帳號:guest(3.143.5.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林威丞
作者(外文):Lin, Wei Cheng
論文名稱(中文):過渡金屬硫族化合物之大面積合成
論文名稱(外文):Scalable Synthesis of Transition Metal dichalcogenide
指導教授(中文):李奕賢
指導教授(外文):Lee, Yi Hsien
口試委員(中文):吳錦貞
張哲豪
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031515
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:84
中文關鍵詞:過渡金屬硫族化合物化學氣相沉積
外文關鍵詞:Transition Metal dichalgenideChemical vapor deposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:765
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本篇論文的主要工作內容聚焦於二維半導體成長的大面積製程,使用化學氣相沉積法合成高品質之單層二硫化鉬,並以高溫退火反應法,將預鍍之反應物進行硫化或碲化反應,以合成大面積且均勻的二維半導體。本研究藉由改變參數,深入研究各項製程參數對成長的影響,進一步藉由調控溫度、反應物濃度,以及環境氣氛,以實現二維材料之大面積製程。在本研究中,高溫退火反應(硫化/碲化)法合成的材料,具有相當高的均勻性且製程參數穩定。這個製程的優點在於良好的均勻性、製程容易控制、簡單,能合成出大面積的材料,然而其電性的表現較為不佳,需要一定厚度才能均勻,需要有改善品質的方法或是使用化學氣相沉積法來合成高品質二硫化鉬。
In this research, we used chemical vapor deposition to synthesize monolayer MoS2. Sulfurization and tellurization was used to synthesize scalable size of MoS2、MoTe2 by sulfurizing or tellurizing pre-deposited MoO3 on the substrate.The influence of growth parameters was investigated, such as concentration of precursor vapor、growth temperature and pressure, trying to realize scalable synthesis of two-dimensional semiconductor. The advantages of sulfurization and tellurization were its high uniformity、good controbility. But the mobilities of MoS2 synthesized by Sulfurization were relatively low compared to MoS2 synthesized by chemical vapor deposition.
目錄 5
圖表目錄 8
第一章 研究動機 12
第二章 文獻回顧 15
2-1 過渡金屬硫族化合物 15
2-1-1 晶體結構 15
2-1-2 能帶結構. 16
2-1-3 TMD之電學特性 17
2-1-4 光電性質 19
2-2 過渡金屬硫族化合物的合成 20
2-2-1 機械剝離法 20
2-2-2 鋰離子插層法 20
2-2-3 物理氣相沉積 21
2-3 大面積成長過渡金屬硫族化合物之製程 21
2-3-1 硫化反應 21
2-3-2 化學氣相沉積 22
2-3-3 有機金屬化學氣相沉積 22
2-4 二維材料之檢測技術 23
2-4-1 拉曼光譜分析 23
2-4-2 光致螢光光譜分析 24
第三章 實驗方法 32
3-1 實驗大綱 32
3-2 實驗準備與實驗架設 33
3-2-1 基板前處理 33
3-2-2 合成步驟 33
3-3 材料分析與量測 34
3-3-1 光學顯微鏡 34
3-3-2 拉曼光譜儀 34
3-3-3 光致發光光譜分析 34
3-3-4 晶體結構分析 35
3-3-5 表面形貌與厚度觀察 35
3-3-6 表面成分分析 35
3-3-7 電性及光電性質量測 36
第四章 化學氣相沉積法合成高品質二硫化鉬 40
4-1 製程參數對二硫化鉬生長的影響 40
4-1-1 前言 40
4-1-2 硫反應量對生長之影響 40
4-1-2 還原氣氛對生長之影響 40
4-1-3 鉬反應量對生長之影響 42
4-1-4 反應物( MoO3、S)比例對材料生長之影響 44
4-1-5 坩堝位置對前驅物蒸氣之影響 44
4-1-6 工作壓力對反應物均勻度之影響 44
4-1-7 工作壓力對反應物濃度之影響 46
4-1-8 基板種類與晶種(seeding promoter)對生長之影響 47
4-2 單層二硫化鉬之電性與光電量測 49
4-3 總結與未來工作 50
第五章高溫退火(硫化、碲化)反應實現二維半導體之大面積合成 63
5-1 前言 63
5-2 二硫化鉬之合成 64
5-3 二碲化鉬之合成 66
5-4 結論與未來工作 66
第六章 參考文獻 81


1. Duerloo, K.-A.N., Y. Li, and E.J. Reed, Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat Commun, 2014. 5.
2. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nano, 2012. 7(11): p. 699-712.
3. Huang, H.H., et al., Controlling phase transition for single-layer MTe2 (M = Mo and W): modulation of the potential barrier under strain. Physical Chemistry Chemical Physics, 2016. 18(5): p. 4086-4094.
4. Ding, Y., et al., First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B: Condensed Matter, 2011. 406(11): p. 2254-2260.
5. Kuc, A., N. Zibouche, and T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide $T$S${}_{2}$. Physical Review B, 2011. 83(24): p. 245213.
6. Mak, K.F., et al., Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Physical Review Letters, 2010. 105(13): p. 136805.
7. Splendiani, A., et al., Emerging Photoluminescence in Monolayer MoS2. Nano Letters, 2010. 10(4): p. 1271-1275.
8. Zhang, Y., et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009. 459(7248): p. 820-823.
9. Lee, S.Y., et al., Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio. ACS Nano, 2015. 9(9): p. 9034-9042.
10. Jariwala, D., et al., Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Applied Physics Letters, 2013. 102(17): p. 173107.
11. Sangwan, V.K., et al., Low-Frequency Electronic Noise in Single-Layer MoS2 Transistors. Nano Letters, 2013. 13(9): p. 4351-4355.
12. Zhang, W., et al., High-Gain Phototransistors Based on a CVD MoS2 Monolayer. Advanced Materials, 2013. 25(25): p. 3456-3461.
13. RadisavljevicB, et al., Single-layer MoS2 transistors. Nat Nano, 2011. 6(3): p. 147-150.
14. Radisavljevic, B. and A. Kis, Reply to 'Measurement of mobility in dual-gated MoS2 transistors'. Nat Nano, 2013. 8(3): p. 147-148.
15. Radisavljevic, B. and A. Kis, Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater, 2013. 12(9): p. 815-820.
16. Fuhrer, M.S. and J. Hone, Measurement of mobility in dual-gated MoS2 transistors. Nat Nano, 2013. 8(3): p. 146-147.
17. Das, S., et al., High Performance Multilayer MoS2 Transistors with Scandium Contacts. Nano Letters, 2013. 13(1): p. 100-105.
18. Kumar, A. and P.K. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. The European Physical Journal B, 2012. 85(6): p. 1-7.
19. Bernardi, M., M. Palummo, and J.C. Grossman, Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials. Nano Letters, 2013. 13(8): p. 3664-3670.
20. Choi, W., et al., High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Advanced Materials, 2012. 24(43): p. 5832-5836.
21. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS2. Nat Nano, 2013. 8(7): p. 497-501.
22. Ross, J.S., et al., Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat Nano, 2014. 9(4): p. 268-272.
23. Buscema, M., et al., Large and Tunable Photothermoelectric Effect in Single-Layer MoS2. Nano Letters, 2013. 13(2): p. 358-363.
24. Wu, C.-C., et al., Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy. The Journal of Physical Chemistry Letters, 2013. 4(15): p. 2508-2513.
25. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
26. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700.
27. Bertolazzi, S., J. Brivio, and A. Kis, Stretching and Breaking of Ultrathin MoS2. ACS Nano, 2011. 5(12): p. 9703-9709.
28. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
29. Zeng, Z., et al., Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angewandte Chemie International Edition, 2011. 50(47): p. 11093-11097.
30. Wu, S., et al., Vapor–Solid Growth of High Optical Quality MoS2 Monolayers with Near-Unity Valley Polarization. ACS Nano, 2013. 7(3): p. 2768-2772.
31. Lin, Y.-C., et al., Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale, 2012. 4(20): p. 6637-6641.
32. Orofeo, C.M., et al., Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Applied Physics Letters, 2014. 105(8): p. 083112.
33. Heyne, M.H., et al., Multilayer MoS2 growth by metal and metal oxide sulfurization. Journal of Materials Chemistry C, 2016. 4(6): p. 1295-1304.
34. Chiappe, D., et al., Controlled Sulfurization Process for the Synthesis of Large Area MoS2 Films and MoS2/WS2 Heterostructures. Advanced Materials Interfaces, 2016. 3(4): p. n/a-n/a.
35. Lee, Y.-H., et al., Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Advanced Materials, 2012. 24(17): p. 2320-2325.
36. Lee, Y.-H., et al., Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013. 13(4): p. 1852-1857.
37. Ling, X., et al., Role of the Seeding Promoter in MoS2 Growth by Chemical Vapor Deposition. Nano Letters, 2014. 14(2): p. 464-472.
38. van der Zande, A.M., et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat Mater, 2013. 12(6): p. 554-561.
39. Yu, Y., et al., Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films. Scientific Reports, 2013. 3: p. 1866.
40. Zink, N., et al., In Situ Heating TEM Study of Onion-like WS2 and MoS2 Nanostructures Obtained via MOCVD. Chemistry of Materials, 2008. 20(1): p. 65-71.
41. Kang, K., et al., High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015. 520(7549): p. 656-660.
42. Vandenabeele, P., Front Matter, in Practical Raman Spectroscopy – An Introduction. 2013, John Wiley & Sons, Ltd. p. i-xxii.
43. Molina-Sánchez, A. and L. Wirtz, Phonons in single-layer and few-layer MoS${}_{2}$ and WS${}_{2}$. Physical Review B, 2011. 84(15): p. 155413.
44. Zhou, L., et al., Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. Journal of the American Chemical Society, 2015. 137(37): p. 11892-11895.
45. Keum, D.H., et al., Bandgap opening in few-layered monoclinic MoTe2. Nat Phys, 2015. 11(6): p. 482-486.
46. Park, J.C., et al., Phase-Engineered Synthesis of Centimeter-Scale 1T′- and 2H-Molybdenum Ditelluride Thin Films. ACS Nano, 2015. 9(6): p. 6548-6554.
47. Cho, S., et al., Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015. 349(6248): p. 625-628.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *