帳號:guest(3.133.135.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):汪傳穎
作者(外文):Wang,Chuan Ying
論文名稱(中文):製備銅/鎳核殼結構奈米線及其於可撓式透明導電膜之製程與特性研究
論文名稱(外文):Synthesis and characterization of Cu-Ni core-shell nanowires for flexible transparent conducting film applications
指導教授(中文):廖建能
指導教授(外文):Liao,Chien-Neng
口試委員(中文):吳文偉
林皓武
口試委員(外文):Wu, Wen-Wei
Lin, Hao-Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031516
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:66
中文關鍵詞:核殼結構銅奈米線雙晶透明導電膜
外文關鍵詞:Core-shell structureCopper nanowiresnano-twintransparent conductive films
相關次數:
  • 推薦推薦:0
  • 點閱點閱:161
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
隨著可攜帶式電子元件的快速發展,透明導電膜的需求持續增加。而現今主流使用的氧化銦錫(ITO)導電膜,則因其本身的特性,在可撓式基板上之應用受到限制,因此開發替代氧化銦錫材料是勢在必行的趨勢。以金屬奈米線製備可撓式透明導電薄膜技術中,銅基奈米線因其良好的導電性與低廉價格極具開發潛力。本實驗室前期研究利用低溫脈衝電鍍法在陽極氧化鋁基板中沉積出高密度竹節狀雙晶結構的純銅奈米線。但銅奈米線在透明導電薄膜應用上需要克服氧化的問題。因此本研究在雙晶銅奈米線外以硼氫化鈉還原鎳層形成銅/鎳核殼結構奈米線。透過調整合成工作溫度以獲得鎳在銅奈米線上沉積之最佳形貌。接著利用真空抽濾搭配壓力轉印製程將銅/鎳核殼結構奈米線轉印至軟性高分子基板,成功製備出以銅/鎳奈米線為網絡的可撓式透明導電膜。壓力轉印製程可改善奈米線間連結情形,使片電阻值由31 K/sq. 下降至 40 /sq.。進一步檢測其在軟性基板上的表現,在1000 次動態彎曲測試與極小曲率半徑之靜態撓曲測試中,其片電阻值僅略升3~10 /sq.,展現極佳的可撓曲特性。在薄膜抗氧化方面,發現銅/鎳奈米線導電膜在85 C加熱數百小時後其片電阻值仍不受影響,證明其有良好的化學穩定性。綜合以上特性,其具有作為可撓式透明導電膜應用之潛力。
The increasing demand for flexible electronic devices drives the need for alternative materials other than indium tin oxide (ITO) as transparent conducting films (TCFs). Dispersing metallic nanowires on a polymer substrate appears to be a good solution for flexible TCFs. Among various metallic nanowires (NWs) used in TCFs, Cu based NW has been considered a potential candidate because of its cost advantage and good electrical properties. In our previous study we introduced dense nanoscale twinning structure in Cu NWs that was deposited in porous anodic aluminum oxide (AAO) templates using pulsed electroplating process. However, oxidation is the detrimental problem for the application of Cu NWs in TCFs. In this study, we have successfully synthesized Cu-Ni core-shell NWs. First, the nanotwinned Cu NWs were released from AAO templates by a wet chemical method. They were coated a thin layer of Ni using a reducing agent, sodium borohydride, in ethylene glycol solvent. We optimized the reaction temperature to achieve a smooth Ni layer coating. Next, the Cu-Ni NWs were transferred onto a PET substrate to form a TCF through vacuum filtration method and pressing process. The TCF sheet resistance is substantially reduced from 31 K/sq. to 40 /sq. at a transmittance of 88% with the optimized pressure applied during the film transfer process. The TFC sheet resistance increases 3~10 /sq. after a 1000 cycles of dynamic bending and static bending tests. Finally, the Cu-Ni TCFs had a negligible increase in sheet resistance after heating at 85 C for several hundreds of hours. It achieves the goal of improving oxidation resistance of Cu NWs by forming a Cu-Ni core-shell structure.
目錄
頁碼
致謝 I
Abstract III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1透明導電膜簡介 3
2.1.1 透明導電膜金屬氧化物 3
2.1.2 奈米碳管 6
2.1.3 石墨烯 7
2.1.4 金屬網格 10
2.1.5 金屬奈米線 12
2.2 材料中的奈米雙晶 16
2.2.1奈米雙晶銅 16
2.2.2 奈米雙晶銅的形成機制 19
2.3電鍍奈米銅線 21
2.3.1陽極氧化鋁基板輔助電鍍 21
2.3.2電鍍參數對奈米線微結構影響 22
2.4 奈米銅線及其複合材料在透明導電膜之應用 24
2.4.1 奈米銅線與導電高分子之複合材料 24
2.4.2 奈米銅線與石墨烯之複合材料 25
2.4.3 核殼結構銅奈米線材料 27
第三章、實驗步驟 30
3.1實驗設計與流程 30
3.1.1製備陽極氧化鋁基板 31
3.1.2電鍍銅奈米線 32
3.1.3化學法合成鎳殼層 33
3.1.4 銅鎳奈米線透明導電膜製備 34
3.2 試片分析 34
3.2.1 X光結晶繞射 (XRD) 分析 34
3.2.2 掃描式電子顯微鏡(SEM)分析 34
3.2.3 穿透式電子顯微鏡 (TEM) 分析 35
3.2.4 表面形貌量測分析 35
3.2.5 紫外光-可見光 (UV-Visible) 光譜分析 36
3.2.6 撓曲特性分析 36
3.2.7 氧化特性分析 36
3.3 實驗設備與儀器 37
第四章 結果討論 38
4.1 奈米銅線製備與其結構特性分析 38
4.1.1 陽極氧化鋁基板輔助電鍍奈米雙晶銅奈米線 38
4.1.2奈米銅線之氧化物移除 43
4.2 銅鎳核殼結構奈米線之合成及其特性分析 44
4.2.1 不同合成溫度對銅鎳核殼結構的形貌效應 44
4.2.2 銅鎳核殼結構奈米線特性、成份鑑定分析 48
4.3 銅鎳核殼結構奈米線應用於透明導電膜特性分析 50
4.3.1 壓力效應對導電薄膜電性影響 50
4.3.2銅鎳奈米線導電薄膜電性與光學特性分析 54
4.3.3銅鎳奈米線導電薄膜撓曲特性分析 56
4.3.4銅鎳奈米線導電薄膜氧化特性分析 58
第五章 結論 60
參考文獻 61

[1] A.R. Rathmell, B.J. Wiley, "The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates", Advanced Materials, 23 (2011) 4798-4803.
[2] K. Bädeker," Über die elektrische Leitfähigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen", Annals of Physics, 327 (1907) 749-722
[3] G. Rupprecht, "Untersuchungen der elektrischen und lichtelektrischen Leitfähigkeit dünner Indiumoxydschichten", Zeitschrift für Physik, 139 (1954) 504-517.
[4] H.J.J. Van Boort, R. Groth,, "Low-pressure sodium lamps with indium oxide filter", Philips Technical Review, 29 (1968) 17-23.
[5] K. Nishio, T. Sei, T. Tsuchiya," Preparation and electrical properties of ITO thin films by dip-coating process", Journal of Materials Science, 31.7 (1996) 1761-1766.
[6] R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, "Electronic transport in tin-doped indium oxide thin films prepared by sol-gel technique", Journal of Applied Physics, 83 (1998) 2139-2141.
[7] H. Morikawa, M. Fujita, "Crystallization and decrease in resistivity on heat treatment of amorphous indium tin oxide thin films prepared by dc magnetron sputtering", Thin Solid Films, 339 (1999) 309-313.
[8] S.K. Park, J.I. Han, D.G. Moon, W.K. Kim," Mechanical stability of externally deformed indium–tin–oxide films on polymer substrates", Japanese Journal of Applied Physics, 42 (2003) 623.
[9] D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, J.P. Simonato, "Flexible transparent conductive materials based on silver nanowire networks", Nanotechnology, 24 (2013) 452001.
[10] S. Iijima, "Helical microtubules of graphitic carbon", Nature, 354 (1991) 56-58.
[11] L.F. Pereira, C. Rocha, A. Latgé, J. Coleman, M. Ferreira, "Upper bound for the conductivity of nanotube networks", Applied Physics Letters, 95 (2009) 123106.
[12] D.S. Hecht, A.M. Heintz, R. Lee, L. Hu, B. Moore, C. Cucksey, S. Risser, "High conductivity transparent carbon nanotube films deposited from superacid", Nanotechnology, 22 (2011) 075201.
[13] X. Liu, S. Han, C. Zhou, "Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices", Nano Letters, 6 (2006) 34-39.
[14] M. Zhang, S. Fang, A.A. Zakhidov, S.B. Lee, A.E. Aliev, C.D. Williams, K.R. Atkinson, R.H. Baughman, "Strong, transparent, multifunctional, carbon nanotube sheets", Science, 309 (2005) 1215-1219.
[15] L. Hu, D.S. Hecht, G. Gruner, "Carbon nanotube thin films: fabrication, properties, and applications", Chemical Reviews, 110 (2010) 5790-5844.
[16] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.a. Dubonos, I. Grigorieva, A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306 (2004) 666-669.
[17] A.K. Geim, K.S. Novoselov, "The rise of graphene", Nature Materials, 6 (2007) 183-191.
[18] C. Lee, X. Wei, J.W. Kysar, J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321 (2008) 385-388.
[19] K.S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, K. Kim," A roadmap for graphene", Nature, 490 (2012) 192-200.
[20] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, 324 (2009) 1312-1314.
[21] G. Eda, G. Fanchini, M. Chhowalla," Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", Nature Nanotechnology, 3 (2008) 270-274.
[22] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nature Nanotechnology, 5 (2010) 574-578.
[23] D. Ghosh, L. Martinez, S. Giurgola, P. Vergani, V. Pruneri, "Widely transparent electrodes based on ultrathin metals", Optics Letters, 34 (2009) 325-327.
[24] M.G. Kang, H.J. Park, S.H. Ahn, T. Xu, L.J. Guo, "Toward low-cost, high-efficiency, and scalable organic solar cells with transparent metal electrode and improved domain morphology", IEEE Journal of Selected Topics in Quantum Electronics, 16 (2010) 1807-1820.
[25] L.J. Guo, "Nanoimprint lithography: methods and material requirements", Advanced Materials, 19 (2007) 495-513.
[26] A. Morag, V. Ezersky, N. Froumin, D. Mogiliansky, R. Jelinek, "Transparent, conductive gold nanowire networks assembled from soluble Au thiocyanate", Chemical Communications, 49 (2013) 8552-8554.
[27] L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui," Scalable coating and properties of transparent, flexible, silver nanowire electrodes", ACS Nano, 4 (2010) 2955-2963.
[28] H. Guo, N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, D. Cai, "Copper nanowires as fully transparent conductive electrodes", Scientific Reports, 3 (2013).
[29] L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, "Ultrahigh strength and high electrical conductivity in copper", Science, 304 (2004) 422-426.
[30] K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K. Tu," Observation of atomic diffusion at twin-modified grain boundaries in copper", Science, 321 (2008) 1066-1069.
[31] I. Nakamichi," Electrical resistivity and grain boundaries in metals", Materials Science Forum, 207 (1996) 47-58.
[32] X. Chen, L. Lu, K. Lu, "Electrical resistivity of ultrafine-grained copper with nanoscale growth twins", Journal of Applied Physics, 102 (2007) 083708.
[33] A. Mayadas, M. Shatzkes, "Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces", Physical Review B, 1 (1970) 1382.
[34] D. Xu, W.L. Kwan, K. Chen, X. Zhang, V. Ozoliņš, K. Tu," Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition", Applied Physics Letters, 91 (2007) 254105.
[35] M. Lai, D.J. Riley, "Templated electrosynthesis of nanomaterials and porous structures", Journal of Colloid and Interface Science, 323 (2008) 203-212.
[36] T.C. Chan, Y.M. Lin, H.W. Tsai, Z.M. Wang, C.N. Liao, Y.L. Chueh," Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance", Nanoscale, 6 (2014) 7332-7338.
[37] J. Chen, W. Zhou, J. Chen, Y. Fan, Z. Zhang, Z. Huang, X. Feng, B. Mi, Y. Ma, W. Huang, "Solution-processed copper nanowire flexible transparent electrodes with PEDOT: PSS as binder, protector and oxide-layer scavenger for polymer solar cells", Nano Research, 8 (2015) 1017-1025.
[38] L. Shi, R. Wang, H. Zhai, Y. Liu, L. Gao, J. Sun, "A long-term oxidation barrier for copper nanowires: graphene says yes", Physical Chemistry Chemical Physics, 17 (2015) 4231-4236.
[39] I.N. Kholmanov, S.H. Domingues, H. Chou, X. Wang, C. Tan, J.Y. Kim, H. Li, R. Piner, A.J. Zarbin, R.S. Ruoff, "Reduced graphene oxide/copper nanowire hybrid films as high-performance transparent electrodes", ACS nano, 7 (2013) 1811-1816.
[40] I.E. Stewart, S. Ye, Z. Chen, P.F. Flowers, B.J. Wiley, "Synthesis of Cu–Ag, Cu–Au, and Cu–Pt Core–Shell Nanowires and Their Use in Transparent Conducting Films", Chemistry of Materials, 27 (2015) 7788-7794.
[41] A.R. Rathmell, M. Nguyen, M. Chi, B.J. Wiley, "Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks", Nano Letters, 12 (2012) 3193-3199.
[42] C.N. Liao, Y.C. Lu, D. Xu, "Modulation of crystallographic texture and twinning structure of Cu nanowires by electrodeposition", Journal of The Electrochemical Society, 160 (2013) D207-D211.
[43] H. Guo, Y. Chen, X. Chen, R. Wen, G.H. Yue, D.L. Peng," Facile synthesis of near-monodisperse Ag@ Ni core–shell nanoparticles and their application for catalytic generation of hydrogen", Nanotechnology, 22 (2011) 195604.
[44] J. Yang, B. Kolasa, J. Gibson, M. Yeadon, "Self-limiting oxidation of copper", Applied Physics Letters, 73 (1998) 2841-2843.
[45] Y. Won, A. Kim, D. Lee, W. Yang, K. Woo, S. Jeong, J. Moon," Annealing-free fabrication of highly oxidation-resistive copper nanowire composite conductors for photovoltaics", NPG Asia Materials, 6 (2014) 105-109.
[46] R. Ghosh Chaudhuri, S. Paria, "Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications", Chemical Reviews, 112 (2011) 2373-2433.
[47] X.-L. Ding, X. Yuan, C. Jia, Z.F. Ma, "Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt–Copper–Boride catalysts", International Journal of Hydrogen Energy, 35 (2010) 11077-11084.
[48] N.D. Nikolić, G. Branković," Effect of parameters of square-wave pulsating current on copper electrodeposition in the hydrogen co-deposition range", Electrochemistry Communications, 12 (2010) 740-744.
[49] D.S. Hecht, L. Hu, G. Irvin, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures", Advanced Materials, 23 (2011) 1482-1513.
[50] J.Y. Lee, S.T. Connor, Y. Cui, P. Peumans, "Solution-processed metal nanowire mesh transparent electrodes", Nano Letters, 8 (2008) 689-692.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *