帳號:guest(18.220.195.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘姿文
作者(外文):Pan, Tzu Wen
論文名稱(中文):薄層石墨烯/多壁奈米碳管複合材料的製備及其熱傳導性質之研究
論文名稱(外文):Investigation on Thermal Properties of Reduced Graphene Oxide/Multi-Walled Carbon Nanotube Composites
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan Hwa
口試委員(中文):郭文雄
葉孟考
口試委員(外文):Kuo, Wen Shyong
Yeh, Meng Kao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031507
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:110
中文關鍵詞:石墨烯奈米碳管異向性的熱傳導係數
外文關鍵詞:graphenecarbon nanotubesanisotropic thermal conductivity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:106
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在製備一具有高熱傳導性質、可撓性,且在熱傳導方向上具有高度異向性之薄膜材料,期望能在電子產業中作熱管理相關應用。為此,本研究以真空抽濾法及水熱還原法製備出石墨烯與奈米碳管(carbon nanotubes, CNTs)複合材料,探討CNT添加量對複合膜熱傳導係數的影響,並分別對平面方向(in-plane)以及垂直平面方向(through-plane)的熱傳導性質做進一步的比較;另外,將複合膜熱壓處理過後,探討熱壓對熱傳值的影響,並進一步作變溫的熱傳導係數量測。研究結果顯示,當CNT添加量越少,在in-plane方向的熱傳值越高,在through-plane方向的熱傳值則越低;經由熱壓後,複合膜於結構及熱傳導方向上的異向性均更為明顯,能有效提升in-plane方向的熱傳值,5 wt% CNT複合膜由787.25 W/m∙K提升至836.80 W/m∙K;而在變溫量測範圍內,in-plane和through-plane的熱傳值均隨著溫度上升而增加,本實驗以5 wt% CNT所製備的複合膜其in-plane熱傳導係數在85 oC時可高達1224.58 W/m∙K為最好的結果,而through-plane方向在 25 oC時為0.058 W/m∙K,在85 oC時達0.080 W/m∙K,代表此材料於不同溫度區間仍具有高度異向性,並達到散熱材料所需高熱傳導性質、可撓性且輕量的薄膜材料之目標。
In order to satisfy the requirement of thermal management of modern electronics, this study aimed to fabricate thin films materials with high thermal conductivity, flexible, and strongly anisotropic heat conduction properties. In this work, we successfully prepared the reduced graphene oxide/multi-walled carbon nanotubes (rGO/CNT) hybrid films with different loadings of CNTs by vacuum filtration and hydrothermal reduction processes, and measured their thermal conductivity by the laser flash method.
The results showed that the film with lower CNT loading possessed higher in-plane but lower through-plane thermal conductivity. After hot-pressed, the anisotropy of both structural and heat conduction properties became more obvious, which can effectively improve the in-plane thermal conductivity from 787.25 W/m∙K to 836.80 W/m∙K for the specimen with 5 wt% CNT loading. As temperature increased, the in-plane thermal conductivity was increased to 1224.58 W/m∙K at 85oC, and the through-plane thermal conductivity was increased from 0.058 W/m∙K at 25oC to 0.080 W/m∙K at 85oC for the specimen with 5 wt% CNT loading, which implies the composites remain highly anisotropic thermal properties at different temperatures studied in this work. The rGO/CNT composites exhibiting high thermal conductivity, flexible, and highly anisotropic thermal properties are promising for heat management applications.
摘要 I
Abstract II
致謝 IV
目錄 VI
表目錄 XI
圖目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 石墨烯的簡介 3
2.1.1 石墨烯的結構 3
2.1.2 石墨烯的特性 4
2.1.3 石墨烯的製備方法 5
2.2 奈米碳管的簡介 9
2.2.1 奈米碳管的起源 9
2.2.2 奈米碳管的結構與性質 10
2.2.3 奈米碳管的製備方法 12
2.3 熱傳導性質的簡介 14
2.3.1 熱傳遞原理 14
2.3.2 熱傳導的量測方法 17
2.3.3 奈米碳材料的熱傳導性質 21
第三章 實驗方法與分析 39
3.1 實驗設備與材料分析儀器 40
3.1.1 電磁加熱攪拌機 40
3.1.2 高速離心機 40
3.1.3 超音波震盪機 41
3.1.4 水循環過濾系統 42
3.1.5 水熱反應爐 42
3.1.6 熱壓機 43
3.1.7 場發射掃描式電子顯微鏡 43
3.1.8 原子力顯微鏡 44
3.1.9 X光繞射分析儀 44
3.1.10 拉曼光譜儀 45
3.1.11 霍式轉換紅外光譜儀 45
3.1.12 雷射閃光法熱擴散係數分析儀 46
3.1.13 四點探針量測儀 47
3.2 實驗步驟及方法 48
3.2.1 製備氧化石墨烯 48
3.2.2 製備氧化石墨烯/奈米碳管混合溶液 49
3.2.3 製備石墨烯及石墨烯/奈米碳管複合膜之試片 50
3.2.4 熱壓石墨烯/奈米碳管複合膜之試片 51
3.3性質分析 52
3.3.1 熱傳導係數量測 52
3.3.2 片電阻量測 53
第四章 結果與討論 64
4.1 石墨烯之分析 64
4.1.1 掃描式電子顯微鏡之形貌觀察 65
4.1.2 原子力顯微鏡形貌分析 65
4.1.3 X光繞射光譜分析 66
4.1.4 拉曼光譜分析 67
4.1.5 霍式轉換紅外光譜分析 68
4.2 奈米碳管之分析 69
4.2.1 掃描式電子顯微鏡之形貌觀察 69
4.2.2 X光繞射光譜分析 70
4.2.3 拉曼光譜分析 70
4.2.4 高解析電子能譜分析(XPS) 71
4.3 石墨烯/奈米碳管複合膜之分析 71
4.3.1 掃描式電子顯微鏡之形貌觀察 71
4.3.2 X光繞射光譜分析 73
4.3.3 拉曼光譜分析 73
4.3.4 霍式轉換紅外光譜分析 74
4.4 熱傳導性質之分析 74
4.4.1 奈米碳管紙之熱傳導係數 75
4.4.2 奈米碳管添加量對熱傳導係數之影響 75
4.4.3 熱壓對熱傳導係數之影響 77
4.4.4 溫度對熱傳導係數之影響 79
4.4.5 熱傳導係數之異向性 80
4.4.6 片電阻之量測 81
第五章 結論 103
參考文獻 105
[1] D. Chung, "Materials for thermal conduction," Applied Thermal Engineering, vol. 21, pp. 1593-1605, 2001.
[2] J. D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, et al., "Strongly anisotropic thermal conductivity of free‐standing reduced graphene oxide films annealed at high temperature," Advanced Functional Materials, vol. 25, pp. 4664-4672, 2015.
[3] A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials," Nature Materials, vol. 10, pp. 569-581, 2011.
[4] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[5] M. Katsnelson and K. Novoselov, "Graphene: New bridge between condensed matter physics and quantum electrodynamics," Solid State Communications, vol. 143, pp. 3-13, 2007.
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
[7] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, 2009.
[8] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, "Graphene-based ultracapacitors," Nano Letters, vol. 8, pp. 3498-3502, 2008.
[9] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, et al., "Fine structure constant defines visual transparency of graphene," Science, vol. 320, pp. 1308-1308, 2008.
[10] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, et al., "Superior thermal conductivity of single-layer graphene," Nano Letters, vol. 8, pp. 902-907, 2008.
[11] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, et al., "Ultrahigh electron mobility in suspended graphene," Solid State Communications, vol. 146, pp. 351-355, 2008.
[12] J. H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nature Nanotechnology, vol. 3, pp. 206-209, 2008.
[13] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, vol. 321, pp. 385-388, 2008.
[14] K. S. Novoselov, V. Fal, L. Colombo, P. Gellert, M. Schwab, and K. Kim, "A roadmap for graphene," Nature, vol. 490, pp. 192-200, 2012.
[15] W. A. De Heer, C. Berger, X. Wu, M. Sprinkle, Y. Hu, M. Ruan, et al., "Epitaxial graphene electronic structure and transport," Journal of Physics D: Applied Physics, vol. 43, p. 374007 (13pp), 2010.
[16] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.
[17] G. Wang, B. Wang, J. Park, Y. Wang, B. Sun, and J. Yao, "Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation," Carbon, vol. 47, pp. 3242-3246, 2009.
[18] C. Y. Su, A. Y. Lu, Y. Xu, F. R. Chen, A. N. Khlobystov, and L. J. Li, "High-quality thin graphene films from fast electrochemical exfoliation," ACS Nano, vol. 5, pp. 2332-2339, 2011.
[19] A. Guermoune, T. Chari, F. Popescu, S. S. Sabri, J. Guillemette, H. S. Skulason, et al., "Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors," Carbon, vol. 49, pp. 4204-4210, 2011.
[20] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[21] L. W. Tsai and N. H. Tai, "Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth," ACS Applied Materials & Interfaces, vol. 6, pp. 10489-10496, 2014.
[22] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, 1958.
[23] B. C. Brodie, "On the atomic weight of graphite," Philosophical Transactions of the Royal Society of London, vol. 149, pp. 249-259, 1859.
[24] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, pp. 1987-1992, 2009.
[25] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, et al., "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide," Carbon, vol. 45, pp. 1558-1565, 2007.
[26] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, et al., "Single sheet functionalized graphene by oxidation and thermal expansion of graphite," Chemistry of Materials, vol. 19, pp. 4396-4404, 2007.
[27] S. Pei and H.-M. Cheng, "The reduction of graphene oxide," Carbon, vol. 50, pp. 3210-3228, 2012.
[28] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nature Nanotechnology, vol. 4, pp. 217-224, 2009.
[29] H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, et al., "Functionalized single graphene sheets derived from splitting graphite oxide," The Journal of Physical Chemistry B, vol. 110, pp. 8535-8539, 2006.
[30] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, pp. 56-58, 1991.
[31] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature, vol. 363, pp. 603-605, 1993.
[32] Rice University: Rick Smalley's Group Home Page, http://smalley.rice.edu/, Image Gallery, 1.
[33] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes and carbon nanotubes: their properties and applications. San Diego, California, United States: Academic press, 1996.
[34] M. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
[35] J. Mintmire, B. Dunlap, and C. White, "Are fullerene tubules metallic?," Physical Review Letters, vol. 68, pp. 631-634, 1992.
[36] R. Saito, G. Dresselhaus, and M. Dresselhaus, Physical properties of carbon nanotubes. London: Imperial College press, 1998.
[37] M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, "Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties," Physical Review Letters, vol. 84, pp. 5552-5555, 2000.
[38] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, et al., "Measuring the thermal conductivity of a single carbon nanotube," Physical Review Letters, vol. 95, p. 065502 (4pp), 2005.
[39] S. Berber, Y. K. Kwon, and D. Tománek, "Unusually high thermal conductivity of carbon nanotubes," Physical Review Letters, vol. 84, pp. 4613-4616, 2000.
[40] Y. Saito and S. Uemura, "Field emission from carbon nanotubes and its application to electron sources," Carbon, vol. 38, pp. 169-182, 2000.
[41] T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley, "Catalytic growth of single-walled manotubes by laser vaporization," Chemical Physics Letters, vol. 243, pp. 49-54, 1995.
[42] 蔡宗岩,垂直排列奈米碳管之低溫製程與其轉印技術應用於軟性電子與有序週期陣列:場發射元件與光柵,博士論文,國立清華大學材料科學工程學系,台灣新竹,2009。.
[43] L. Ci, J. Wei, B. Wei, J. Liang, C. Xu, and D. Wu, "Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method," Carbon, vol. 39, pp. 329-335, 2001.
[44] 楊健鑫,以流動觸媒法合成單層奈米碳管及雙層奈米碳管之製程研究,碩士論文,國立清華大學材料科學工程學系,台灣新竹,2004。.
[45] M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, "Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition," Applied Physics Letters, vol. 77, pp. 3468-3470, 2000.
[46] Z. Huang, J. Xu, Z. Ren, J. Wang, M. Siegal, and P. Provencio, "Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition," Applied Physics Letters, vol. 73, pp. 3845-3847, 1998.
[47] S. Kou, Transport phenomena and materials processing. New York, United States: Wiley, 1996.
[48] J. P. Holman, Heat transfer, 8 ed. New York, United States: McGraw-Hill, 2008.
[49] D. L. Nika and A. A. Balandin, "Two-dimensional phonon transport in graphene," Journal of Physics: Condensed Matter, vol. 24, p. 233203 (18pp), 2012.
[50] R. D. Cowan, "Pulse method of measuring thermal diffusivity at high temperatures," Journal of Applied Physics, vol. 34, pp. 926-927, 1963.
[51] T. Baba and A. Ono, "Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements," Measurement Science and Technology, vol. 12, pp. 2046-2057, 2001.
[52] T. Log and S. Gustafsson, "Transient plane source (TPS) technique for measuring thermal transport properties of building materials," Fire and Materials, vol. 19, pp. 43-49, 1995.
[53] S. A. Al-Ajlan, "Measurements of thermal properties of insulation materials by using transient plane source technique," Applied Thermal Engineering, vol. 26, pp. 2184-2191, 2006.
[54] L. Lu, W. Yi, and D. Zhang, "3ω method for specific heat and thermal conductivity measurements," Review of Scientific Instruments, vol. 72, pp. 2996-3003, 2001.
[55] J. Alvarez-Quintana and J. Rodriguez-Viejo, "Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample," Sensors and Actuators A: Physical, vol. 142, pp. 232-236, 2008.
[56] Y. J. Chen, D. D. Nguyen, M. Y. Shen, M. C. Yip, and N. H. Tai, "Thermal characterizations of the graphite nanosheets reinforced paraffin phase-change composites," Composites Part A: Applied Science and Manufacturing, vol. 44, pp. 40-46, 2013.
[57] P. Kumar, F. Shahzad, S. Yu, S. M. Hong, Y. H. Kim, and C. M. Koo, "Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness," Carbon, vol. 94, pp. 494-500, 2015.
[58] Y. Hwang, M. Kim, and J. Kim, "Role of direct covalent bonding in enhanced heat dissipation property of flexible graphene oxide–carbon nanotube hybrid film," Thin Solid Films, vol. 545, pp. 116-123, 2013.
[59] H. F. Lu, W. S. Kuo, and T. H. Ko, "Microstructures and thermal conductivities of carbon nanotube/graphite nanosheet compacts," Nanoscale and Microscale Thermophysical Engineering, vol. 15, pp. 209-219, 2011.
[60] W. T. Hong and N. H. Tai, "Investigations on the thermal conductivity of composites reinforced with carbon nanotubes," Diamond and Related Materials, vol. 17, pp. 1577-1581, 2008.
[61] Q. Li, Y. Guo, W. Li, S. Qiu, C. Zhu, X. Wei, et al., "Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite," Chemistry of Materials, vol. 26, pp. 4459-4465, 2014.
[62] P. Ding, J. Zhang, N. Song, S. Tang, Y. Liu, and L. Shi, "Anisotropic thermal conductive properties of hot-pressed polystyrene/graphene composites in the through-plane and in-plane directions," Composites Science and Technology, vol. 109, pp. 25-31, 2015.
[63] H. Im and J. Kim, "Thermal conductivity of a graphene oxide–carbon nanotube hybrid/epoxy composite," Carbon, vol. 50, pp. 5429-5440, 2012.
[64] 汪建民,材料分析,中國材料科學學會,台灣新竹,第659–672頁。.
[65] W. S. Kuo, H. C. Lai, T. W. Chang, and C. C. Wen, "Processing and failure behavior of carbon‐nanotube composites in sheet forms," Polymer Composites, vol. 37, pp. 1564-1571, 2014.
[66] A. Ferrari, J. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, p. 187401 (4pp), 2006.
[67] M. Dresselhaus, A. Jorio, and R. Saito, "Characterizing graphene, graphite, and carbon nanotubes by Raman spectroscopy," Annual Review of Condensed Matter Physics, vol. 1, pp. 89-108, 2010.
[68] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
[69] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, et al., "Spatially resolved Raman spectroscopy of single-and few-layer graphene," Nano Letters, vol. 7, pp. 238-242, 2007.
[70] L. Shahriary and A. A. Athawale, "Graphene oxide synthesized by using modified hummers approach," International Journal of Energy and Environmental Engineering, vol. 2, pp. 58-63, 2014.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *