|
[1] A.R. Rathmell, B.J. Wiley, "The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates", Advanced Materials, 23 (2011) 4798-4803. [2] K. Bädeker," Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen", Annals of Physics, 327 (1907) 749-722 [3] G. Rupprecht, "Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten", Zeitschrift für Physik, 139 (1954) 504-517. [4] H.J.J. Van Boort, R. Groth,, "Low-pressure sodium lamps with indium oxide filter", Philips Technical Review, 29 (1968) 17-23. [5] K. Nishio, T. Sei, T. Tsuchiya," Preparation and electrical properties of ITO thin films by dip-coating process", Journal of Materials Science, 31.7 (1996) 1761-1766. [6] R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, "Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique", Journal of Applied Physics, 83 (1998) 2139-2141. [7] H. Morikawa, M. Fujita, "Crystallization and decrease in resistivity on heat treatment of amorphous indium tin oxide thin films prepared by dc magnetron sputtering", Thin Solid Films, 339 (1999) 309-313. [8] S.K. Park, J.I. Han, D.G. Moon, W.K. Kim," Mechanical stability of externally deformed indium–tin–oxide films on polymer substrates", Japanese Journal of Applied Physics, 42 (2003) 623. [9] D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.P. Simonato, "Flexible transparent conductive materials based on silver nanowire networks", Nanotechnology, 24 (2013) 452001. [10] S. Iijima, "Helical microtubules of graphitic carbon", Nature, 354 (1991) 56-58. [11] L.F. Pereira, C. Rocha, A. Latgé, J. Coleman, M. Ferreira, "Upper bound for the conductivity of nanotube networks", Applied Physics Letters, 95 (2009) 123106. [12] D.S. Hecht, A.M. Heintz, R. Lee, L. Hu, B. Moore, C. Cucksey, S. Risser, "High conductivity transparent carbon nanotube films deposited from superacid", Nanotechnology, 22 (2011) 075201. [13] X. Liu, S. Han, C. Zhou, "Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices", Nano Letters, 6 (2006) 34-39. [14] M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, "Strong, transparent, multifunctional, carbon nanotube sheets", Science, 309 (2005) 1215-1219. [15] L. Hu, D.S. Hecht, G. Gruner, "Carbon nanotube thin films: fabrication, properties, and applications", Chemical Reviews, 110 (2010) 5790-5844. [16] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.a. Dubonos, I. Grigorieva, A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306 (2004) 666-669. [17] A.K. Geim, K.S. Novoselov, "The rise of graphene", Nature Materials, 6 (2007) 183-191. [18] C. Lee, X. Wei, J.W. Kysar, J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321 (2008) 385-388. [19] K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim," A roadmap for graphene", Nature, 490 (2012) 192-200. [20] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, 324 (2009) 1312-1314. [21] G. Eda, G. Fanchini, M. Chhowalla," Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", Nature Nanotechnology, 3 (2008) 270-274. [22] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nature Nanotechnology, 5 (2010) 574-578. [23] D. Ghosh, L. Martinez, S. Giurgola, P. Vergani, V. Pruneri, "Widely transparent electrodes based on ultrathin metals", Optics Letters, 34 (2009) 325-327. [24] M.G. Kang, H.J. Park, S.H. Ahn, T. Xu, L.J. Guo, "Toward low-cost, high-efficiency, and scalable organic solar cells with transparent metal electrode and improved domain morphology", IEEE Journal of Selected Topics in Quantum Electronics, 16 (2010) 1807-1820. [25] L.J. Guo, "Nanoimprint lithography: methods and material requirements", Advanced Materials, 19 (2007) 495-513. [26] A. Morag, V. Ezersky, N. Froumin, D. Mogiliansky, R. Jelinek, "Transparent, conductive gold nanowire networks assembled from soluble Au thiocyanate", Chemical Communications, 49 (2013) 8552-8554. [27] L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui," Scalable coating and properties of transparent, flexible, silver nanowire electrodes", ACS Nano, 4 (2010) 2955-2963. [28] H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, "Copper nanowires as fully transparent conductive electrodes", Scientific Reports, 3 (2013). [29] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, "Ultrahigh strength and high electrical conductivity in copper", Science, 304 (2004) 422-426. [30] K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K. Tu," Observation of atomic diffusion at twin-modified grain boundaries in copper", Science, 321 (2008) 1066-1069. [31] I. Nakamichi," Electrical resistivity and grain boundaries in metals", Materials Science Forum, 207 (1996) 47-58. [32] X. Chen, L. Lu, K. Lu, "Electrical resistivity of ultrafine-grained copper with nanoscale growth twins", Journal of Applied Physics, 102 (2007) 083708. [33] A. Mayadas, M. Shatzkes, "Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces", Physical Review B, 1 (1970) 1382. [34] D. Xu, W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, K. Tu," Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition", Applied Physics Letters, 91 (2007) 254105. [35] M. Lai, D.J. Riley, "Templated electrosynthesis of nanomaterials and porous structures", Journal of Colloid and Interface Science, 323 (2008) 203-212. [36] T.C. Chan, Y.M. Lin, H.W. Tsai, Z.M. Wang, C.N. Liao, Y.L. Chueh," Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance", Nanoscale, 6 (2014) 7332-7338. [37] J. Chen, W. Zhou, J. Chen, Y. Fan, Z. Zhang, Z. Huang, X. Feng, B. Mi, Y. Ma, W. Huang, "Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells", Nano Research, 8 (2015) 1017-1025. [38] L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, J. Sun, "A long-term oxidation barrier for copper nanowires: graphene says yes", Physical Chemistry Chemical Physics, 17 (2015) 4231-4236. [39] I.N. Kholmanov, S.H. Domingues, H. Chou, X. Wang, C. Tan, J.Y. Kim, H. Li, R. Piner, A.J. Zarbin, R.S. Ruoff, "Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes", ACS nano, 7 (2013) 1811-1816. [40] I.E. Stewart, S. Ye, Z. Chen, P.F. Flowers, B.J. Wiley, "Synthesis of Cu–Ag, Cu–Au, and Cu–Pt Core–Shell Nanowires and Their Use in Transparent Conducting Films", Chemistry of Materials, 27 (2015) 7788-7794. [41] A.R. Rathmell, M. Nguyen, M. Chi, B.J. Wiley, "Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks", Nano Letters, 12 (2012) 3193-3199. [42] C.N. Liao, Y.C. Lu, D. Xu, "Modulation of crystallographic texture and twinning structure of Cu nanowires by electrodeposition", Journal of The Electrochemical Society, 160 (2013) D207-D211. [43] H. Guo, Y. Chen, X. Chen, R. Wen, G.H. Yue, D.L. Peng," Facile synthesis of near-monodisperse Ag@ Ni core–shell nanoparticles and their application for catalytic generation of hydrogen", Nanotechnology, 22 (2011) 195604. [44] J. Yang, B. Kolasa, J. Gibson, M. Yeadon, "Self-limiting oxidation of copper", Applied Physics Letters, 73 (1998) 2841-2843. [45] Y. Won, A. Kim, D. Lee, W. Yang, K. Woo, S. Jeong, J. Moon," Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics", NPG Asia Materials, 6 (2014) 105-109. [46] R. Ghosh Chaudhuri, S. Paria, "Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications", Chemical Reviews, 112 (2011) 2373-2433. [47] X.-L. Ding, X. Yuan, C. Jia, Z.F. Ma, "Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt–Copper–Boride catalysts", International Journal of Hydrogen Energy, 35 (2010) 11077-11084. [48] N.D. Nikolić, G. Branković," Effect of parameters of square-wave pulsating current on copper electrodeposition in the hydrogen co-deposition range", Electrochemistry Communications, 12 (2010) 740-744. [49] D.S. Hecht, L. Hu, G. Irvin, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures", Advanced Materials, 23 (2011) 1482-1513. [50] J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, "Solution-processed metal nanowire mesh transparent electrodes", Nano Letters, 8 (2008) 689-692.
|