帳號:guest(18.222.182.29)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張凱捷
作者(外文):Chang, Kai Chieh
論文名稱(中文):開發功能性自我聚合奈米胜肽材料應用於受損腦組織的血管再生修復
論文名稱(外文):Development and Characterization of Functionalized Self-assembling Nanopeptide on the Effect of Angiogenesis for Injured Brain Tissue Regeneration
指導教授(中文):王子威
指導教授(外文):Wang, Tzu wei
口試委員(中文):謝達斌
蔡偉博
口試委員(外文):Shieh, Dar Bin
Tsai, Wei Bor
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031518
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:101
中文關鍵詞:功能性自我聚合胜肽血管再生神經修復
外文關鍵詞:FunctionalizationSelf-assembling peptideHydrogelAngiogenesisNeural tissue regeneration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:96
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在臨床治療中,針對腦受損的議題,大多數的治療方針著重在如何避免受損後的腦組織持續流失,但鮮少治療方式能有效地促進受損腦組織的再生修復,達到腦細胞外基質及神經網絡的重建效果。近年來,根據許多研究顯示,若能促進腦部受損區域的血管再生,改善血流供應情形,不僅能避免受損區域的缺血性壞死,減少併發症產生。
有鑑於促進血管再生對於腦組織修復效率的提升以及極具潛力的組織再生支架的治療策略,本研究欲利用奈米胜肽分子開發一具有生物相容性以及促進血管再生能力的功能化自主裝奈米胜肽水膠支架,來促進受損區域的再生效果。此功能化奈米胜肽分子-RADA16-SVVYGLR能在水溶液中透過胜肽分子間的靜電吸引力以及疏水作用力進行自我聚合,形成奈米纖維,並且藉由奈米纖維的相互纏繞、聚集堆疊,構築出模仿細胞外間質、相互聯通並且富含水分的三維立體的網狀支架。為了賦予奈米胜肽水膠具有促進血管再生的能力,在自我聚合胜肽的末端延伸出源於骨橋蛋白並具有促進血管再生的功能性胜肽-SVVYGLR。該功能性序列在修飾於RADA16後,不僅仍保有本身促進血管再生的能力,且賦予自我聚合胜肽水膠調控人類臍帶靜脈內皮細胞的生長以及形成管狀結構的生物活性。透過將神經幹細胞包覆在胜肽水膠支架中,更進一步證實支架內的結構能提供細胞適宜生存環境並且利於生長。另外,該自我聚合胜肽分子的二級結構、奈米微結構、水膠支架的機械性質可以藉由調控水溶液的酸鹼值以及鹽類加入與否,進行調控。此依據不同的環境變化而導致的物化性質‭ (‬結構上、機械性等‭)‬轉變,能廣泛應用於不同的應用範疇。藉由斑馬魚幼魚毒性測試,該功能性自我聚合胜肽水膠具有高度的生物相容性;在幼魚生長發育的過程中,不會造成魚隻的畸形異變、血管生長異常甚至死亡等負面影響。藉由斑馬魚成魚的腦創傷模式實驗,透過功能性自我聚合胜肽水膠的植入治療,提升了該腦組織中的內皮細胞、外被細胞、放射狀膠細胞以及星狀細胞在腦部受損區域以及水膠注入位置的表現量,進而證明該水膠具有促進受損組織周邊血管再生的潛力,並且輔助腦受損組織的神經再生。
藉由結合自我聚合胜肽以及促進血管再生功能序列,本研究成功發展出能自我聚合並且具有促進血管再生的胜肽材料,進而提升了自我聚合奈米胜肽的應用價值。根據諸多實驗分析,證明該功能性胜肽水膠具有可調變的物化特性、良好的生物相容性,以及促進血管再生、提升神經組織再生並且促進受損區域功能性回復的能力。結合水膠的促進血管再生特性以及包覆幹細胞、治療性藥物的應用,本研究期望該功能性自我聚合胜肽水膠能成為一具有前瞻性的新穎材料,可望能應用於生醫領域中,提升受損組織的再生修復,解決腦受損的健康議題。
Brain disease may lead to irreparable neurological insults due to the limited regeneration capacity of the organ. Current therapeutic strategies for such health issue aim mainly at preventing tissue loss, but no clinical treatment has been used to reconstruct formed cavities. Nowadays, more and more evidences have shown that if the blood circulation in damaged brain area can be improved, that can not only prevent diseased area from being worse but also improve damaged tissue repair.
The tissue-engineered scaffold-based strategy has shown a promising potential as therapeutics for brain injury. In this study, functionalized self-assembling peptides have been employed to fabricate a biocompatible angiogenic hydrogel scaffold. Self-assembling peptide, RADA16, was exploited to form nanofibers through self-organizing process; via peptide nanofibers entanglement and aggregate, they further construct an ECM-mimicking scaffold. Herein, through cell encapsulation within peptide scaffold, such scaffold could support neural stem cells survival and proliferation. By the adjustment of pH condition and salt addition, the physicochemical properties of peptide material were tunable, which is beneficial to develop scaffolds meeting the various requirements in tissue engineering. To regulate the angiogenesis around injured site, the osteopontin-derived angiogenic peptide, SVVYGLR, was used to enrich RADA16 hydrogel as an angiogenic scaffold. Such functionalized hydrogel displayed the ability to regulate human umbilical vein endothelial cells growth and enhance the tube-like structure formation. Through zebrafish embryo toxicity test, the angiogenic peptide hydrogel was highly biocompatible and did not interrupt the development of zebrafish embryo and blood vessels. By the assessment of damaged brain wound healing, implanted angiogenic hydrogel could regulate the growth of cells involved in angiogenesis and neurogenesis, which have the potential in promotion of neuronal tissue regeneration as well as in the enhancement of brain functional recovery.
In summary, we have successfully developed functionalized self-assembling peptide with angiogenic motif, RADA16-SVVYGLR. Such peptide hydrogel can not only be used alone as an angiogenic scaffold but also be incorporated with drugs or cells in the tissue regeneration medicine. We expect this functionalized peptide hydrogel could support neural tissue regeneration and be a potential therapeutic application in the injured brain diseases.
Chapter 1. Introduction 13
1. 1 Brain injury 13
1. 2 Neurogenesis 14
1. 3 Angiogenesis in brain 16
1. 4 Clinical treatments for brain injury 18
1. 5 Self-assembling peptide biomaterials for tissue regeneration 20
1.5.1 α-helix self-assembling peptide 20
1.5.2 β-sheet self-assembling peptide 22
1.5.3 Lipid-like self-assembling peptide 23
1.5.4 Multidomain self-assembling peptide 25
1. 6 Motivation and objective of this study 27
Chapter 2. Literature reviews 29
2. 1 State of art in injured brain tissue regeneration 29
2. 1. 1 Cell-based strategy 29
2. 1. 2 Drug/ Biologics-based strategy 30
2.2 Experimental researches of novel scaffold-based strategy for injured brain tissue reconstruction 32
2. 2. 1 Biologic scaffolds 32
2. 2. 2 Synthetic biologic scaffolds 33
2. 3 Strategies for functionalizing scaffolds 35
2. 3. 1 Encapsulation of cells, drugs, or growth factors 35
2. 3. 2 Functional peptide motif as conjugated signal 37
Chapter 3. Theoretical basis 40
3. 1 Self-assembling mechanism of peptide, RADA16 40
3. 2 Effect of inducing angiogenesis by angiogenic peptide sequence, SVVYGLR 41
3. 3 Angiogenesis in the brain organ 44
Chapter 4. Materials and Methods 46
4. 1 Materials list 46
4. 2 Physiochemical characteristics analyses 47
4.2.1 Preparation of self-assembling peptide 47
4.2.2 Circular dichroism spectroscopy 48
4.2.3 Transmission electron microscopy 49
4.2.4 Rheological measurement 49
4. 3 In vitro examination of cytocompatibility and effect of tube-like structure formation 51
4.3.1 Culture of neural stem cell and human umbilical vein endothelial cell 51
4.3.2 NSCs cultured in the 3D peptide hydrogel scaffold 51
4.3.3 Live/Dead assay 52
4.3.4 MTS assay 52
4.3.5 In vitro angiogenesis assay 53
4.3.6 Statistical analysis 54
4. 4 In vivo biocompatibility of peptide hydrogel and efficacy 54
of improving wound healing 54
4.4.1 In vivo zebrafish embryo toxicity test (zFET) 54
4.4.2 In vivo brain disease model of adult zebrafish 55
4.4.3 Immunohistochemistry stain 56
4.4.4 Zebrafish optomotor response (OMR) 57
Chapter 5. Results 59
5. 1 Physiochemical characteristics analyses 59
5.1.1 Examination of β-sheet secondary structure of RADA16 and RADA16-SVVYGLR 59
5.1.2 Observation of fibrillar assembling in RADA16 and RADA16-SVVYGLR 62
5.1.3 Investigation of rheological properties of RADA16 and RADA16-SVVYGLR hydrogel scaffold 65
5. 2 In vitro cytocompatibility in neural stem cell and regulation of endothelial cells tube-like structure formation 68
5.2.1 Neural stem cell viability and proliferation in 3D peptide hydrogel 68
5.2.2 Tube-like structure formation by cultured endothelial cells 70
5. 3 In vivo biocompatibility of peptide hydrogel and efficacy of improving wound healing 72
5.3.1 Genetic and cytocompatibility of peptide hydrogel using zebrafish embryo toxicity test 72
5.3.2 In vivo zebrafish brain disease model for efficacy assessment of angiogenesis, neurogenesis, and wound healing 74
5.3.3 In vivo zebrafish brain functional recovery assessment by the examination of optomotor response (OMR) 79
Chapter 6. Discussion 81
6.1 Physicochemical properties of self-assembling peptide hydrogel 81
6.1.1 Peptides conformational change under various pH conditions 81
6.1.2 Peptide nanostructure transformation induced by various environmental factors 83
6.1.3 Peptide hydrogel stiffness with pH dependency 85
6.2 In vitro study for examination of peptide hydrogel biocompatibility and the effect of regulating tube-like structure formation 87
6.2.1 Peptide hydrogel with biocompatible microenvironment for encapsulated cells 87
6.2.2 Enhanced in vitro angiogenesis regulated by angiogenic self-assembling peptide hydrogel 89
6.3 In vivo study for examination of peptide hydrogel toxicity and effect on improving damaged brain tissue regeneration by zebrafish animal model 90
6.3.1 Non-developmental toxicity of peptide hydrogel for the growth of fish embryos and blood vessels 90
6.3.2 Induction of angiogenesis, improved neurogenesis, wound healing and brain functional recovery after peptide hydrogel treatment 91
Chapter 7. Conclusion 93
References 95

1. Walker, F.O., Huntington's disease. Lancet, 2007. 369(9557): p. 218-228.
2. Álvarez, X.A., J. Figueroa, and D. Muresanu, Peptidergic drugs for the treatment of traumatic brain injury. Future Neurology, 2013. 8(2): p. 175-192.
3. Riva, N., et al., Recent advances in amyotrophic lateral sclerosis. Journal of Neurology, 2016. 263(6): p. 1241-1254.
4. Ming, G.L. and H. Song, Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron, 2011. 70(4): p. 687-702.
5. Gould, E., Opinion - How widespread is adult neurogenesis in mammals? Nature Reviews Neuroscience, 2007. 8(6): p. 481-488.
6. Parent, J.M., Injury-Induced Neurogenesis in the Adult Mammalian Brain. The Neuroscientist, 2003. 9(4): p. 261-272.
7. Hallbergson, A.F., C. Gnatenco, and D.A. Peterson, Neurogenesis and brain injury: managing a renewable resource for repair. J Clin Invest, 2003. 112(8): p. 1128-33.
8. Arvidsson, A., et al., Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med, 2002. 8(9): p. 963-70.
9. Carmeliet, P., Angiogenesis in life, disease and medicine. Nature, 2005. 438(7070): p. 932-936.
10. Laschke, M.W., et al., Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes. Tissue Engineering, 2006. 12(8): p. 2093-2104.
11. Rouwkema, J., N.C. Rivron, and C.A. van Blitterswijk, Vascularization in tissue engineering. Trends Biotechnol, 2008. 26(8): p. 434-41.
12. Xiong, Y., A. Mahmood, and M. Chopp, Angiogenesis, neurogenesis and brain recovery of function following injury. Current Opinion in Investigational Drugs, 2010. 11(3): p. 298-308.
13. Font, M.A., A. Arboix, and J. Krupinski, Angiogenesis, Neurogenesis and Neuroplasticity in Ischemic Stroke. Current Cardiology Reviews, 2010. 6(3): p. 238-244.
14. Kojima, T., et al., Subventricular Zone-Derived Neural Progenitor Cells Migrate Along a Blood Vessel Scaffold Toward the Post-stroke Striatum. Stem Cells, 2010. 28(3): p. 545-554.
15. Maas, A.I.R., N. Stocchetti, and R. Bullock, Moderate and severe traumatic brain injury in adults. The Lancet Neurology, 2008. 7(8): p. 728-741.
16. Servadei, F., C. Compagnone, and J. Sahuquillo, The role of surgery in traumatic brain injury. Current Opinion in Critical Care, 2007. 13(2): p. 163-168.
17. Oladunjoye, A.O., et al., Decompressive craniectomy using gelatin film and future bone flap replacement. Journal of Neurosurgery, 2013. 118(4): p. 776-782.
18. McBride, D.W., et al., Reduction of Cerebral Edema after Traumatic Brain Injury Using an Osmotic Transport Device. Journal of Neurotrauma, 2014. 31(23): p. 1948-1954.
19. Khaing, Z.Z., et al., Advanced biomaterials for repairing the nervous system: what can hydrogels do for the brain? Materials Today, 2014. 17(7): p. 332-340.
20. Yang, Y.L., et al., Designer self-assembling peptide nanomaterials. Nano Today, 2009. 4(2): p. 193-210.
21. Lutolf, M.P. and J.A. Hubbell, Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology, 2005. 23(1): p. 47-55.
22. Jonker, A.M., D. Lowik, and J.C.M. van Hest, Peptide- and Protein-Based Hydrogels. Chemistry of Materials, 2012. 24(5): p. 759-773.
23. Kretsinger, J.K., et al., Cytocompatibility of self-assembled ss-hairpin peptide hydrogel surfaces. Biomaterials, 2005. 26(25): p. 5177-5186.
24. Khoe, U., Y.L. Yang, and S.G. Zhang, Synergistic Effect and Hierarchical Nanostructure Formation in Mixing Two Designer Lipid-Like Peptide Surfactants Ac-A(6)D-OH and Ac-A(6)K-NH2. Macromolecular Bioscience, 2008. 8(11): p. 1060-1067.
25. Bakota, E.L., et al., Injectable Multidomain Peptide Nanofiber Hydrogel as a Delivery Agent for Stem Cell Secretome. Biomacromolecules, 2011. 12(5): p. 1651-1657.
26. Tam, R.Y., et al., Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 2014. 39(1): p. 169-188.
27. De Keyser, J., Autologous mesenchymal stem cell transplantation in stroke patients. Annals of Neurology, 2005. 58(4): p. 653-+.
28. Kim, J.H., et al., Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature, 2002. 418(6893): p. 50-56.
29. Koch, P., et al., Emerging concepts in neural stem cell research: autologous repair and cell-based disease modelling. Lancet Neurology, 2009. 8(9): p. 819-829.
30. Kim, J.H., et al., Stem cell recruitment and angiogenesis of neuropeptide substance P coupled with self-assembling peptide nanofiber in a mouse hind limb ischemia model. Biomaterials, 2013. 34(6): p. 1657-1668.
31. Reddy, D.S., Neurosteroids: Endogenous role in the human brain and therapeutic potentials, in Sex Differences in the Human Brain, Their Underpinnings and Implications, I. Savic, Editor. 2010. p. 113-137.
32. Meng, F.W., M. Modo, and S.F. Badylak, Biologic scaffold for CNS repair. Regenerative Medicine, 2014. 9(3): p. 367-383.
33. Badylak, S.F., The extracellular matrix as a biologic scaffold material. Biomaterials, 2007. 28(25): p. 3587-3593.
34. Estroff, L.A. and A.D. Hamilton, Water gelation by small organic molecules. Chemical Reviews, 2004. 104(3): p. 1201-1217.
35. Hauser, C.A.E. and S.G. Zhang, Designer self-assembling peptide nanofiber biological materials. Chemical Society Reviews, 2010. 39(8): p. 2780-2790.
36. Gelain, F., et al., Designer Self-Assembling Peptide Nanofiber Scaffolds for Adult Mouse Neural Stem Cell 3-Dimensional Cultures. Plos One, 2006. 1(2).
37. Zhang, F., et al., Designer self-assembling peptide scaffold stimulates pre-osteoblast attachment, spreading and proliferation. Journal of Materials Science-Materials in Medicine, 2009. 20(7): p. 1475-1481.
38. Galler, K.M., et al., Self-Assembling Multidomain Peptide Hydrogels: Designed Susceptibility to Enzymatic Cleavage Allows Enhanced Cell Migration and Spreading. Journal of the American Chemical Society, 2010. 132(9): p. 3217-3223.
39. Gelain, F., L.D. Unsworth, and S.G. Zhang, Slow and sustained release of active cytokines from self-assembling peptide scaffolds. Journal of Controlled Release, 2010. 145(3): p. 231-239.
40. Koutsopoulos, S. and S.G. Zhang, Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, Matrigel and Collagen I. Acta Biomaterialia, 2013. 9(2): p. 5162-5169.
41. Cooke, M.J., et al., Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials, 2011. 32(24): p. 5688-5697.
42. Zhang, H.Z., et al., Vascular endothelial growth factor promotes brain tissue regeneration with a novel biomaterial polydimethylsiloxane-tetraethoxysilane. Brain Research, 2007. 1132(1): p. 29-35.
43. Zhu, J.M. and R.E. Marchant, Design properties of hydrogel tissue-engineering scaffolds. Expert Review of Medical Devices, 2011. 8(5): p. 607-626.
44. Park, K.I., Y.D. Teng, and E.Y. Snyder, The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotech, 2002. 20(11): p. 1111-1117.
45. Matsuse, D., et al., Combined Transplantation of Bone Marrow Stromal Cell-Derived Neural Progenitor Cells with a Collagen Sponge and Basic Fibroblast Growth Factor Releasing Microspheres Enhances Recovery After Cerebral Ischemia in Rats. Tissue Engineering Part A, 2011. 17(15-16): p. 1993-2004.
46. Gelain, F., A. Horii, and S.G. Zhang, Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromolecular Bioscience, 2007. 7(5): p. 544-551.
47. West, J.L. and J.A. Hubbell, Polymeric Biomaterials with Degradation Sites for Proteases Involved in Cell Migration. Macromolecules, 1999. 32(1): p. 241-244.
48. Ranieri, J.P., et al., Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. . Journal of Biomedical Materials Research, 1995. 29(6): p. 779-785.
49. Silva, G.A., et al., Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science, 2004. 303(5662): p. 1352-1355.
50. Robinet, A., et al., Elastin-derived peptides enhance angiogenesis by promoting endothelial cell migration and tubulogenesis through upregulation of MT1-MMP. Journal of Cell Science, 2005. 118(2): p. 343-356.
51. D'Andrea, L.D., et al., Targeting angiogenesis: Structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(40): p. 14215-14220.
52. Yokoi, H., T. Kinoshita, and S.G. Zhang, Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(24): p. 8414-8419.
53. Ito, K., et al., The differential amino acid requirement within osteopontin in alpha 4 and alpha 9 integrin-mediated cell binding and migration. Matrix Biology, 2009. 28(1): p. 11-19.
54. Yokosaki, Y., et al., The integrin alpha(9)beta(1) binds to a novel recognition sequence (SVVYGLR) in the thrombin-cleaved amino-terminal fragment of osteopontin. Journal of Biological Chemistry, 1999. 274(51): p. 36328-36334.
55. Uchinaka, A., et al., SVVYGLR motif of the thrombin-cleaved N-terminal osteopontin fragment enhances the synthesis of collagen type III in myocardial fibrosis. Molecular and Cellular Biochemistry, 2015. 408(1-2): p. 191-203.
56. Hamada, Y., et al., Angiogenic activity of osteopontin-derived peptide SVVYGLR. Biochemical and Biophysical Research Communications, 2003. 310(1): p. 153-157.
57. Uchinaka, A., et al., Transplantation of myoblast sheets that secrete the novel peptide SVVYGLR improves cardiac function in failing hearts. Cardiovascular Research, 2013. 99(1): p. 102-110.
58. Chan, L.Y., et al., Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood, 2011. 118(25): p. 6709-6717.
59. Hamada, Y., et al., Osteopontin-derived peptide SVVYGLR induces angiogenesis in vivo. Dental Materials Journal, 2004. 23(4): p. 650-655.
60. Shibuya, M., Brain angiogenesis in developmental and pathological processes: therapeutic aspects of vascular endothelial growth factor. Febs Journal, 2009. 276(17): p. 4636-4643.
61. Plate, K.H., Mechanisms of angiogenesis in the brain. Journal of Neuropathology and Experimental Neurology, 1999. 58(4): p. 313-320.
62. Owczarz, M., et al., Contribution of Electrostatics in the Fibril Stability of a Model Ionic-Complementary Peptide. Biomacromolecules, 2015. 16(12): p. 3792-3801.
63. Stendahl, J.C., et al., Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Advanced Functional Materials, 2006. 16(4): p. 499-508.
64. Ye, Z.Y., et al., Temperature and pH effects on biophysical and morphological properties of self-assembling peptide RADA16-1. Journal of Peptide Science, 2008. 14(2): p. 152-162.
65. Marz, M., et al., Regenerative Response Following Stab Injury in the Adult Zebrafish Telencephalon. Developmental Dynamics, 2011. 240(9): p. 2221-2231.
66. Alunni, A. and L. Bally-Cuif, A comparative view of regenerative neurogenesis in vertebrates. Development, 2016. 143(5): p. 741.
67. Kishimoto, N., K. Shimizu, and K. Sawamoto, Neuronal regeneration in a zebrafish model of adult brain injury. Disease Models & Mechanisms, 2012. 5(2): p. 200-209.
68. Springer, A.D., S.S. Easter, Jr., and B.W. Agranoff, The role of the optic tectum in various visually mediated behaviors of goldfish. Brain Res, 1977. 128(3): p. 393-404.
69. Fleisch, V.C. and S.C.F. Neuhauss, Visual Behavior in Zebrafish. Zebrafish, 2006. 3(2): p. 191-201.
70. Najafian, M., N. Alerasool, and J. Moshtaghian, The effect of motion aftereffect on optomotor response in larva and adult zebrafish. Neuroscience Letters, 2014. 559: p. 179-183.
71. Maaswinkel, H. and L. Li, Spatio-temporal frequency characteristics of the optomotor response in zebrafish. Vision Research, 2003. 43(1): p. 21-30.
72. Aramvash, A. and M.S. Seyedkarimi, All-Atom Molecular Dynamics Study of Four RADA 16-I Peptides: The Effects of Salts on Cluster Formation. Journal of Cluster Science, 2015. 26(2): p. 631-643.
73. Arosio, P., et al., End-to-End Self-Assembly of RADA 16-I Nanofibrils in Aqueous Solutions. Biophysical Journal, 2012. 102(7): p. 1617-1626.
74. Aurand, E.R., et al., Building Biocompatible Hydrogels for Tissue Engineering of the Brain and Spinal Cord. Journal of Functional Biomaterials, 2012. 3(4): p. 839-863.
75. Aurand, E.R., K.J. Lampe, and K.B. Bjugstad, Defining and designing polymers and hydrogels for neural tissue engineering. Neuroscience Research, 2012. 72(3): p. 199-213.
76. Lee, J., M.J. Cuddihy, and N.A. Kotov, Three-dimensional cell culture matrices: State of the art. Tissue Engineering Part B-Reviews, 2008. 14(1): p. 61-86.
77. Rabenstein, M., et al., Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4. Stem Cell Research & Therapy, 2015. 6.
78. Plantman, S., Osteopontin is upregulated after mechanical brain injury and stimulates neurite growth from hippocampal neurons through beta 1 integrin and CD44. Neuroreport, 2012. 23(11): p. 647-652.
79. Meller, R., et al., Neuroprotection by osteopontin in stroke. Journal of Cerebral Blood Flow and Metabolism, 2005. 25(2): p. 217-225.
80. Doyle, K.P., et al., Nasal administration of osteopontin peptide mimetics confers neuroprotection in stroke. Journal of Cerebral Blood Flow and Metabolism, 2008. 28(6): p. 1235-1248.
81. Chan, L.Y., et al., Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood, 2011. 118(25): p. 6709-6717.
82. Hsieh, F.Y., H.H. Lin, and S.H. Hsu, 3D bioprinting of neural stern cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 2015. 71: p. 48-57.
83. Delov, V., et al., Transgenic fluorescent zebrafish Tg(fli1:EGFP)(y1) for the identification of vasotoxicity within the zFET. Aquatic Toxicology, 2014. 150: p. 189-200.
84. Ellertsdottir, E., et al., Vascular morphogenesis in the zebrafish embryo. Developmental Biology, 2010. 341(1): p. 56-65.
85. Tal, T.L., et al., Immediate and long-term consequences of vascular toxicity during zebrafish development. Reproductive Toxicology, 2014. 48: p. 51-61.
86. Xu, X.L., et al., Unique domain appended to vertebrate tRNA synthetase is essential for vascular development. Nature Communications, 2012. 3.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 生物啟發自聚合奈米胜肽水膠搭載糖胺聚醣輔助生長因子釋放與血管新生之研究
2. 藻酸鹽水膠搭載吸附訊號分子的聚電複合奈米粒子應用於減緩發炎與血管新生
3. 封裝過氧化氫酶的明膠微球與磁電金屬有機框架結合用於創傷性腦損傷的神經修復
4. Investigation of Mechanical Tension on Neurite Outgrowth and Axon Elongation with Micropatterned Stretching System
5. 開發HDI-PF127/HA溫感性注射式水膠系統作為抗癌藥物載體之研究
6. Electrical stimulation via carbon nanotube rope promotes the differentiation and maturity of neural stem cells
7. 藉由調控3D基材的軟硬度來誘導間葉幹細胞朝向神經細胞系之分化
8. 發展生物可降解之聚己内酯-聚乙二醇形狀記憶雙重藥物釋放血管支架
9. 開發還原及酸鹼敏感性透明質酸─聚乙烯亞胺奈米顆粒包覆抑制血管新生質體作為幹細胞基因治療之研究
10. 具自我聚合能力的功能性奈米胜肽材料於再生醫學上的應用
11. 膠原蛋白-透明質酸複合電紡奈米纖維包覆多種可階段性釋放之血管生長因子應用於慢性傷口修復
12. 開發結合神經滋養因子梯度與許旺氏細胞的微米圖貌培養裝置應用於神經組織工程
13. 開發具主動標靶與多重酸敏感性的自組裝多胜肽奈米藥物載體應用於癌症藥物傳輸及腫瘤轉移抑制
14. 結合神經滋養因子梯度與奈米形貌之多孔道明膠支架作為神經導管應用於神經再生修復
15. 糖胺聚醣複合水膠搭載聚電解複合奈米粒子應用於內源性幹細胞調控與中樞神經系統再生
 
* *