|
[1] Climate Change 2014: Mitigation of Climate Change, IPCC, 2014. [2] Alexander Kraytsberg and Yair Ein - Eli, Higher, stronger, better… A Review of 5 Volt Cathode Materials for Advanced Lithium - Ion Batteries, Advanced Energy Materials, 2012, 2, 922 - 939. [3] Naoki Nitta and Feixiang Wu et al, Li - ion battery materials: present and future, Materials Today, June 2015, Volume 18, Number 5. [4] Zhengliang Gong and Yong Yang, Recent advances in the research of polyanion - type cathode materials for Li - ion batteries, Energy Environmental Science, 2011, 4, 3223 - 3242. [5] L. Dimesso and C. Forster et al, Developments in nanostructured LiMPO4 ( M = Fe, Co, Ni, Mn ) composites based on three dimensional carbon architecture, Chem. Soc. Rev., 2010, 41, 5068 - 5080. [6] 倪江峰和周恆輝等, 鋰離子電池正極材料LiMPO4的研究進展, 化學進展, 2004年7月, 第16卷第4期, 554 - 560. [7] Boucar Diouf and Ramchandra Podel, Potential of lithium - ion batteries in renewable energy, Renewable Energy, 2015, 76, 375 - 380. [8] C. M. Julien and A. Mauger, Review of 5 - V electrodes for Li - ionbatteries: status and trends, Ionics, 2013, 19: 951 - 988. [9] 鄧玲, 新型磷酸鈷鋰正極材料的合成與電化學性能, 上海應用技術學院, 2015年5月. [10] Adrien Boulineau and Thibaut Gutel, Revealing Electrochemically Induced Antisite Defects in LiCoPO4: Evolution upon Cycling, Chemistry of Materials, 2015, 27, 802 - 807. [11] Quang Duc Truong and Murukanahally Kempaiah Devaraju et al, Controlling the shape of LiCoPO4 nanocrystals by supercritical fluid process for enhanced energy storage properties, SCIENTIFIC REPORTS, 2014, 4: 3975, DOI: 10. 1038 / srep03975, 1 - 8. [12] Meng Hu and Xiaoli Pang et al, Recent progress in high - voltage lithium ion batteries, Journal of Power Sources, 2013, 237, 229 - 242. [13] Bramnik NN and Nikolowski K et al, Thermal stability of LiCoPO4 cathodes, Electrochem Solid - State, 2008, Lett 11: A 89 - A 93. [14] Murukanahally Kempaiah Devaraju and Quang Duc Truong et al, Antisite defects in LiCoPO4 nanocrystals synthesized via a supercritical fluid process, RSC Advances, 2014, 4, 52410 - 52414. [15] Borong Wu and Hongliang Xu et al, Controlled solvothermal synthesis and electrochemical performance of LiCoPO4 submicron single crystals as a cathode material for lithium ion batteries, Journal of Power Sources, 2016, 304, 181 - 188. [16] Murukanahally Kempaiah Devaraju and Dinesh Rangappa et al, Controlled synthesis of plate - like LiCoPO4 nanoparticles via supercritical method and their electrode property, Electrochimica Acta, 2012, 85, 548 - 553. [17] Xiang Huang and Junfeng Ma et al, Hydrothermal synthesis of LiCoPO4 cathode materials for rechargeable lithium ion batteries, Materials Letters, 2005, 59, 578 - 582. [18] Reginald E. Rogers and Garry M. Clarke et al, Impact of microwave synthesis conditions on the rechargeable capacity of LiCoPO4 for lithium ion batteries, J Appl Electrochem, 2013, 43: 271 - 278. [19] Christoph Neef and Hans - Peter Meyer et al, Morphology - controlled two - step synthesis and electrochemical studies on hierarchically structured LiCoPO4, Solid Sciences, 2015, 48, 270 - 277. [20] Xianhong Rui and Xiaoxu Zhao et al, Olivine - Type Nanosheets for Lithium Ion Battery Cathodes, ACS NANO, 2013, VOL. 7, NO. 6, 5637 - 5646. [21] Murukanahally Kempaiah Devaraju and Quang Duc Truong et al, Supercritical Fluid Synthesis of LiCoPO4 Nanoparticles and Their Application to Lithium Ion Battery, Inorganics, 2014, 2, 233 - 247. [22] R. Hanafusa and Y. Oka et al, Electrochemical and Magnetic Studies of Li - Deficient Li1-xCo1-xFexPO4 Olivine Cathode Compounds, Journal of The Electrochemical Society, 2015, 162 ( 2 ) , 3045 - 3051. [23] Li Liu and Huijuan Zhang et al, Unique synthesis of sandwiched graphene@(Li0.893Fe0.036)Co(PO4) nanoparticles as high - performance cathode materials for lithium - ion batteries, Journal of Materials Chemistry A, 2015, 3, 12320 - 12327. [24] Daniele Di Lecce and Jessica Manzi et al, Effect of the iron doping in LiCoPO4 cathode materials for lithium cells, Electrochimica Acta, 2015, 185, 17 - 27. [25] Jiang Feng Ni and Yuhai Han et al, Improving Electrochemical Properties of LiCoPO4 by Mn Substitution: A Case Research on LiCo0.5Mn0.5PO4, ECS Electrochemistry Letters, 2013, 2 ( 1 ) , A 3 - A 5. [26] Daniele Di Lecce and Sergio Brutti et al, A new Sn – C / LiFe0.1Co0.9PO4 full lithium - ion cell with ionic liquid - based electrolyte, Materials Letters, 2015, 139, 329 - 332. [27] Stefan Michael Rommel and Jan Rothballer et al, Characterization of the carbon - coated LiNi1-yCoyPO4 solid solution synthesized by a non - aqueous sol - gel route, Ionics, 2015, 21: 325 - 333. [28] Dong - Wook Han and Yong - mook kang et al, Effects of Fe doping on the electrochemical performance of LiCoPO4 / C composites for high power - density cathode materials, Electrochemistry Communications, 2009, 11, 137 - 140. [29] Fei Wang and Jun Yang et al, Highly promoted electrochemical performance of 5 V LiCoPO4 cathode material by addition of vanadium, Journal of Power Sources, 2010, 195, 6884 - 6887. [30] Huanhuan Li and Yaping wang et al, Improved electrochemical performance of 5 V LiCoPO4 cathode materials via yttrium doping, Solid State Ionics, 2014, 255, 84 - 88. [31] Vijay Singh and Yelena Gershinsky et al, Magnetism in olivine - type LiCo1-xFexPO4 cathode materials: bridging theory and experiment, Phys. Chem. Chem. Phys., 2015, 17, 31202 - 31215. [32] A. Rajalakshmi and V. D. Nithya et al, Physicochemical properties of V5+ doped LiCoPO4 as cathode materials for Li - ion batteries, J Sol - Gel Sci Technol, 2013, 65: 399 - 410. [33] Lucangelo Dimesso and Christina Spanheimer et al, Properties of Ca - containing LiCoPO4 - graphitic carbon foam composites, Ionics, 2015, 21: 2101 - 2107. [34] S. M. G. Yang and V. Aravindan et al, Realizing the Performance of LiCoPO4 Cathodes by Fe Substitution with Off - Stoichiometry, Journal of The Electrochemical Society, 2012, 159 ( 7 ) , A 1013 - A 1018. [35] S. Karthickprabhu and G. Hirankumar et al, Structural and electrical studies on Zn2+ doped LiCoPO4, Journal of Electrostatics, 2014, 72, 181 - 186. [36] Yong - Mook Kang and Yong - Il Kim et al, Structurally stabilized olivine lithium phosphate cathodes with enhanced electrochemical Properties through Fe doping, Energy & Environmental Science, 2011, 4, 4978 - 4983. [37] Huanhuan Li and Yunxing Li et al, Microwave assisted synthesis of core - shell LiFe1/3Mn1/3Co1/3PO4 / C nanocomposite cathode for high - performance lithium - ion batteries, Journal of Alloys and Compounds, 2014, 617, 154 - 159. [38] A. Vadivel Murugan and T. Muraliganth et al, Dimensionally Modulated, Single - Crystalline LiMPO4 ( M = Mn, Fe, Co, and Ni ) with Nano - Thumblike Shapes for High - Power Energy Storage, Inorganic Chemistry, 2009, Vol. 48, No. 3, 946 - 952. [39] Angelina Sarapulova and Daria Mikhailova et al, Disordered carbon nanofibers / LiCoPO4 composites as cathode materials for lithium ion batteries, J Sol - Gel Sci Technol, 2012, 62: 98 - 110. [40] Qian Sun and Jia - Yan Luo et al, Facile Synthesis and Electrochemical Properties of Carbon - Coated LiCoPO4 Submicron Particles as Positive Materials for Lithium Ion Batteries, Electrochemical and Solid - State Letters, 2011, 14 ( 10 ) , A 151 - A 153. [41] Jiangfeng Ni and Yuhai Han et al, One - pot synthesis of CNT - wired LiCo0.5Mn0.5PO4 nanocomposites, Electrochemistry Communications, 2013, 31, 84 - 87. [42] P. N. Poovizhi and S. Selladurai, Study of pristine and carbon - coated LiCoPO4 olivine material synthesized by modified sol - gel method, Ionics, 2011, 17: 13 - 19. [43] M. K. Devaraju and Q. D. Truong et al, Supercritical fluid methods for synthesizing cathode materials towards lithium ion nattery applications, RSC Advances, 2014, 4, 27452 - 27470.
|