|
[1] D. Chung, "Materials for thermal conduction," Applied Thermal Engineering, vol. 21, pp. 1593-1605, 2001. [2] J. D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, et al., "Strongly anisotropic thermal conductivity of free‐standing reduced graphene oxide films annealed at high temperature," Advanced Functional Materials, vol. 25, pp. 4664-4672, 2015. [3] A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials," Nature Materials, vol. 10, pp. 569-581, 2011. [4] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007. [5] M. Katsnelson and K. Novoselov, "Graphene: New bridge between condensed matter physics and quantum electrodynamics," Solid State Communications, vol. 143, pp. 3-13, 2007. [6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004. [7] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, 2009. [8] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-based ultracapacitors," Nano Letters, vol. 8, pp. 3498-3502, 2008. [9] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008. [10] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, pp. 902-907, 2008. [11] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008. [12] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nature Nanotechnology, vol. 3, pp. 206-209, 2008. [13] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, 2008. [14] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, pp. 192-200, 2012. [15] W. A. De Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, et al., "Epitaxial graphene electronic structure and transport," Journal of Physics D: Applied Physics, vol. 43, p. 374007 (13pp), 2010. [16] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006. [17] G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao, "Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation," Carbon, vol. 47, pp. 3242-3246, 2009. [18] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, "High-quality thin graphene films from fast electrochemical exfoliation," ACS Nano, vol. 5, pp. 2332-2339, 2011. [19] A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, et al., "Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors," Carbon, vol. 49, pp. 4204-4210, 2011. [20] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009. [21] L. W. Tsai and N. H. Tai, "Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth," ACS Applied Materials & Interfaces, vol. 6, pp. 10489-10496, 2014. [22] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958. [23] B. C. Brodie, "On the atomic weight of graphite," Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259, 1859. [24] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, pp. 1987-1992, 2009. [25] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, 2007. [26] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, et al., "Single sheet functionalized graphene by oxidation and thermal expansion of graphite," Chemistry of Materials, vol. 19, pp. 4396-4404, 2007. [27] S. Pei and H.-M. Cheng, "The reduction of graphene oxide," Carbon, vol. 50, pp. 3210-3228, 2012. [28] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature Nanotechnology, vol. 4, pp. 217-224, 2009. [29] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, et al., "Functionalized single graphene sheets derived from splitting graphite oxide," The Journal of Physical Chemistry B, vol. 110, pp. 8535-8539, 2006. [30] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991. [31] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, pp. 603-605, 1993. [32] Rice University: Rick Smalley's Group Home Page, http://smalley.rice.edu/, Image Gallery, 1. [33] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. San Diego, California, United States: Academic press, 1996. [34] M. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995. [35] J. Mintmire, B. Dunlap, and C. White, "Are fullerene tubules metallic?," Physical Review Letters, vol. 68, pp. 631-634, 1992. [36] R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical properties of carbon nanotubes. London: Imperial College press, 1998. [37] M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties," Physical Review Letters, vol. 84, pp. 5552-5555, 2000. [38] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, et al., "Measuring the thermal conductivity of a single carbon nanotube," Physical Review Letters, vol. 95, p. 065502 (4pp), 2005. [39] S. Berber, Y. K. Kwon, and D. Tománek, "Unusually high thermal conductivity of carbon nanotubes," Physical Review Letters, vol. 84, pp. 4613-4616, 2000. [40] Y. Saito and S. Uemura, "Field emission from carbon nanotubes and its application to electron sources," Carbon, vol. 38, pp. 169-182, 2000. [41] T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, "Catalytic growth of single-walled manotubes by laser vaporization," Chemical Physics Letters, vol. 243, pp. 49-54, 1995. [42] 蔡宗岩,垂直排列奈米碳管之低溫製程與其轉印技術應用於軟性電子與有序週期陣列:場發射元件與光柵,博士論文,國立清華大學材料科學工程學系,台灣新竹,2009。. [43] L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, and D. Wu, "Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method," Carbon, vol. 39, pp. 329-335, 2001. [44] 楊健鑫,以流動觸媒法合成單層奈米碳管及雙層奈米碳管之製程研究,碩士論文,國立清華大學材料科學工程學系,台灣新竹,2004。. [45] M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, "Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition," Applied Physics Letters, vol. 77, pp. 3468-3470, 2000. [46] Z. Huang, J. Xu, Z. Ren, J. Wang, M. Siegal, and P. Provencio, "Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition," Applied Physics Letters, vol. 73, pp. 3845-3847, 1998. [47] S. Kou, Transport phenomena and materials processing. New York, United States: Wiley, 1996. [48] J. P. Holman, Heat transfer, 8 ed. New York, United States: McGraw-Hill, 2008. [49] D. L. Nika and A. A. Balandin, "Two-dimensional phonon transport in graphene," Journal of Physics: Condensed Matter, vol. 24, p. 233203 (18pp), 2012. [50] R. D. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," Journal of Applied Physics, vol. 34, pp. 926-927, 1963. [51] T. Baba and A. Ono, "Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements," Measurement Science and Technology, vol. 12, pp. 2046-2057, 2001. [52] T. Log and S. Gustafsson, "Transient plane source (TPS) technique for measuring thermal transport properties of building materials," Fire and Materials, vol. 19, pp. 43-49, 1995. [53] S. A. Al-Ajlan, "Measurements of thermal properties of insulation materials by using transient plane source technique," Applied Thermal Engineering, vol. 26, pp. 2184-2191, 2006. [54] L. Lu, W. Yi, and D. Zhang, "3ω method for specific heat and thermal conductivity measurements," Review of Scientific Instruments, vol. 72, pp. 2996-3003, 2001. [55] J. Alvarez-Quintana and J. Rodriguez-Viejo, "Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample," Sensors and Actuators A: Physical, vol. 142, pp. 232-236, 2008. [56] Y. J. Chen, D. D. Nguyen, M. Y. Shen, M. C. Yip, and N. H. Tai, "Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites," Composites Part A: Applied Science and Manufacturing, vol. 44, pp. 40-46, 2013. [57] P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y. H. Kim, and C. M. Koo, "Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness," Carbon, vol. 94, pp. 494-500, 2015. [58] Y. Hwang, M. Kim, and J. Kim, "Role of direct covalent bonding in enhanced heat dissipation property of flexible graphene oxide–carbon nanotube hybrid film," Thin Solid Films, vol. 545, pp. 116-123, 2013. [59] H. F. Lu, W. S. Kuo, and T. H. Ko, "Microstructures and thermal conductivities of carbon nanotube/graphite nanosheet compacts," Nanoscale and Microscale Thermophysical Engineering, vol. 15, pp. 209-219, 2011. [60] W. T. Hong and N. H. Tai, "Investigations on the thermal conductivity of composites reinforced with carbon nanotubes," Diamond and Related Materials, vol. 17, pp. 1577-1581, 2008. [61] Q. Li, Y. Guo, W. Li, S. Qiu, C. Zhu, X. Wei, et al., "Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite," Chemistry of Materials, vol. 26, pp. 4459-4465, 2014. [62] P. Ding, J. Zhang, N. Song, S. Tang, Y. Liu, and L. Shi, "Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions," Composites Science and Technology, vol. 109, pp. 25-31, 2015. [63] H. Im and J. Kim, "Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite," Carbon, vol. 50, pp. 5429-5440, 2012. [64] 汪建民,材料分析,中國材料科學學會,台灣新竹,第659–672頁。. [65] W. S. Kuo, H. C. Lai, T. W. Chang, and C. C. Wen, "Processing and failure behavior of carbon‐nanotube composites in sheet forms," Polymer Composites, vol. 37, pp. 1564-1571, 2014. [66] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, p. 187401 (4pp), 2006. [67] M. Dresselhaus, A. Jorio, and R. Saito, "Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy," Annual Review of Condensed Matter Physics, vol. 1, pp. 89-108, 2010. [68] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007. [69] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, et al., "Spatially resolved Raman spectroscopy of single-and few-layer graphene," Nano Letters, vol. 7, pp. 238-242, 2007. [70] L. Shahriary and A. A. Athawale, "Graphene oxide synthesized by using modified hummers approach," International Journal of Energy and Environmental Engineering, vol. 2, pp. 58-63, 2014. |