex Differences in the Human Brain, Their Underpinnings and Implications, I. Savic, Editor. 2010. p. 113-137. 32. Meng, F.W., M. Modo, and S.F. Badylak, Biologic scaffold for CNS repair. Regenerative Medicine, 2014. 9(3): p. 367-383. 33. Badylak, S.F., The extracellular matrix as a biologic scaffold material. Biomaterials, 2007. 28(25): p. 3587-3593. 34. Estroff, L.A. and A.D. Hamilton, Water gelation by small organic molecules. Chemical Reviews, 2004. 104(3): p. 1201-1217. 35. Hauser, C.A.E. and S.G. Zhang, Designer self-assembling peptide nanofiber biological materials. Chemical Society Reviews, 2010. 39(8): p. 2780-2790. 36. Gelain, F., et al., Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures. Plos One, 2006. 1(2). 37. Zhang, F., et al., Designer self-assembling peptide scaffold stimulates pre-osteoblast attachment, spreading and proliferation. Journal of Materials Science-Materials in Medicine, 2009. 20(7): p. 1475-1481. 38. Galler, K.M., et al., Self-Assembling Multidomain Peptide Hydrogels: Designed Susceptibility to Enzymatic Cleavage Allows Enhanced Cell Migration and Spreading. Journal of the American Chemical Society, 2010. 132(9): p. 3217-3223. 39. Gelain, F., L.D. Unsworth, and S.G. Zhang, Slow and sustained release of active cytokines from self-assembling peptide scaffolds. Journal of Controlled Release, 2010. 145(3): p. 231-239. 40. Koutsopoulos, S. and S.G. Zhang, Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, Matrigel and Collagen I. Acta Biomaterialia, 2013. 9(2): p. 5162-5169. 41. Cooke, M.J., et al., Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials, 2011. 32(24): p. 5688-5697. 42. Zhang, H.Z., et al., Vascular endothelial growth factor promotes brain tissue regeneration with a novel biomaterial polydimethylsiloxane-tetraethoxysilane. Brain Research, 2007. 1132(1): p. 29-35. 43. Zhu, J.M. and R.E. Marchant, Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices, 2011. 8(5): p. 607-626. 44. Park, K.I., Y.D. Teng, and E.Y. Snyder, The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotech, 2002. 20(11): p. 1111-1117. 45. Matsuse, D., et al., Combined Transplantation of Bone Marrow Stromal Cell-Derived Neural Progenitor Cells with a Collagen Sponge and Basic Fibroblast Growth Factor Releasing Microspheres Enhances Recovery After Cerebral Ischemia in Rats. Tissue Engineering Part A, 2011. 17(15-16): p. 1993-2004. 46. Gelain, F., A. Horii, and S.G. Zhang, Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromolecular Bioscience, 2007. 7(5): p. 544-551. 47. West, J.L. and J.A. Hubbell, Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules, 1999. 32(1): p. 241-244. 48. Ranieri, J.P., et al., Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. . Journal of Biomedical Materials Research, 1995. 29(6): p. 779-785. 49. Silva, G.A., et al., Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 2004. 303(5662): p. 1352-1355. 50. Robinet, A., et al., Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP. Journal of Cell Science, 2005. 118(2): p. 343-356. 51. D'Andrea, L.D., et al., Targeting angiogenesis: Structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(40): p. 14215-14220. 52. Yokoi, H., T. Kinoshita, and S.G. Zhang, Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(24): p. 8414-8419. 53. Ito, K., et al., The differential amino acid requirement within osteopontin in alpha 4 and alpha 9 integrin-mediated cell binding and migration. Matrix Biology, 2009. 28(1): p. 11-19. 54. Yokosaki, Y., et al., The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. Journal of Biological Chemistry, 1999. 274(51): p. 36328-36334. 55. Uchinaka, A., et al., SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis. Molecular and Cellular Biochemistry, 2015. 408(1-2): p. 191-203. 56. Hamada, Y., et al., Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochemical and Biophysical Research Communications, 2003. 310(1): p. 153-157. 57. Uchinaka, A., et al., Transplantation of myoblast sheets that secrete the novel peptide SVVYGLR improves cardiac function in failing hearts. Cardiovascular Research, 2013. 99(1): p. 102-110. 58. Chan, L.Y., et al., Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood, 2011. 118(25): p. 6709-6717. 59. Hamada, Y., et al., Osteopontin-derived peptide SVVYGLR induces angiogenesis in vivo. Dental Materials Journal, 2004. 23(4): p. 650-655. 60. Shibuya, M., Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor. Febs Journal, 2009. 276(17): p. 4636-4643. 61. Plate, K.H., Mechanisms of angiogenesis in the brain. Journal of Neuropathology and Experimental Neurology, 1999. 58(4): p. 313-320. 62. Owczarz, M., et al., Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide. Biomacromolecules, 2015. 16(12): p. 3792-3801. 63. Stendahl, J.C., et al., Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Advanced Functional Materials, 2006. 16(4): p. 499-508. 64. Ye, Z.Y., et al., Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-1. Journal of Peptide Science, 2008. 14(2): p. 152-162. 65. Marz, M., et al., Regenerative Response Following Stab Injury in the Adult Zebrafish Telencephalon. Developmental Dynamics, 2011. 240(9): p. 2221-2231. 66. Alunni, A. and L. Bally-Cuif, A comparative view of regenerative neurogenesis in vertebrates. Development, 2016. 143(5): p. 741. 67. Kishimoto, N., K. Shimizu, and K. Sawamoto, Neuronal regeneration in a zebrafish model of adult brain injury. Disease Models & Mechanisms, 2012. 5(2): p. 200-209. 68. Springer, A.D., S.S. Easter, Jr., and B.W. Agranoff, The role of the optic tectum in various visually mediated behaviors of goldfish. Brain Res, 1977. 128(3): p. 393-404. 69. Fleisch, V.C. and S.C.F. Neuhauss, Visual Behavior in Zebrafish. Zebrafish, 2006. 3(2): p. 191-201. 70. Najafian, M., N. Alerasool, and J. Moshtaghian, The effect of motion aftereffect on optomotor response in larva and adult zebrafish. Neuroscience Letters, 2014. 559: p. 179-183. 71. Maaswinkel, H. and L. Li, Spatio-temporal frequency characteristics of the optomotor response in zebrafish. Vision Research, 2003. 43(1): p. 21-30. 72. Aramvash, A. and M.S. Seyedkarimi, All-Atom Molecular Dynamics Study of Four RADA 16-I Peptides: The Effects of Salts on Cluster Formation. Journal of Cluster Science, 2015. 26(2): p. 631-643. 73. Arosio, P., et al., End-to-End Self-Assembly of RADA 16-I Nanofibrils in Aqueous Solutions. Biophysical Journal, 2012. 102(7): p. 1617-1626. 74. Aurand, E.R., et al., Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord. Journal of Functional Biomaterials, 2012. 3(4): p. 839-863. 75. Aurand, E.R., K.J. Lampe, and K.B. Bjugstad, Defining and designing polymers and hydrogels for neural tissue engineering. Neuroscience Research, 2012. 72(3): p. 199-213. 76. Lee, J., M.J. Cuddihy, and N.A. Kotov, Three-dimensional cell culture matrices: State of the art. Tissue Engineering Part B-Reviews, 2008. 14(1): p. 61-86. 77. Rabenstein, M., et al., Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4. Stem Cell Research & Therapy, 2015. 6. 78. Plantman, S., Osteopontin is upregulated after mechanical brain injury and stimulates neurite growth from hippocampal neurons through beta 1 integrin and CD44. Neuroreport, 2012. 23(11): p. 647-652. 79. Meller, R., et al., Neuroprotection by osteopontin in stroke. Journal of Cerebral Blood Flow and Metabolism, 2005. 25(2): p. 217-225. 80. Doyle, K.P., et al., Nasal administration of osteopontin peptide mimetics confers neuroprotection in stroke. Journal of Cerebral Blood Flow and Metabolism, 2008. 28(6): p. 1235-1248. 81. Chan, L.Y., et al., Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood, 2011. 118(25): p. 6709-6717. 82. Hsieh, F.Y., H.H. Lin, and S.H. Hsu, 3D bioprinting of neural stern cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 2015. 71: p. 48-57. 83. Delov, V., et al., Transgenic fluorescent zebrafish Tg(fli1:EGFP)(y1) for the identification of vasotoxicity within the zFET. Aquatic Toxicology, 2014. 150: p. 189-200. 84. Ellertsdottir, E., et al., Vascular morphogenesis in the zebrafish embryo. Developmental Biology, 2010. 341(1): p. 56-65. 85. Tal, T.L., et al., Immediate and long-term consequences of vascular toxicity during zebrafish development. Reproductive Toxicology, 2014. 48: p. 51-61. 86. Xu, X.L., et al., Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nature Communications, 2012. 3.
|