|
1. Duerloo, K.-A.N., Y. Li, and E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat Commun, 2014. 5. 2. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano, 2012. 7(11): p. 699-712. 3. Huang, H.H., et al., Controlling phase transition for single-layer MTe2 (M = Mo and W): modulation of the potential barrier under strain. Physical Chemistry Chemical Physics, 2016. 18(5): p. 4086-4094. 4. Ding, Y., et al., First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B: Condensed Matter, 2011. 406(11): p. 2254-2260. 5. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide $T$S${}_{2}$. Physical Review B, 2011. 83(24): p. 245213. 6. Mak, K.F., et al., Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805. 7. Splendiani, A., et al., Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275. 8. Zhang, Y., et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009. 459(7248): p. 820-823. 9. Lee, S.Y., et al., Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio. ACS Nano, 2015. 9(9): p. 9034-9042. 10. Jariwala, D., et al., Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Applied Physics Letters, 2013. 102(17): p. 173107. 11. Sangwan, V.K., et al., Low-Frequency Electronic Noise in Single-Layer MoS2 Transistors. Nano Letters, 2013. 13(9): p. 4351-4355. 12. Zhang, W., et al., High-Gain Phototransistors Based on a CVD MoS2 Monolayer. Advanced Materials, 2013. 25(25): p. 3456-3461. 13. RadisavljevicB, et al., Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150. 14. Radisavljevic, B. and A. Kis, Reply to 'Measurement of mobility in dual-gated MoS2 transistors'. Nat Nano, 2013. 8(3): p. 147-148. 15. Radisavljevic, B. and A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013. 12(9): p. 815-820. 16. Fuhrer, M.S. and J. Hone, Measurement of mobility in dual-gated MoS2 transistors. Nat Nano, 2013. 8(3): p. 146-147. 17. Das, S., et al., High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Letters, 2013. 13(1): p. 100-105. 18. Kumar, A. and P.K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. The European Physical Journal B, 2012. 85(6): p. 1-7. 19. Bernardi, M., M. Palummo, and J.C. Grossman, Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Letters, 2013. 13(8): p. 3664-3670. 20. Choi, W., et al., High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Advanced Materials, 2012. 24(43): p. 5832-5836. 21. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat Nano, 2013. 8(7): p. 497-501. 22. Ross, J.S., et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nano, 2014. 9(4): p. 268-272. 23. Buscema, M., et al., Large and Tunable Photothermoelectric Effect in Single-Layer MoS2. Nano Letters, 2013. 13(2): p. 358-363. 24. Wu, C.-C., et al., Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. The Journal of Physical Chemistry Letters, 2013. 4(15): p. 2508-2513. 25. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669. 26. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700. 27. Bertolazzi, S., J. Brivio, and A. Kis, Stretching and Breaking of Ultrathin MoS2. ACS Nano, 2011. 5(12): p. 9703-9709. 28. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453. 29. Zeng, Z., et al., Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angewandte Chemie International Edition, 2011. 50(47): p. 11093-11097. 30. Wu, S., et al., Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano, 2013. 7(3): p. 2768-2772. 31. Lin, Y.-C., et al., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012. 4(20): p. 6637-6641. 32. Orofeo, C.M., et al., Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Applied Physics Letters, 2014. 105(8): p. 083112. 33. Heyne, M.H., et al., Multilayer MoS2 growth by metal and metal oxide sulfurization. Journal of Materials Chemistry C, 2016. 4(6): p. 1295-1304. 34. Chiappe, D., et al., Controlled Sulfurization Process for the Synthesis of Large Area MoS2 Films and MoS2/WS2 Heterostructures. Advanced Materials Interfaces, 2016. 3(4): p. n/a-n/a. 35. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325. 36. Lee, Y.-H., et al., Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013. 13(4): p. 1852-1857. 37. Ling, X., et al., Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters, 2014. 14(2): p. 464-472. 38. van der Zande, A.M., et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater, 2013. 12(6): p. 554-561. 39. Yu, Y., et al., Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Scientific Reports, 2013. 3: p. 1866. 40. Zink, N., et al., In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD. Chemistry of Materials, 2008. 20(1): p. 65-71. 41. Kang, K., et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015. 520(7549): p. 656-660. 42. Vandenabeele, P., Front Matter, in Practical Raman Spectroscopy – An Introduction. 2013, John Wiley & Sons, Ltd. p. i-xxii. 43. Molina-Sánchez, A. and L. Wirtz, Phonons in single-layer and few-layer MoS${}_{2}$ and WS${}_{2}$. Physical Review B, 2011. 84(15): p. 155413. 44. Zhou, L., et al., Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. Journal of the American Chemical Society, 2015. 137(37): p. 11892-11895. 45. Keum, D.H., et al., Bandgap opening in few-layered monoclinic MoTe2. Nat Phys, 2015. 11(6): p. 482-486. 46. Park, J.C., et al., Phase-Engineered Synthesis of Centimeter-Scale 1T′- and 2H-Molybdenum Ditelluride Thin Films. ACS Nano, 2015. 9(6): p. 6548-6554. 47. Cho, S., et al., Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015. 349(6248): p. 625-628.
|