帳號:guest(3.142.210.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝佳峻
作者(外文):Hsieh,Chia Chun
論文名稱(中文):以化學與電鍍法製作三維多孔金屬電極並應用於鋅空氣電池
論文名稱(外文):Production of 3D Porous Metal Electrode by Chemical and Electroplating Methods For Zinc-Air Battery
指導教授(中文):吳振名
李奕賢
指導教授(外文):Wu,Chen Ming
Lee,Yi Hsien
口試委員(中文):吳錦貞
梁春生
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031506
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:92
中文關鍵詞:鋅空氣電池三維電極電解質添加劑多孔結構
外文關鍵詞:Zinc-air battery3D electrodeelectrolyte additivesporous structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著全球科技文明的發展越來越快速,能源的需求逐漸增多,在產能系統與儲能系統快速發展時對環境的破壞也漸趨嚴重,如何在能源需求與環境保護這兩方面同時兼顧將是未來能源相關技術發展重點。
在新興能源技術發展的過程中,在電動車這方面受到相當大的重視,但是目前的電動車電池的能量效率不足以及價格太高,需要發展出一種更能適用於電動車上的儲能技術,而鋅空氣電池在這方面是相當具有潛力的。
根據許多與空氣電池有關的文獻,研究人員都致力於改善充放電的電性,能量與功率密度以及循環壽命,其中針對金屬電極的部分不外乎改變電極形貌、電極材料種類、添加合金元素、表面改質等,而針對鹼性水溶液電解質的部分,有許多文獻也探討添加劑對於電極腐蝕的影響,能有效增加電池的性能,但是卻鮮少找到同時針對電極以及電解質添加劑做討論的文獻,因此本實驗即同時針對這兩方面來做討論。
本實驗採用模板法製備金屬電極,先以PU聚氨酯多孔泡棉材料做為模板,再依序以鈀膜活化、無電鍍鎳、電鍍鎳等方法製備出有穩定結構的三維電極,獨具新穎性。接下來再經由電鍍錫表面改質以及預電鍍鋅來改善電極在鋅空氣電池中的充放電性能。在電解液的部份,本實驗以量測CV曲線以及Tafel極化曲線的方法,並先用錫片電極來做添加劑的腐蝕量測,並根據實驗結果選出Tween 20以及EDTA兩種添加劑用全電池測試來比較其差異。除了全電池充放電量測之外,本實驗也會針對電極製備過程時的每個步驟做材料分析,包括用SEM顯微術觀察表面形貌以及鍍層厚度,EDS分析觀察表面元素種類與比例,以及XRD繞射分析表面金屬結晶性、晶體結構與元素種類,同時討論電極的基本材料性質以及電化學充放電特性。

With the rapidly increasing development of global technological civilization, energy demand is increasing, too. Due to energy production system and energy storage system developing rapidly; the damage to the environment has become more and more critical. How to take account the two aspects of energy demand and environmental protection will be the focus of future energy-related technology.
In the process of developing new energy technologies, the field of electric vehicles is paid the considerable attention to. Because of the insufficiency of the battery’s efficiency on the electric vehicles and the highly price on the batteries, it is needed to develop a more suitable technology for the electric vehicle energy storage. And Zinc-air battery is quite potential in this area.
According to many related literatures about air battery, the researchers are devoted to improve electrical properties of charging and discharging, energy and power density and cycle life. As to the part of the metal electrode, the researchers changed the morphology of the electrode , the materials of the electrode, adding alloying elements, and the surface modification, etc. In view of the part of alkaline aqueous electrolyte, many literatures investigated the influence of additives for electrode corrosion, and improved the performance of batteries effectively. It is rare to find the literatures which mentioned both about electrode and an electrolyte additive. As a result, it will discuss for both in this study.
In this study, the metal electrode with template method was produced. First of all, PU polyurethane porous foam was used as the template. And then it employed the method of activation in Palladium membrane, non-electroplated and electroplated methods of Nickel sequentially. Next, a three-dimensional electrode with stable structure was produced, and this was a unique novelty. And then the charging and discharging properties of the electrode in Zinc-air batteries was improved by plating Tin on surface modification and doing Zinc pre-deposition in this study. Concerning the electrolyte, it used Tin sheet as electrode firstly and was measured by CV curves and Tafel polarization curves to investigate the influence of additives for electrode corrosion. And according to the result of the experiment, EDTA and Tween 20 was selected as the additives for battery testing. In addition to battery testing, the material analysis was made for each step in the electrode making process, including SEM analysis for surface topography and coating thickness, EDS analysis for category and ratio of element, and XRD analysis for metal crystalline, crystal structure and element types in this study. It also discussed both the nature of the materials for the electrode, and the characteristics of electrochemical charging and discharging .
目錄
第一章、鋅空氣電池緒論 1
1.1 前言 1
1.2 電化學電池的發展與演進 2
1.3 二次電池介紹 3
1.3.1 鉛酸電池 4
1.3.2 鈉硫電池 6
1.3.3 鈉離子電池 7
1.3.4 全釩液流電池 7
1.3.5 金屬空氣電池 8
1.4 鋅空氣電池的組成與電化學運作原理 10
1.4.1 電池配置與運作原理 10
1.4.2 鋅電極 12
1.4.3 電解液 14
1.4.4 空氣電極 15
1.5 鋅空氣電池近代發展狀況與前景 17
1.6 研究動機與目的 18
第二章、文獻回顧 20
2.1 三維電極 20
2.2 電鍍法與表面改質 31
2.3 電解質添加劑 33
第三章、實驗步驟與方法 39
3.1 實驗藥品與儀器 39
3.1.1 實驗藥品 39
3.1.2 實驗儀器 39
3.2 三維電極之製作 40
3.2.1 電極製作流程 40
3.2.2 活化基材-鈀膜製備 43
3.3 電池反應器(全電池)的組裝與結構 44
3.4 電化學測試 46
3.4.1 線性掃瞄伏安法(linear sweep voltammetry) 46
3.4.2 循環伏安法(Cyclic voltammetry) 47
3.4.3 充放電循環(Charge cycle) 47
3.4.4 Tafel曲線(極化曲線) 48
3.5 材料分析 49
3.5.1 掃描式電子顯微鏡(Scanning electron microscope) 49
3.5.2 X-光繞射分析(X-ray diffraction) 51
3.5.3 電極孔隙率(Porosity)與表面積(Surface Area) 51
第四章、結果與討論 53
4.1 實驗架構 53
4.2 三維電極製作 55
4.3 Ni/Sn合金電極 59
4.3.1 定電流法 59
4.3.2 定電位法 63
4.4 預電鍍鋅 71
4.5 添加劑測試 75
4.6 全電池性能測試 78
4.7 一次放電測試 86
第五章、結論與未來展望 87
參考資料 88

1. BATT-Archive“ What is a Battery? ”http://batt.lbl.gov/what-is-a-battery/
2. Finn, Bernard S. (September 2002). "Origin of Electrical Power". National Museum of American History. Retrieved 2012-08-29.
3. Institute and Museum of the History of Science. "Trough Battery". Retrieved 2007-01-15.
4. Borvon, Gérard (September 10, 2012). “History of the electrical units”. Association S-EAU-S.
5. Hamer, Walter J. (January 15, 1965). Standard Cells: Their Construction, Maintenance, and Characteristics (PDF). National Bureau of Standards Monograph #84. US National Bureau of Standards.
6. National Historic Chemical Landmarks.“ The Columbia Dry Cell Battery” American Chemical Society. Retrieved 2014-02-21.
7. "Gaston Planté (1834-1889)", Corrosion-doctors.org; Last accessed on Jan 3, 2007
8. “A Guide To Lead-Acid Battries - Part 1: How Lead-Acid Batteries Work” ITACA
9. “Main Challenges for High Performance NAS Battery: Materials and Interfaces”Advanced Functional Materials 23 (8): 1005. doi:10.1002/adfm.201200473.
10. “ https://en.wikipedia.org/wiki/Sodium%E2%80%93sulfur_battery#/media/File:NaS_battery.png ”by NASA John Glenn Research Center
11. 科技政策資訊與研究中心,“未來的電池特輯:(一) 鈉離子電池” 科技產業資訊室 - 發表於 2015年9月23日
12. “鈉離子電池之固態電解質新材料”,材料世界網,2014/11/13
13. “南韓鈉離子電池問世:比鋰氧電池更優越”, http://news.mydrivers.com/1/452/452166.htm, 2015/10/19
14. “ Vanadium: The metal that may soon be powering your neighbourhood”BBC. Retrieved 2 Mar 2015.
15. F Cheng, J Chen.“Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts” Chem.Soc. Rev., 2012, 41, 2172–2192
16. D. Linden and T. B. Reddy, Handbook of Batteries,McGraw-Hill, New York, 3rd edn, 2002.
17. K. Kinoshita, Electrochemical Oxygen Technology, Wiley,New York, 1992.
18. “Chapter 38: Metal/Air Batteries.” Handbook of Batteries. 3rd ed. New York: McGraw-Hill, 2002.
19. M Prabu, P Ramakrishnan.“Zinc−Air Battery: Understanding the Structure and Morphology Changes of Graphene-Supported CoMn2O4 Bifunctional Catalysts Under Practical Rechargeable Conditions” ACS Appl. Mater. Interfaces 2014, 6, 16545−16555
20. JS Lee, S Tai Kim, R Cao,etc.“ Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air ” Adv. Energy Mater., 2011, 1, 34.
21. S Thomas,N. Birbilis,etc.“Selfrepairing oxides to protect zinc: review, discussion and prospects.” Corros. Sci. 69, 11–22 (2013)
22. “Secondary batteries—zinc systems|zinc electrodes: overview.” Encyclopedia of electrochemical power sources, pp. 454–468. Elsevier, Amsterdam (2009)
23. M Xu, DG Ivey, Z Xie,etc.“Rechargeable Zn-air batteries: Progress in electrolyte development and cell configuration advancement” Journal of Power Sources 283 (2015) 358~371
24. DM See, RE White.“Temperature and Concentration Dependence of the Specific Conductivity of Concentrated Solutions of Potassium Hydroxide” J. Chem. Eng. Data, 1997,42, 1266.
25. Y Li, H Dai.“ Recent advances in zinc–air batteries ” Chem. Soc. Rev., 2014, 43, 5257
26. P Pei, K Wang, Z Ma.“Technologies for extending zinc–air battery’s cyclelife: A review”Applied Energy 128 (2014) 315–324
27. X Liu, X Xu.“Mesoscopic numerical computation model of air-diffusion electrode of metal/air batteries.”Appl. Math. Mech. 34, 571–576 (2013)
28. GF McLean, T Niet, S Prince-Richard.“An assessment of alkaline fuel cell technology” Int. J. Hydrogen Energy, 2002, 27, 507.
29. JF Drillet, F Holzer, T Kallis,etc.“Influence of CO2 on the stability of bifunctional oxygen electrodes for rechargeable zinc/air batteries and study of different CO2 filter materials” Phys. Chem. Chem. Phys., 2001, 3, 368.
30. 張雲朋“由空氣產生電能的新能源-鋅空氣燃料電池” 科學發展 2003年7月,367期
31. M Catenacci, E Verdolini, V Bosetti,etc.“Going electric: expert survey on the future of battery technologies for electric vehicles.” Energy Policy. 61, 403–413 (2013)
32. J Banhart, J Baumeister.“PRODUCTION METHODS FOR METALLIC FOAMS” Mat. Res. Soc. Symp. Proc. Vol. 521, ©1998 Materials Research Society
33. S Chabi, C Peng, D Hu,etc.“Ideal Three-Dimensional Electrode Structures for Electrochemical Energy Storage” Adv. Mater. 2014, 26, 2440–2445
34. JH Um, H Park, YH Cho,etc.“3D interconnected SnO2-coated Cu foam as a high-performance anode for lithium-ion battery applications” RSC Adv., 2014, 4, 58059
35. H Wang, G Wang, Y Ling,etc.“High power density microbial fuel cell with flexible 3D graphene–nickel foam as anode ” Nanoscale, 2013, 5, 10283
36. P Lian, J Wang, D Cai,etc.“Porous SnO2@C/graphene nanocomposite with 3D carbon conductive network as a superior anode material for lithium-ion batteries” Electrochimica Acta 116 (2014) 103– 110
37. R Othman, AH Yahaya, AK Arof.“A zinc–air cell employing a porous zinc electrode fabricated,from zinc–graphite-natural biodegradable polymer paste” Journal of Applied Electrochemistry 32: 1347–1353, 2002.
38. Huixin Chen,Qiaobao Zhang,Xiang Han,etc.“3D hierarchically porous zinc–nickel–cobalt oxide nanosheets grown on Ni foam as binder-free electrodes for electrochemical energy storage” J. Mater. Chem. A, 2015, 3,24022
39. Z Li, H Zhao, J Wang,etc.“3D heterostructure Fe3O4/Ni/C nanoplate arrays on Ni foam as binder-free anode for high performance lithium-ion battery” Electrochimica Acta 182 (2015) 398–405
40. N Zhang, X Han, Y Liu,etc.“3D Porous γ-Fe 2 O 3 @C Nanocomposite as High-Performance Anode Material of Na-Ion Batteries” Adv. Energy Mater. 2015, 5, 1401123
41. Y Liu, N Zhang, L Jiao,etc.“Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries” Adv. Funct. Mater. 2015, 25, 214–220
42. SSA El Rehim, EE Fouad,etc.“ELECTROPLATING OF ZINC-NICKEL BINARY ALLOYS FROM ACETATE BATHS” Electrochimica Acra. Vol. 41. No. 9. pp. 1413 1418. 1996
43. M Gavrila, JP Millet, H Mazille, D Marchandise.“Corrosion behaviour of zinc–nickel coatings,electrodeposited on steel ” Surface and Coatings Technology 123 (2000) 164–172
44. L Bazin, S Mitra, PL Taberna, P Poizot.“High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries” Journal of Power Sources 188 (2009) 578–582
45. J Hassoun, GA Elia, S Panero, etc.“A high capacity, template-electroplated Ni–Sn intermetallic electrode for lithium ion battery” Journal of Power Sources 196 (2011) 7767–7770
46. L Wang, S Kitamura, T Sonoda, K Obata.“Electroplated Sn-Zn Alloy Electrode for Li Secondary Batteries” Journal of The Electrochemical Society, 150 (10) A1346-A1350 (2003)
47. YJ Kim, MS Park, HJ Sohn, H Lee.“Electrochemical behaviors of SnO and Sn anodes for lithium rechargeable batteries ” Journal of Alloys and Compounds 509 (2011) 4367 -4371
48. F Mansfeld, S Gilman.“The Effect of Several Electrode and Electrolyte Additives on the Corrosion and Polarization Behavior of the Alkaline Zinc Electrode” J Electrochem Sot , 117 (1970) 1328-1332
49. H Yang, Y Cao, X Ai,etc.“Improved discharge capacity and suppressed surface passivation of zinc anode in dilute alkaline solution using surfactant additives” Journal of Power Sources 128 (2004) 97–101
50. JM Wang, L Zhang, C Zhang,etc.“Effects of bismuth ion and tetrabutylammonium bromide on the dendritic growth of zinc in alkaline zincate solutions” Journal of Power Sources 102 (2001) 139-143
51. CJ Lan, CY Lee, TS Chin.“Tetra-alkyl ammonium hydroxides as inhibitors of Zn dendrite in Zn-based secondary batteries” Electrochimica Acta 52 (2007) 5407–5416
52. M Liang, H Zhou, Q Huang,etc.“Synergistic effect of polyethylene glycol 600 and polysorbate 20 on corrosion inhibition of zinc anode in alkaline batteries ” J Appl Electrochem (2011) 41:991–997
53. Chang Woo Lee, K.Sathiyanarayanan,etc.“ Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives ” Journal of Power Sources 159 (2006) 1474-1477
54. J.Shu, B.P.A.Grandjean, A.Van Neste, etc.“ Catalytic Palladium-Based Membrane Reactors: A Review.” Can. J. Chem. Eng. 1991, 69, 1036.
55. “Basics of Electrochemical Corrosion Measurements” http://cn.gamry.com/application-notes/basics-of-electrochemical-corrosion-measurements/
56. “Scanning Electron Microscopy” http://cmrf.research.uiowa.edu/scanning-electron-microscopy
57. “X-ray diffraction – Bruker D8 Discover” https://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover
58. Yingbin Lin, Ying Lin,Ting Zhou,etc.“Enhanced electrochemical performances of LiFePO4/C by surface modification with Sn nanoparticles” Journal of Power Sources 226 (2013) 20-26
59. X. Wei, S. Banerjee“Effect of Novel Substrates on Zinc Anode - Secondary Alkaline Battery Performance” 2014 ECS - The Electrochemical Society,Abstract MA2014-01 98
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *