帳號:guest(13.59.76.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):左璿
作者(外文):Tso, Shuen
論文名稱(中文):硫化鎘-氧化鋅殼層結構奈米線與硫化鎘-硫化亞銅殼層結構奈米線之產氫應用
論文名稱(外文):CdS-ZnO Core-Shell Nanowires and CdS-Cu2S Core-Shell Nanowires for Hydrogen Generation
指導教授(中文):陳力俊
指導教授(外文):Chen, Lih-Juann
口試委員(中文):吳文偉
呂明諺
口試委員(外文):Wu, Wen-Wei
Lu, Ming-Yen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031503
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:60
中文關鍵詞:光催化產氫硫化鎘奈米線
外文關鍵詞:photocatalysthydrogen generationCdSnanowires
相關次數:
  • 推薦推薦:0
  • 點閱點閱:534
  • 評分評分:*****
  • 下載下載:50
  • 收藏收藏:0
自從1970年代以來,隨著石化燃料的枯竭與環保意識的抬頭,對再生能源的需求越來越急迫。除了太陽能、風力發電….等,氫能一直被視為是下個世代最重要的能源之一。本實驗設計了硫化鎘-氧化鋅與硫化鎘-硫化亞銅殼層結構奈米線作為光催化劑以進行產氫之應用。首先,使用三區加熱的擴散爐成長出單晶的硫化鎘奈米線,再利用交流濺鍍的方式成長出氧化鋅的外殼。另一方面,利用陽離子交換的方法將硫化鎘奈米線的外層置換成硫化亞銅。使用以上兩種方法成功製備出硫化鎘-氧化鋅與硫化鎘-硫化亞銅殼層結構奈米線。上述奈米線使用了掃描式電子顯微鏡、穿透式電子顯微鏡、X光繞射儀與能量色散X-射線光譜來確定其結構;使用了光致發光譜與紫外光-可見光譜儀來分析其能隙與光學性質;使用了Shimadzu GC-2014氣相沈積儀來分析其氫氣的產量。相較於硫化鎘奈米線,硫化鎘-氧化鋅殼層結構奈米線與硫化鎘-硫化亞銅殼層結構奈米線之氫氣產率分別提升約100倍與10倍。本實驗展現了能階的編排對載子傳遞的重要性,同時為光催化產氫的領域開闢了一個新的方向。
With the increasing awareness of environmental issues, the renewable energy production has become urgent. Hydrogen is considered to be the promising fuel for the next generation. In this work, we construct novel nano-structures for hydrogen generation. CdS-ZnO core-shell nanowires and CdS-Cu2S core-shell nanowires were synthesized. First, crystalline CdS nanowires were synthesized in a three heating zone diffusion furnace through a VLS growth method. The ZnO shell was deposited with RF sputtering, and the Cu2S shell was achieved with cation exchange method. The core-shell nanowires have been examined by scanning electron microcopy, transmission electron microcopy, X-ray diffraction and energy dispersive spectroscopy to confirm their crystal structure. Photoluminescence and UV-visible analysis were used to examine their band gap and optical properties. A Shimadzu GC-2014 was used to identify and measure the amount of hydrogen gas produced by CdS-ZnO core-shell nanowires and CdS-Cu2S core-shell nanowires. Compared to CdS nanowires, the hydrogen generating activity of CdS-ZnO and CdS-Cu2S core-shell nanowires improved more than 2 orders and 1 order in magnitude, respectively. This experiment verifies the importance and usefulness of band alignment in structure design and opens up a new path for photocatalyst for hydrogen generation.
Chapter 1 Introduction 1
1.1 Hydrogen Energy 1
1.2 Photocatalysis Water Splitting 2
1.3 Heterogeneous Photocatalysts 3
1.3.1 Metal/Semiconductor Heterogeneous Photocatalysts 4
1.3.1.2 Local Surface Plasmon Resonance 5
1.3.1.2.1 SPR-mediated Charge Injection From Metal to Semiconductor 6
1.3.1.2.2 Near-field Electromagnetic Mechanism 6
1.3.1.2.3 Scattering Mechanism 7
1.3.2. Semiconductor/Semiconductor Heterogeneous Photocatalysts 7
1.4 CdS Nanowire 8
1.4.1 Property of CdS 8
1.4.2 Utilizing CdS Nanowires for Water Splitting 9
1.5 Heterojunction 10
1.5.1 Type 1 Heterojunction 11
1.5.2 Type II Heterojunction 11
1.5.3 Type III Heterojunction 12
1.6 Core-Shell Structure Nanowires 13
1.6.1 CdS/ ZnO Core-Shell Nanowires 13
1.6.1 CdS-Cu2S Core-Shell Nanowires 14

Chapter 2 Experimental Procedures 15
2.1 Preparation of Substrate 15
2.2 Vapor-Liquid-Solid Growth Mechanism 16
2.3 RF Sputter Deposition 17
2.4 Cation Exchange Method 18
2.5 Scanning Electron Microscope Observation 19
2.6 Transmission Electron Microscope Observation 20
2.7 Energy Dispersive Spectrometer ( EDS ) Analysis 21
2.8 Photoluminescence Measurement 21
2.9 UV-Vis Observation 21
2.10 X-Ray Diffractometry 22
2.11 GC Measurement 22
Chapter 3 Results and Discussion 24
3.1 Synthesis of CdS Nanowires 24
3.2 CdS-ZnO Core-Shell Nanowires 26
3.2.1 Synthesis of CdS-ZnO Core-Shell Nanowires 26
3.2.2 Structure and Morphology 27
3.2.2.1 SEM Observation 28
3.2.2.2 TEM Observation 29
3.2.2.3 X-ray Diffraction Analysis 30
3.2.2.4 Photoluminescence Measurement 31
3.2.2.5 UV-Vis Observation 32
3.2.3 Effects of CdS-ZnO Core-Shell Structure on Hydrogen Generation 33
3.2.4 Effects of Thickness of ZnO Shell on Hydrogen Generation 35
3.3 CdS-Cu2S Core-Shell Nanowires 37
3.3.1 Synthesis of CdS-Cu2S Core-Shell Nanowires and Cu2S Nanowires 37
3.3.2 Structure and Morphology 38
3.3.2.1 SEM Observation of CdS-Cu2S Core-Shell Nanowires 38
3.3.2.2 TEM Observation of CdS-Cu2S Core-Shell Nanowires 40
3.3.2.3 Photoluminescence Measurement of CdS-Cu2S Core-Shell Nanowires 41
3.3.2.4 SEM Observation of Cu2S Nanowires 43
3.3.2.5 TEM Observation of Cu2S Nanowires 44
3.3.3 Comparison between CdS-Cu2S Core-Shell Nanowires and Cu2S Nanowires on Hydrogen Generation 44
3.4 Comparison between CdS-ZnO Nanowires, CdS-Cu2S Core-Shell Nanowires on Hydrogen Generation 46
Chapter 4 Summary and Conclusions 48
Chapter 5 Future Prospects 50
5.1 Time-Resolved Photoluminescence Measurement of Electron Lifetime in ZnO Layer 50
5.2 CdS Nanowire Array for Hydrogen Generation by Applying LSPR 51
5.2.1 PS Spheres Arrangement 51
5.2.2 Growth of Gold Nanoparticle Array 53
5.2.3 Growth of CdS Nanowire Array 53
References 54
References
[1] “Annual energy outlook 2016 with projections to 2040,” U.S. Energy Information Administration, US Department of Energy (2016).
[2] Wyszynski, Miroslaw L.; Megaritis, Thanos; Lehrle, Roy S, “Hydrogen from exhaust gas fuel reforming: greener, leaner and smoother engines,” Future Power Systems Group, The University of Birmingham (2001).
[3] Luca Bertuccioli, et al. "Development of water electrolysis in the European union" Client Fuel Cells and Hydrogen Joint Undertaking, European Union (2014).
[4] Yongquan Qu, Xiangfeng Duan, “Progress, challenge and perspective of heterogeneous photocatalysts,” Chem. Soc. Rev. 42, pp.2568-2580 (2013).
[5] K.R. Catchpole, A. Polman, “Plasmonic solar cells,” Optics Express 16, 21794 (2008).
[6] Jiaming Hao, Jing Wang, Xianliang Liu, Willie J. Padilla, Lei Zhou, Min Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Applied Physics Letters. 96, 251104 (2010).
[7] Matthew E. Stewart, Christopher R. Anderton, Lucas B. Thompson, Joana Maria, Stephen K. Gray, John A. Rogers, Ralph G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108, pp.494−521 (2008).
[8] Suljo Linic, Phillip Christopher, David B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nature Materials 10, pp.911–921 (2011).
[9] Hailong Zhou, Yongquan Qu, Tahani Zeid, Xiangfeng Duan,”Towards highly efficient photocatalysts using semiconductor nanoarchitectures,” Energy Environ. Sci. 5, pp.6732–6743 (2012).
[10] Kudo Akihiko, Kato Hideki,Issei Tsuji, "Strategies for the development of visible-light-driven photocatalysts for water splitting," Chemistry Letters. 33, pp.1534-1539 (2004).
[11] Sidney Perkowitz, “Empire of light: a history of discovery in science and art,” Joseph Henry Press, (1998).
[12] Liwu Zhang, Hanyun Cheng, Ruilong Zong, and Yongfa Zhu, “Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity,” J. Phys. Chem. C 113, pp.2368–2374 (2009).
[13] Rundiger Memming, Bertel Kastening, Dieter Meissner, “Photoelectrochemistry of cadmium sulfide. 1. reanalysis of photocorrosion and flat-band potential,” J. Phys. Chem. 92, pp.3476-3483 (1988).
[14] J. Tersoff, "Theory of semiconductor heterojunctions: the role of quantum dipoles," Physical Review B. 30, pp.4874-4877 (1984).
[15] Yajun Wang, Qisheng Wang, Xueying Zhan, Fengmei Wang, Muhammad Safdar, Jun He, “Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review,” Nanoscale. 5, pp. 8326–8339 (2013).
[16] Sergei A. Ivanov, Andrei Piryatinski, Jagjit Nanda, Sergei Tretiak, Kevin R. Zavadil, William O. Wallace, Don Werder, Victor I. Klimov, “Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties,” J. Am. Chem. Soc. 129, pp.11708-11719 (2007).
[17] Neimantas Vainorius, Anders Gustafsson, Kimberly A. Dick, Lars Samuelson, Mats-Erik Pistol1, “Observation of type-II recombination in single wurtzite/zinc-blende GaAs heterojunction nanowires,” Physical Review B. 89, pp.165423 (2014).
[18] Youngjo Tak, Suk Joon Hong, Jae Sung Lee, Kijung Yong, “Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion,” J. Mater. Chem. 19, pp.5945-5951 (2009).
[19] Hana Sim, Jeongmin Lee, Seongjae Cho, Eou-Sik Cho, Sang Jik Kwon, “A Study on the Band Structure of ZnO/CdS Heterojunction for CIGS Solar-Cell Application,” Journal of Semiconductor Technology and Science 15, pp.267-275 (2015).
[20] A. Grier, A. Valavanis, C. Edmunds, J. Shao, J. D. Cooper, G. Gardner, M. J. Manfra, O. Malis, D. Indjin, Z. Ikonić, P. Harrison, “Coherent vertical electron transport and interface roughness effects in AlGaN/GaN intersubband devices,” Journal of Applied Physics 118, 224308 (2015).
[21] Caofeng Pan, Simiao Niu, Yong Ding, Lin Dong, Ruomeng Yu, Ying Liu, Guang Zhu, and Zhong Lin Wang, “Enhanced Cu2S/CdS coaxial nanowire solar cells by piezo-phototronic effect,” Nano Lett.12, pp.3302−3307 (2012).
[22] Walter A. Harrison, “Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond,” Freeman, (1980).
[23] S. Noor Mohammad, “Analysis of the vapor–liquid–solid mechanism for nanowire growth and a model for this mechanism,” Nano Lett. 8, pp.1532-1538, (2008).
[24] Yiying Wu, Peidong Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc. 123, pp.3165-3166 (2001).
[25] P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Jr, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters. 82, pp.1117-1119 (2003).
[26] Dong Hee Son, Steven M. Hughes, Yadong Yin, A. Paul Alivisatos, “Cation exchange reactions in ionic nanocrystals,” Science. 306, pp.1009-1012 (2004).
[27] Yewu Wang, Guowen Meng, Lide Zhang, Changhao Liang, Jun Zhang, ”Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence,” Chem. Mater. 14, pp.1773-1777 (2002).
[28] Yanwu Zhu, Hendry Izaac Elim, Yong-Lim Foo, Ting Yu, Yanjiao Liu, Wei Ji, Jim-Yang Lee, Zexiang Shen, Andrew Thye-Shen Wee, John Thiam-Leong Thong, Chorng-Haur Sow, “Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching,” Adv. Mater. 18, pp.587–592 (2006).
[29] Eunpyo Hong, Duckchen Kim, Jung Hyeun Kim, “Heterostructured metal sulfide (ZnS–CuS–CdS) photocatalyst for high electron utilization in hydrogen production from solar water splitting,” Journal of Industrial and Engineering Chemistry, 20, pp.3869–3874 (2014).
[30] Xu Zong, Hongjian Yan, Guopeng Wu, Guijun Ma, Fuyu Wen, Lu Wang, and Can Li, “Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation,” J. Am. Chem. Soc. 130, pp.7176–7177 (2008).
[31] Kan Zhang, Wanjung Kim, Ming Ma, Xinjian Shi, Jong Hyeok Park, “Tuning the charge transfer route by p–n junction catalysts embedded with CdS nanorods for simultaneous efficient hydrogen and oxygen evolution,” J. Mater. Chem. A. 3, pp.4803-4810 (2015).
[32] Xiaxi Yao, Tianyu Liu, Xiaoheng Liu, Lude Lu, “Loading of CdS nanoparticles on the (101) surface of elongated TiO2 nanocrystals for efficient visible-light photocatalytic hydrogen evolution from water splitting,” Chemical Engineering Journal, 255, pp.28–39 (2014).
[33] Alex B. F. Martinson, James E. McGarrah, Mohammed O. K. Parpia, Joseph T. Hupp, “Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 8, pp.4655–4659 (2006).
[34] Julio Villanueva-Cab, Hongxia Wang, Gerko Oskam, and Laurence M. Peter, “Electron diffusion and back reaction in dye-sensitized solar cells: the effect of nonlinear recombination kinetics,” J. Phys. Chem. Lett. 1, pp.748–751 (2010).
[35] Juan Bisquert, Ivan Morá-Seró, “Simulation of steady-state characteristics of dye- sensitized solar cells and the interpretation of the diffusion length,” J. Phys. Chem. Lett. 1, pp.450–456 (2010).
[36] Jih-Jen Wu, Guan-Ren Chen, Hung-Hsien Yang, Chen-Hao Ku, Jr-Yuan Lai, “Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye- sensitized solar cells,” Applied Physics Letters. 90, 213109 (2007).
[37] Priti Tiwana, Pablo Docampo, Michael B. Johnston, Henry J. Snaith, Laura M. Herz, “Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye-sensitized solar cells,” ACS Nano. 5 (6), pp.5158–5166 (2011).
[38] T. Koida, S. F. Chichibu, A. Uedono, A. Tsukazaki, M. Kawasaki, T. Sota, Y. Segawa, H. Koinuma, “Correlation between the photoluminescence lifetime and defect density in bulk and epitaxial ZnO,” Applied Physics Letters. 82, pp.532-534 (2003).
[39] Yongquan Qu, Xiangfeng Duan, “One-dimensional homogeneous and heterogeneous nanowires for solar energy conversion,” J. Mater. Chem. 22, pp.16171-16181 (2012).
[40] Yue Wu, Cyrus Wadia, Wanli Ma, Bryce Sadtler, A. Paul Alivisatos, “Synthesis and photovoltaic application of copper(I) sulfide nanocrystals,” Nano Lett. 8 (8), pp.2551-2555 (2008).
[41] VG Bhidet, Saji Salkalachent, A C Rastogit, C N R Raot. and MS Hegdet, “Depth profile composition studies of thin film CdS: Cu,S solar cells using XPS and AES,” J .Phys. D: AppI. Phys. 14, pp.1647-1656 (1981).
[42] Andrew Barnabas Wong, Sarah Brittman, Yi Yu, Neil P. Dasgupta, Peidong Yang,”Core–shell CdS–Cu2S nanorod array solar cells,” Nano Lett. 15 (6), pp.4096–4101 (2015).
[43] Chih-Shan Tan, Ching-Hung Hsiao, Shau-Chieh Wang, Pei-Hsuan Liu, Ming-Yen Lu, Michael H. Huang, Hao Ouyang, Lih-Juann Chen, “Sequential cation exchange generated superlattice nanowires forming multiple pn heterojunctions,” ACS Nano. 8, pp.9422–9426 (2014).
[44] Lih-Juann Chen,“Nanoscale copper and copper compounds for advanced device applications,” Metallurgical and Materials Transactions A, vol. pp.1-7 (2016)
[45] Xudong Wang, Christopher J. Summers, and Zhong Lin Wang, “Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays,” Nano Lett. 4 (3), pp.423-426 (2004).
[46] Heng-Wen Ting, Yu-Kai Lin, Yi-Jen Wu, Li-Jen Chou, Cho-Jen Tsai, Lih-Juann Chen, “Large area controllable hexagonal close-packed single-crystalline metal nanocrystal arrays with localized surface plasmon resonance response,” J. Mater. Chem. C. 1, pp.3593-3599 (2013).
[47] Soumitra Kar, Subhadra Chaudhuri, “Shape selective growth of CdS one-dimensional nanostructures by a thermal evaporation process,” J. Phys. Chem. B 110, pp.4542-4547 (2006).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *