帳號:guest(3.133.115.42)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉暢
作者(外文):Liu, Chang
論文名稱(中文):利用常壓電漿束對鋰離子電池負極ZnCo2O4材料進行氮摻雜和碳沉積
論文名稱(外文):Rapid Nitrogen Doping and Carbon Deposition of ZnCo2O4 Lithium-ion Battery Anode via Atmospheric Pressure Plasma Jet
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq Gong
口試委員(中文):魏大欽
胡龍豪
杜正恭
口試委員(外文):Wei, Ta Chin
Hu, Lung Hao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031468
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:103
中文關鍵詞:常壓電漿鋰離子電池負極材料氮摻雜碳沉積
相關次數:
  • 推薦推薦:0
  • 點閱點閱:139
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在利用常壓電漿產生裝置對鋰離子電池負極ZnCo2O4材料進行改質,藉由氮摻雜及碳沉積的方式以期提升其電性表現。通過水熱法對合成的ZnCo2O4粉末進行氮摻雜,並利用常壓電漿束對極片進行表面改質。為探討氮摻雜對負極材料的影響,由表面特征分析發現,氮摻雜部分填補材料中的氧空缺,並與材料表面的懸空半鍵結結合形成新的含氮鍵結,促使負極材料電化學性能提升,循環穩定性得到改善。經過水熱法和電漿處理後,該負極材料具有均勻的氮摻雜,且表現出最佳的電化學性能。
另外,通過對原有常壓電漿束的裝置進行改造,使之可以在室溫、常壓的狀況下沉積碳在電池極片表面。藉由電漿診斷技術對產生的電漿中被激發或被游離的粒子。通過激發光譜分析發現,在電漿中明顯出現碳簇粒子,且在加入氮氣後,氮化碳粒子也出現在電漿中。經由掃描電子顯微鏡分析,發現經過常壓電漿表面處理,碳保護層可沉積在負極材料表面,有效改變表面化學鍵結。由於保護碳層的沉積和氮摻雜, ZnCo2O4負極材料的循環穩定性獲得有效提升。根據此研究成果,常壓電漿束具有在室溫、常壓條件下,同時進行快速碳沉積和表面氮摻雜的應用價值,並可具次世代高效率鋰電池開發之潛力。
The main objective of this dissertation is to improve the electrochemical performances of ZnCo2O4 (ZCO) Li-ion anode material by nitrogen-doping and carbon deposition. As for nitrogen doping, two rapid methods, including hydrothermal to treat powder and atmospheric pressure plasma jet (APPJ) to modify the electrode, were used to dope nitrogen in the ZCO anode material. Via hydrothermal method, nitrogen was doped in the ZCO spinel lattice, while APPJ mainly activated and modified the electrode surface binding with the dangling bond. N-doped compounds were formed on the electrodes by hydrothermal and APP methods. The uniformity, chemical composition, and diffraction patterns were examined by electron probe microanalyzer (EPMA), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer (XRD). Nitrogen doping effectively improved electrochemical performance in cycling retention and the capacity at a current density of 1C. This study provides a rapid and inexpensive nitrogen doping processes to efficiently promote the electrochemical performance in ZCO anode.
In addition, a special set-up of atmospheric pressure plasma jet generator was applied to deposit carbon on the electrode. Significant amounts of C(I) and C2 clusters were discovered using optical emission spectroscopy. After adding N2, the CN species appeared in the plasma, owing to C and N2 reaction during the plasma generation. The results from the field emission scanning electron microscope (FESEM) and X-ray photoelectron microscopy (XPS) reveal the change in surface morphology and chemical bonding by plasma treatment. After 20 times of Ar+N2 plasma treatment, a significant increment in cycling stability under 1000 mA/g was evident.
List of Table III
Figure Caption IV
Abstract VIII
Chapter 1. Introduction 1
1.1 Background 1
1.2 Motivation and Objectives 3
1.3 Thesis Overview 4
Chapter 2. Literature Review 6
2.1 Development of LIB Anodes 6
2.2 Development of ZnCo2O4 Anode 9
2.3 Overview of Nitrogen Doped Methods in LIB Anodes 11
2.4 Overview of Carbon Deposition Methods in LIB Anodes 15
2.5 Overview of Atmospheric Pressure Plasma Jet 19
Chapter 3. Experiment Procedure 31
3.1 Sample Preparation 31
3.2 Electrochemical Analysis Preparation 32
3.3 Nitrogen Doping Processes 32
3.3.1 Hydrothermal Process 32
3.3.2 Plasma Treatment 33
3.4 Carbon Deposition Process 33
3.5 Plasma Diagnosis 34
3.6 Surface Characterization 34
3.6.1 Scanning Electron Microscope (SEM) 34
3.6.2 X-ray Photoelectron Spectroscopy (XPS) 34
3.6.3 X-ray Diffractometer (XRD) 35
3.6.4 Electron Probe Microanalyzer (EPMA) 35
3.6.5 Brunauer-Emmett-Teller (BET) 35
3.6.6 Electrochemical Analysis 35
Chapter 4. Results and Discussions 38
4.1 Nitrogen Doping of ZnCo2O4 38
4.1.1 Nitrogen Doping of ZnCo2O4 Electrode via Atmospheric Pressure Plasma Jet (APPJ) 41
4.1.2 Nitrogen Doping of ZnCo2O4 Electrode by Hydrothermal Process for Enhanced Electrochemical Performances 51
4.1.3 Nitrogen Doping of ZnCo2O4 Electrode by Hydrothermal Process and Atmospheric Pressure Plasma Jet (APPJ) 61
4.2 Carbon Deposition and Nitrogen Doping of ZnCo2O4 via Atmospheric Pressure Plasma Jet (APPJ) 70
Chapter 5. Conclusions 90
References: 92
[1] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, pp. 359-367, Nov 15 2001.
[2] J. J. Zhang and A. S. Yu, "Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries," Science Bulletin, vol. 60, pp. 823-838, May 2015.
[3] Z. Q. Luo, S. H. Lim, Z. Q. Tian, J. Z. Shang, L. F. Lai, B. MacDonald, et al., "Pyridinic N doped graphene: synthesis, electronic structure, and electrocatalytic property," Journal of Materials Chemistry, vol. 21, pp. 8038-8044, 2011.
[4] Z. Jin, J. Yao, C. Kittrell, and J. M. Tour, "Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets," Acs Nano, vol. 5, pp. 4112-4117, May 2011.
[5] C. H. Zhang, L. Fu, N. Liu, M. H. Liu, Y. Y. Wang, and Z. F. Liu, "Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources," Advanced Materials, vol. 23, pp. 1020-1024, Feb 22 2011.
[6] D. H. Deng, X. L. Pan, L. A. Yu, Y. Cui, Y. P. Jiang, J. Qi, et al., "Toward N-Doped Graphene via Solvothermal Synthesis," Chemistry of Materials, vol. 23, pp. 1188-1193, Mar 8 2011.
[7] Z. S. Wu, W. C. Ren, L. Xu, F. Li, and H. M. Cheng, "Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries," Acs Nano, vol. 5, pp. 5463-5471, Jul 2011.
[8] Y. P. Lin, Y. Ksari, J. Prakash, L. Giovanelli, J. C. Valmalette, and J. M. Themlin, "Nitrogen-doping processes of graphene by a versatile plasma-based method," Carbon, vol. 73, pp. 216-224, Jul 2014.
[9] H. T. Kim, C. D. Kim, and C. Park, "Reduction and nitridation of graphene oxide (GO) films at room temperature using inductively coupled NH3 plasma," Vacuum, vol. 108, pp. 35-38, Oct 2014.
[10] S. W. Lee, C. Mattevi, M. Chhowalla, and R. M. Sankaran, "Plasma-Assisted Reduction of Graphene Oxide at Low Temperature and Atmospheric Pressure for Flexible Conductor Applications," Journal of Physical Chemistry Letters, vol. 3, pp. 772-777, Mar 15 2012.
[11] Z. H. Sheng, L. Shao, J. J. Chen, W. J. Bao, F. B. Wang, and X. H. Xia, "Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis," Acs Nano, vol. 5, pp. 4350-4358, Jun 2011.
[12] S. Yoon, C. A. Bridges, R. R. Unocic, and M. P. Paranthaman, "Mesoporous TiO2 spheres with a nitridated conducting layer for lithium-ion batteries," Journal of Materials Science, vol. 48, pp. 5125-5131, Aug 2013.
[13] W. Zhang and D. W. Liu, "Nitrogen-treated Hierarchical Macro-/Mesoporous TiO2 Used as Anode Materials for Lithium Ion Batteries with High Performance at Elevated Temperatures," Electrochimica Acta, vol. 156, pp. 53-59, Feb 20 2015.
[14] E. Ventosa, W. Xia, S. Klink, F. La Mantia, B. Mei, M. Muhler, et al., "Ammonia-Annealed TiO2 as a Negative Electrode Material in Li-Ion Batteries: N Doping or Oxygen Deficiency?," Chemistry-a European Journal, vol. 19, pp. 14194-14199, Oct 11 2013.
[15] M. Samiee and J. Luo, "A facile nitridation method to improve the rate capability of TiO2 for lithium-ion batteries," Journal of Power Sources, vol. 245, pp. 594-598, Jan 1 2014.
[16] K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, "Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method," Journal of Physical Chemistry C, vol. 113, pp. 4257-4259, Mar 19 2009.
[17] X. L. Li, H. L. Wang, J. T. Robinson, H. Sanchez, G. Diankov, and H. J. Dai, "Simultaneous Nitrogen Doping and Reduction of Graphene Oxide," Journal of the American Chemical Society, vol. 131, pp. 15939-15944, Nov 4 2009.
[18] B. D. Guo, Q. A. Liu, E. D. Chen, H. W. Zhu, L. A. Fang, and J. R. Gong, "Controllable N-Doping of Graphene," Nano Letters, vol. 10, pp. 4975-4980, Dec 2010.
[19] R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, et al., "Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing," Scientific Reports, vol. 2, Aug 17 2012.
[20] A. L. M. Reddy, A. Srivastava, S. R. Gowda, H. Gullapalli, M. Dubey, and P. M. Ajayan, "Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application," Acs Nano, vol. 4, pp. 6337-6342, Nov 2010.
[21] S. I. Chuang, H. Yang, H. W. Chen, and J. G. Duh, "Modification of TiO2 powder via atmospheric dielectric barrier discharge treatment for high performance lithium-ion battery anodes," Thin Solid Films, vol. 596, pp. 250-255, Dec 1 2015.
[22] H. Y. Wang and M. Yoshio, "Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery," Journal of Power Sources, vol. 93, pp. 123-129, Feb 1 2001.
[23] M. Yoshio, H. Y. Wang, K. Fukuda, Y. Hara, and Y. Adachi, "Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material," Journal of the Electrochemical Society, vol. 147, pp. 1245-1250, Apr 2000.
[24] S. Yoon, H. Kim, and S. M. Oh, "Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries," Journal of Power Sources, vol. 94, pp. 68-73, Feb 15 2001.
[25] L. J. Fu, H. Liu, C. Li, Y. P. Wu, E. Rahm, R. Holze, et al., "Surface modifications of electrode materials for lithium ion batteries," Solid State Sciences, vol. 8, pp. 113-128, Feb 2006.
[26] H. Y. Lee, J. K. Baek, S. W. Jang, S. M. Lee, S. T. Hong, K. Y. Lee, et al., "Characteristics of carbon-coated graphite prepared from mixture of graphite and polyvinylchloride as anode materials for lithium ion batteries," Journal of Power Sources, vol. 101, pp. 206-212, Oct 15 2001.
[27] M. Holzapfel, H. Buqa, W. Scheifele, P. Novak, and F. M. Petrat, "A new type of nano-sized silicon/carbon composite electrode for reversible lithium insertion," Chemical Communications, pp. 1566-1568, 2005.
[28] H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano Today, vol. 7, pp. 414-429, Oct 2012.
[29] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, "High-performance lithium-ion anodes using a hierarchical bottom-up approach," Nature Materials, vol. 9, pp. 353-358, Apr 2010.
[30] Y. S. Hu, R. Demir-Cakan, M. M. Titirici, J. O. Muller, R. Schlogl, M. Antonietti, et al., "Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries," Angewandte Chemie-International Edition, vol. 47, pp. 1645-1649, 2008.
[31] P. F. Gao, J. W. Fu, J. Yang, R. G. Lv, J. L. Wang, Y. N. Nuli, et al., "Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material," Physical Chemistry Chemical Physics, vol. 11, pp. 11101-11105, 2009.
[32] H. Kim, B. Han, J. Choo, and J. Cho, "Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries," Angewandte Chemie-International Edition, vol. 47, pp. 10151-10154, 2008.
[33] X. W. Zhang, P. K. Patil, C. S. Wang, A. J. Appleby, F. E. Little, and D. L. Cocke, "Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures," Journal of Power Sources, vol. 125, pp. 206-213, Jan 14 2004.
[34] H. Kim and J. Cho, "Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material," Nano Letters, vol. 8, pp. 3688-3691, Nov 2008.
[35] B. Hertzberg, A. Alexeev, and G. Yushin, "Deformations in Si-Li Anodes Upon Electrochemical Alloying in Nano-Confined Space," Journal of the American Chemical Society, vol. 132, pp. 8548-+, Jun 30 2010.
[36] Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, and Y. Takeda, "Silicon/carbon composites as anode materials for Li-ion batteries," Electrochemical and Solid State Letters, vol. 7, pp. A369-A372, 2004.
[37] Y. Liu, Z. Y. Wen, X. Y. Wang, A. Hirano, N. Imanishi, and Y. Takeda, "Electrochemical behaviors of Si/C composite synthesized from F-containing precursors," Journal of Power Sources, vol. 189, pp. 733-737, Apr 1 2009.
[38] M. Yoshio, H. Y. Wang, K. Fukuda, T. Umeno, N. Dimov, and Z. Ogumi, "Carbon-coated Si as a lithium-ion battery anode material," Journal of the Electrochemical Society, vol. 149, pp. A1598-A1603, Dec 2002.
[39] N. Dimov, K. Fukuda, T. Umeno, S. Kugino, and M. Yoshio, "Characterization of carbon-coated silicon - Structural evolution and possible limitations," Journal of Power Sources, vol. 114, pp. 88-95, Feb 25 2003.
[40] X. Q. Yang, J. McBreen, W. S. Yoon, M. Yoshio, H. Y. Wang, K. Fukuda, et al., "Structural studies of the new carbon-coated silicon anode materials using synchrotron-based in situ XRD," Electrochemistry Communications, vol. 4, pp. 893-897, Nov 2002.
[41] W. R. Liu, J. H. Wang, H. C. Wu, D. T. Shieh, M. H. Yang, and N. L. Wu, "Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries," Journal of the Electrochemical Society, vol. 152, pp. A1719-A1725, 2005.
[42] Q. Si, K. Hanai, N. Imanishi, M. Kubo, A. Hirano, Y. Takeda, et al., "Highly reversible carbon-nano-silicon composite anodes for lithium rechargeable batteries," Journal of Power Sources, vol. 189, pp. 761-765, Apr 1 2009.
[43] S. H. Ng, J. Z. Wang, D. Wexler, K. Konstantinov, Z. P. Guo, and H. K. Liu, "Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries," Angewandte Chemie-International Edition, vol. 45, pp. 6896-6899, 2006.
[44] S. H. Ng, J. Wang, D. Wexler, S. Y. Chew, and H. K. Liu, "Amorphous carbon-coated silicon nanocomposites: A low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries," Journal of Physical Chemistry C, vol. 111, pp. 11131-11138, Jul 26 2007.
[45] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang, and Y. Cui, "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes," Nano Letters, vol. 12, pp. 3315-3321, Jun 2012.
[46] W. Wang and P. N. Kumta, "Nanostructured Hybrid Silicon/Carbon Nanotube Heterostructures: Reversible High-Capacity Lithium-Ion Anodes," Acs Nano, vol. 4, pp. 2233-2241, Apr 2010.
[47] L. J. Fu, H. Liu, H. P. Zhang, C. Li, T. Zhang, Y. P. Wu, et al., "Synthesis and electrochemical performance of novel core/shell structured nanocomposites," Electrochemistry Communications, vol. 8, pp. 1-4, Jan 2006.
[48] L. J. Fu, H. Liu, H. P. Zhang, C. Li, T. Zhang, Y. P. Wu, et al., "Novel TiO2/C nanocomposites for anode materials of lithium ion batteries," Journal of Power Sources, vol. 159, pp. 219-222, Sep 13 2006.
[49] J. S. Kim, A. Y. Kim, Y. W. Byeon, J. P. Ahn, D. Byun, and J. K. Lee, "Porous Zn2GeO4 nanowires with uniform carbon-buffer layer for lithium-ion battery anodes with long cycle life," Electrochimica Acta, vol. 195, pp. 43-50, Mar 20 2016.
[50] Y. M. Ni, Y. J. Yin, P. Wu, H. Zhang, and C. X. Cai, "Nitrogen/Carbon Atomic Ratio-Dependent Performances of Nitrogen-Doped Carbon-Coated Metal Oxide Nanocrystals for Anodes in Lithium-Ion Batteries," Acs Applied Materials & Interfaces, vol. 6, pp. 7346-7355, May 28 2014.
[51] J. O. Besenhard and G. Eichinger, "High-Energy Density Lithium Cells .1. Electrolytes and Anodes," Journal of Electroanalytical Chemistry, vol. 68, pp. 1-18, 1976.
[52] G. Eichinger and J. O. Besenhard, "High-Energy Density Lithium Cells .2. Cathodes and Complete Cells," Journal of Electroanalytical Chemistry, vol. 72, pp. 1-31, 1976.
[53] K. T. T. Nagaura, "Lithium ion rechargeable battery," Prog. Batteries Solar Cells, vol. 9, pp. 209 - 217, 1990.
[54] B. Scrosati, "Lithium Rocking Chair Batteries - an Old Concept," Journal of the Electrochemical Society, vol. 139, pp. 2776-2781, Oct 1992.
[55] M. Endo, C. Kim, K. Nishimura, T. Fujino, and K. Miyashita, "Recent development of carbon materials for Li ion batteries," Carbon, vol. 38, pp. 183-197, 2000.
[56] K. S. Park, A. Benayad, D. J. Kang, and S. G. Doo, "Nitridation-Driven Conductive Li4Ti5O12 for Lithium Ion Batteries," Journal of the American Chemical Society, vol. 130, pp. 14930-+, Nov 12 2008.
[57] K. Amine, I. Belharouak, Z. H. Chen, T. Tran, H. Yumoto, N. Ota, et al., "Nanostructured Anode Material for High-Power Battery System in Electric Vehicles," Advanced Materials, vol. 22, pp. 3052-3057, Jul 27 2010.
[58] J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Y. Luan, S. Madhavi, et al., "Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage," Journal of the American Chemical Society, vol. 132, pp. 6124-6130, May 5 2010.
[59] J. Liu, G. Z. Cao, Z. G. Yang, D. H. Wang, D. Dubois, X. D. Zhou, et al., "Oriented Nanostructures for Energy Conversion and Storage," Chemsuschem, vol. 1, pp. 676-697, 2008.
[60] D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J. C. Jumas, and J. M. Tarascon, "Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries," Journal of Materials Chemistry, vol. 17, pp. 3759-3772, 2007.
[61] C. M. Park, J. H. Kim, H. Kim, and H. J. Sohn, "Li-alloy based anode materials for Li secondary batteries," Chemical Society Reviews, vol. 39, pp. 3115-3141, 2010.
[62] W. J. Zhang, "A review of the electrochemical performance of alloy anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, pp. 13-24, Jan 1 2011.
[63] S. Kirmayer, E. Aharon, E. Dovgolevsky, M. Kalina, and G. L. Frey, "Self-assembled lamellar MoS2, SnS2 and SiO2 semiconducting polymer nanocomposites," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 365, pp. 1489-1508, Jun 15 2007.
[64] T. Ohzuku and A. Ueda, "Why Transition-Metal (Di) Oxides Are the Most Attractive Materials for Batteries," Solid State Ionics, vol. 69, pp. 201-211, Aug 1994.
[65] S. Laruelle, S. Grugeon, P. Poizot, M. Dolle, L. Dupont, and J. M. Tarascon, "On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential," Journal of the Electrochemical Society, vol. 149, pp. A627-A634, May 2002.
[66] Y. D. Huang, Z. F. Dong, D. Z. Jia, Z. P. Guo, and W. I. Cho, "Preparation and characterization of core-shell structure Fe3O4/C nanoparticles with unique stability and high electrochemical performance for lithium-ion battery anode material," Electrochimica Acta, vol. 56, pp. 9233-9239, Oct 30 2011.
[67] N. Jayaprakash, W. D. Jones, S. S. Moganty, and L. A. Archer, "Composite lithium battery anodes based on carbon@Co3O4 nanostructures: Synthesis and characterization," Journal of Power Sources, vol. 200, pp. 53-58, Feb 15 2012.
[68] J. Chen, L. N. Xu, W. Y. Li, and X. L. Gou, "alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications," Advanced Materials, vol. 17, pp. 582-+, Mar 8 2005.
[69] Z. Y. Wang, Z. C. Wang, S. Madhavi, and X. W. Lou, "alpha-Fe2O3-mediated growth and carbon nanocoating of ultrafine SnO2 nanorods as anode materials for Li-ion batteries," Journal of Materials Chemistry, vol. 22, pp. 2526-2531, 2012.
[70] D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J. B. Leriche, et al., "Effect of particle size on lithium intercalation into alpha-Fe2O3," Journal of the Electrochemical Society, vol. 150, pp. A133-A139, Jan 2003.
[71] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk, "Nanostructured materials for advanced energy conversion and storage devices," Nature Materials, vol. 4, pp. 366-377, May 2005.
[72] N. A. Godshall, I. D. Raistrick, and R. A. Huggins, "Thermodynamic Investigations of Ternary Lithium-Transition Metal-Oxygen Cathode Materials," Materials Research Bulletin, vol. 15, pp. 561-570, 1980.
[73] A. Manthiram and J. Kim, "Low temperature synthesis of insertion oxides for lithium batteries," Chemistry of Materials, vol. 10, pp. 2895-2909, Oct 1998.
[74] X. Wang, X. L. Wu, Y. G. Guo, Y. T. Zhong, X. Q. Cao, Y. Ma, et al., "Synthesis and Lithium Storage Properties of Co3O4 Nanosheet-Assembled Multishelled Hollow Spheres," Advanced Functional Materials, vol. 20, pp. 1680-1686, May 25 2010.
[75] Y. Wang, H. J. Zhang, L. Lu, L. P. Stubbs, C. C. Wong, and J. Y. Lin, "Designed Functional Systems from Peapod-like Co@Carbon to Co3O4@Carbon Nanocomposites," Acs Nano, vol. 4, pp. 4753-4761, Aug 2010.
[76] S. L. Xiong, J. S. Chen, X. W. Lou, and H. C. Zeng, "Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)center dot 0.11H2O and Their Lithium-Storage Properties," Advanced Functional Materials, vol. 22, pp. 861-871, Feb 22 2012.
[77] X. L. Xiao, X. F. Liu, H. Zhao, D. F. Chen, F. Z. Liu, J. H. Xiang, et al., "Facile Shape Control of Co3O4 and the Effect of the Crystal Plane on Electrochemical Performance," Advanced Materials, vol. 24, pp. 5762-5766, Nov 8 2012.
[78] J. F. Li, S. L. Xiong, Y. R. Liu, Z. C. Ju, and Y. T. Qian, "High Electrochemical Performance of Monodisperse NiCo2O4 Mesoporous Microspheres as an Anode Material for Li-Ion Batteries," Acs Applied Materials & Interfaces, vol. 5, pp. 981-988, Feb 13 2013.
[79] C. C. Ai, M. C. Yin, C. W. Wang, and J. T. Sun, "Synthesis and characterization of spinel type ZnCo2O4 as a novel anode material for lithium ion batteries," Journal of Materials Science, vol. 39, pp. 1077-1079, Feb 1 2004.
[80] Y. Sharma, N. Sharma, G. V. S. Rao, and B. V. R. Chowdari, "Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries," Solid State Ionics, vol. 179, pp. 587-597, Jun 30 2008.
[81] H. W. Liu and J. Wang, "Hydrothermal Synthesis and Electrochemical Performance of MnCo2O4 Nanoparticles as Anode Material in Lithium-Ion Batteries," Journal of Electronic Materials, vol. 41, pp. 3107-3110, Nov 2012.
[82] D. Y. Zhang, Y. H. Zhang, X. W. Li, Y. S. Luo, H. W. Huang, J. P. Wang, et al., "Self-assembly of mesoporous ZnCo2O4 nanomaterials: density functional theory calculation and flexible all-solid-state energy storage," Journal of Materials Chemistry A, vol. 4, pp. 568-577, 2016.
[83] Y. Sharma, N. Sharma, G. V. S. Rao, and B. V. R. Chowdari, "Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries," Advanced Functional Materials, vol. 17, pp. 2855-2861, Oct 15 2007.
[84] B. Liu, J. Zhang, X. F. Wang, G. Chen, D. Chen, C. W. Zhou, et al., "Hierarchical Three-Dimensional ZnCo2O4 Nanowire Arrays/Carbon Cloth Anodes for a Novel Class of High-Performance Flexible Lithium-Ion Batteries," Nano Letters, vol. 12, pp. 3005-3011, Jun 2012.
[85] J. Bai, X. G. Li, G. Z. Liu, Y. T. Qian, and S. L. Xiong, "Unusual Formation of ZnCo2O4 3D Hierarchical Twin Microspheres as a High-Rate and Ultralong-Life Lithium-Ion Battery Anode Material," Advanced Functional Materials, vol. 24, pp. 3012-3020, May 2014.
[86] M. V. Reddy, K. Y. H. Kenrick, T. Y. Wei, G. Y. Chong, G. H. Leong, and B. V. R. Chowdari, "Nano-ZnCo2O4 Material Preparation by Molten Salt Method and Its Electrochemical Properties for Lithium Batteries," Journal of the Electrochemical Society, vol. 158, pp. A1423-A1430, 2011.
[87] S. G. Mohamed, T. F. Hung, C. J. Chen, C. K. Chen, S. F. Hu, R. S. Liu, et al., "Flower-like ZnCo2O4 nanowires: toward a high-performance anode material for Li-ion batteries," Rsc Advances, vol. 3, pp. 20143-20149, 2013.
[88] W. Luo, X. L. Hu, Y. M. Sun, and Y. H. Huang, "Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries," Journal of Materials Chemistry, vol. 22, pp. 8916-8921, 2012.
[89] Y. Jin, L. Wang, Y. Shang, J. Gao, J. Li, and X. He, "Urea-assisted solvothermal synthesis of monodisperse multiporous hierarchical micro/nanostructured ZnCo2O4 microspheres and their lithium storage properties," Ionics, vol. 21, pp. 2743-2754, 2015.
[90] X. Song, Q. Ru, B. Zhang, S. Hu, and B. An, "Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery," Journal of Alloys and Compounds, vol. 585, pp. 518-522, 2014.
[91] J. X. Fu, W. T. Wong, and W. R. Liu, "Temperature effects on a nano-porous ZnCo2O4 anode with excellent capability for Li-ion batteries," Rsc Advances, vol. 5, pp. 75838-75845, 2015.
[92] A. K. Rai, T. V. Thi, B. J. Paul, and J. Kim, "Synthesis of nano-sized ZnCo2O4 anchored with graphene nanosheets as an anode material for secondary lithium ion batteries," Electrochimica Acta, vol. 146, pp. 577-584, Nov 10 2014.
[93] B. H. Qu, L. L. Hu, Q. H. Li, Y. G. Wang, L. B. Chen, and T. H. Wang, "High-Performance Lithium-Ion Battery Anode by Direct Growth of Hierarchical ZnCo2O4 Nanostructures on Current Collectors," Acs Applied Materials & Interfaces, vol. 6, pp. 731-736, Jan 8 2014.
[94] J. G. Lu, Q. N. Liang, Y. Z. Zhang, Z. H. Ye, and S. Z. Fujita, "Improved p-type conductivity and acceptor states in N-doped ZnO thin films," Journal of Physics D-Applied Physics, vol. 40, pp. 3177-3181, May 21 2007.
[95] D. Paluselli, B. Marsen, E. L. Miller, and R. E. Rocheleau, "Nitrogen doping of reactively sputtered tungsten oxide films," Electrochemical and Solid State Letters, vol. 8, pp. G301-G303, 2005.
[96] X. Y. Yang, A. Wolcott, G. M. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, et al., "Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting," Nano Letters, vol. 9, pp. 2331-2336, Jun 2009.
[97] Y. Yan, B. Hao, D. Wang, G. Chen, E. Markweg, A. Albrecht, et al., "Understanding the fast lithium storage performance of hydrogenated TiO2 nanoparticles," Journal of Materials Chemistry A, vol. 1, pp. 14507-14513, 2013.
[98] D. Y. Pan, S. Wang, B. Zhao, M. H. Wu, H. J. Zhang, Y. Wang, et al., "Li Storage Properties of Disordered Graphene Nanosheets," Chemistry of Materials, vol. 21, pp. 3136-3142, Jul 28 2009.
[99] H. B. Wang, C. J. Zhang, Z. H. Liu, L. Wang, P. X. Han, H. X. Xu, et al., "Nitrogen-doped graphene nanosheets with excellent lithium storage properties," Journal of Materials Chemistry, vol. 21, pp. 5430-5434, 2011.
[100] B. H. Chen, S. I. Chuang, W. R. Liu, and J. G. Duh, "A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries," Acs Applied Materials & Interfaces, vol. 7, pp. 28166-28176, Dec 30 2015.
[101] S. M. Hafiz, R. Ritikos, T. J. Whitcher, N. M. Razib, D. C. S. Bien, N. Chanlek, et al., "A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide," Sensors and Actuators B-Chemical, vol. 193, pp. 692-700, Mar 2014.
[102] S. Maldonado, S. Morin, and K. J. Stevenson, "Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping," Carbon, vol. 44, pp. 1429-1437, Jul 2006.
[103] D. C. Wei, Y. Q. Liu, Y. Wang, H. L. Zhang, L. P. Huang, and G. Yu, "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties," Nano Letters, vol. 9, pp. 1752-1758, May 2009.
[104] L. T. Qu, Y. Liu, J. B. Baek, and L. M. Dai, "Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells," Acs Nano, vol. 4, pp. 1321-1326, Mar 2010.
[105] S. K. Srivastava, V. D. Vankar, D. V. S. Rao, and V. Kumar, "Enhanced field emission characteristics of nitrogen-doped carbon nanotube films grown by microwave plasma enhanced chemical vapor deposition process," Thin Solid Films, vol. 515, pp. 1851-1856, Dec 5 2006.
[106] T. Sharifi, F. Nitze, H. R. Barzegar, C. W. Tai, M. Mazurkiewicz, A. Malolepszy, et al., "Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion," Carbon, vol. 50, pp. 3535-3541, Aug 2012.
[107] T. Belz, E. Sanchez, J. Yang, R. Schoonmaker, H. Sauer, J. Find, et al., "Fullerenoid nanocarbons: Application potentials in heterogeneous reactions," Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, Vol 6, vol. 98, pp. 169-180, 1998.
[108] M. Inagaki and L. R. Radovic, "Nanocarbons," Carbon, vol. 40, pp. 2279-2282, 2002.
[109] E. Sanchez, Y. Yang, J. Find, T. Braun, R. Schoonmaker, T. Belz, et al., "Elemental carbon as catalytic material: Recent trends and perspectives," Science and Technology in Catalysis 1998, vol. 121, pp. 317-326, 1999.
[110] S. Subramoney, "Novel nanocarbons - Structure, properties, and potential applications," Advanced Materials, vol. 10, pp. 1157-+, Oct 20 1998.
[111] M. Terrones, H. Terrones, N. Grobert, W. K. Hsu, Y. Q. Zhu, J. P. Hare, et al., "Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures," Applied Physics Letters, vol. 75, pp. 3932-3934, Dec 20 1999.
[112] J. H. Yang, R. C. de Guzman, S. O. Salley, K. Y. S. Ng, B. H. Chen, and M. M. C. Cheng, "Plasma enhanced chemical vapor deposition silicon nitride for a high-performance lithium ion battery anode," Journal of Power Sources, vol. 269, pp. 520-525, Dec 10 2014.
[113] A. Jafari, M. Ghoranneviss, M. R. Hantehzadeh, and A. S. Elahi, "Morphological and electrical properties of few layer graphene after nitrogen doping by LPCVD technique," Journal of Alloys and Compounds, vol. 644, pp. 97-100, Sep 25 2015.
[114] F. N. I. Sari and J. M. Ting, "One step microwaved-assisted hydrothermal synthesis of nitrogen doped graphene for high performance of supercapacitor," Applied Surface Science, vol. 355, pp. 419-428, Nov 15 2015.
[115] H. Y. Lin and C. Y. Shih, "Efficient One-Pot Microwave-Assisted Hydrothermal Synthesis of Nitrogen-Doped TiO2 for Hydrogen Production by Photocatalytic Water Splitting," Catalysis Surveys from Asia, vol. 16, pp. 231-239, Dec 2012.
[116] D. Y. Zhang, Y. Hao, Y. Ma, and H. X. Feng, "Hydrothermal synthesis of highly nitrogen-doped carbon powder," Applied Surface Science, vol. 258, pp. 2510-2514, Jan 15 2012.
[117] J. Bai, K. Q. Wang, J. K. Feng, and S. L. Xiong, "ZnO/CoO and ZnCo2O4 Hierarchical Bipyramid Nanoframes: Morphology Control, Formation Mechanism, and Their Lithium Storage Properties," Acs Applied Materials & Interfaces, vol. 7, pp. 22848-22857, Oct 21 2015.
[118] N. Du, Y. F. Xu, H. Zhang, J. X. Yu, C. X. Zhai, and D. R. Yang, "Porous ZnCo2O4 Nanowires Synthesis via Sacrificial Templates: High-Performance Anode Materials of Li-Ion Batteries," Inorganic Chemistry, vol. 50, pp. 3320-3324, Apr 18 2011.
[119] D. S. Geng, Y. Chen, Y. G. Chen, Y. L. Li, R. Y. Li, X. L. Sun, et al., "High oxygen-reduction activity and durability of nitrogen-doped graphene," Energy & Environmental Science, vol. 4, pp. 760-764, Mar 2011.
[120] D. H. Long, W. Li, L. C. Ling, J. Miyawaki, I. Mochida, and S. H. Yoon, "Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide," Langmuir, vol. 26, pp. 16096-16102, Oct 19 2010.
[121] D. W. Wang, I. R. Gentle, and G. Q. Lu, "Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene," Electrochemistry Communications, vol. 12, pp. 1423-1427, Oct 2010.
[122] T. Yoshida, S. Niimi, M. Yamamoto, T. Nomoto, and S. Yagi, "Effective nitrogen doping into TiO2 (N-TiO2) for visible light response photocatalysis," Journal of Colloid and Interface Science, vol. 447, pp. 278-281, Jun 1 2015.
[123] D. Golberg, Y. Bando, L. Bourgeois, K. Kurashima, and T. Sato, "Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles," Carbon, vol. 38, pp. 2017-2027, 2000.
[124] C. Morant, J. Andrey, P. Prieto, D. Mendiola, J. M. Sanz, and E. Elizalde, "XPS characterization of nitrogen-doped carbon nanotubes," Physica Status Solidi a-Applications and Materials Science, vol. 203, pp. 1069-1075, May 2006.
[125] K. Suenaga, M. P. Johansson, N. Hellgren, E. Broitman, L. R. Wallenberg, C. Colliex, et al., "Carbon nitride nanotubulite - densely-packed and well-aligned tubular nanostructures," Chemical Physics Letters, vol. 300, pp. 695-700, Feb 12 1999.
[126] Y. C. Lin, C. Y. Lin, and P. W. Chiu, "Controllable graphene N-doping with ammonia plasma," Applied Physics Letters, vol. 96, Mar 29 2010.
[127] K. Matsubara, M. Danno, M. Inoue, Y. Honda, and T. Abe, "Characterization of nitrogen-doped TiO2 powder prepared by newly developed plasma-treatment system," Chemical Engineering Journal, vol. 181, pp. 754-760, Feb 1 2012.
[128] K. Matsubara, M. Danno, M. Inoue, Y. Honda, N. Yoshida, and T. Abe, "Characterization of titanium particles treated with N-2 plasma using a barrel-plasma-treatment system," Physical Chemistry Chemical Physics, vol. 15, pp. 5097-5107, 2013.
[129] C. K. Lan, S. I. Chuang, Q. Bao, Y. T. Liao, and J. G. Duh, "One-step argon/nitrogen binary plasma jet irradiation of Li4Ti5O12 for stable high-rate lithium ion battery anodes," Journal of Power Sources, vol. 275, pp. 660-667, Feb 1 2015.
[130] C. K. Lan, C. C. Chang, C. Y. Wu, B. H. Chen, and J. G. Duh, "Improvement of the Ar/N-2 binary plasma-treated carbon passivation layer deposited on Li4Ti5O12 electrodes for stable high-rate lithium ion batteries," Rsc Advances, vol. 5, pp. 92554-92563, 2015.
[131] L. S. Panchokarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, et al., "Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene," Advanced Materials, vol. 21, pp. 4726-+, Dec 11 2009.
[132] G. S. Selwyn, H. W. Herrmann, J. Park, and I. Henins, "Materials processing using an atmospheric pressure, RF-generated plasma source," Contributions to Plasma Physics, vol. 41, pp. 610-619, 2001.
[133] M. Faraday, "The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light," The Royal Society, London, 1957.
[134] P. J. Kelly and R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, pp. 159-172, Mar 2000.
[135] R. D. Arnell and P. J. Kelly, "Recent advances in magnetron sputtering," Surface & Coatings Technology, vol. 112, pp. 170-176, Feb 1999.
[136] D. Merche, N. Vandencasteele, and F. Reniers, "Atmospheric plasmas for thin film deposition: A critical review," Thin Solid Films, vol. 520, pp. 4219-4236, Apr 30 2012.
[137] R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, and C. Leys, "Non-thermal plasma treatment of textiles," Surface & Coatings Technology, vol. 202, pp. 3427-3449, Apr 15 2008.
[138] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: A review and comparison to other plasma sources," Ieee Transactions on Plasma Science, vol. 26, pp. 1685-1694, Dec 1998.
[139] V. Nehra, A. Kumar, and H. Dwivedi, "Atmospheric Non-Thermal Plasma Sources," Int J Eng, vol. 2, p. 15, 2008.
[140] D. P. Dowling, F. T. O'Neill, S. J. Langlais, and V. J. Law, "Influence of dc Pulsed Atmospheric Pressure Plasma Jet Processing Conditions on Polymer Activation," Plasma Processes and Polymers, vol. 8, pp. 718-727, Aug 23 2011.
[141] M. Donegan, V. Milosavljevic, and D. P. Dowling, "Activation of PET Using an RF Atmospheric Plasma System," Plasma Chemistry and Plasma Processing, vol. 33, pp. 941-957, Oct 2013.
[142] E. Moritzer, C. Budde, and C. Leister, "Effect of atmospheric pressure plasma pre-treatment and aging conditions on the surface of thermoplastics," Welding in the World, vol. 59, pp. 23-32, Jan 2015.
[143] Y. Jin, C. S. Ren, L. Yang, J. L. Zhang, and D. Z. Wang, "Atmospheric Pressure Plasma Jet in Ar and O-2/Ar Mixtures: Properties and High Performance for Surface Cleaning," Plasma Science & Technology, vol. 15, pp. 1203-1208, Dec 2013.
[144] E. R. Ionita, M. D. Ionita, E. C. Stancu, M. Teodorescu, and G. Dinescu, "Small size plasma tools for material processing at atmospheric pressure," Applied Surface Science, vol. 255, pp. 5448-5452, Mar 1 2009.
[145] K. Fricke, H. Steffen, T. von Woedtke, K. Schroder, and K. D. Weltmann, "High Rate Etching of Polymers by Means of an Atmospheric Pressure Plasma Jet," Plasma Processes and Polymers, vol. 8, pp. 51-58, Jan 20 2011.
[146] T. Kawase, T. Tanaka, H. Minbu, M. Kamiya, M. Oda, and T. Hara, "An atmospheric-pressure plasma-treated titanium surface potentially supports initial cell adhesion, growth and differentiation of cultured human prenatal-derived osteoblastic cells," Journal of Tissue Engineering and Regenerative Medicine, vol. 8, pp. 331-331, Jun 2014.
[147] A. Ando, H. Uno, T. Urisu, and S. Hamaguchi, "Grid-pattern formation of extracellular matrix on silicon by low-temperature atmospheric-pressure plasma jets for neural network biochip fabrication," Applied Surface Science, vol. 276, pp. 1-6, Jul 1 2013.
[148] H. L. Jin, Q. Xin, N. Li, J. Jin, B. Wang, and Y. X. Yao, "The morphology and chemistry evolution of fused silica surface after Ar/CF4 atmospheric pressure plasma processing," Applied Surface Science, vol. 286, pp. 405-411, Dec 1 2013.
[149] L. J. Wang, W. J. Ning, M. Z. Fu, C. Wu, and S. L. Jia, "An experimental study of photoresist material etching by an atmospheric-pressure plasma jet with Ar/air mixed gas," Journal of Plasma Physics, vol. 79, pp. 683-689, Oct 2013.
[150] O. V. Penkov, D. H. Lee, H. Kim, and D. E. Kim, "Frictional behavior of atmospheric plasma jet deposited carbon-ZnO composite coatings," Composites Science and Technology, vol. 77, pp. 60-66, Mar 22 2013.
[151] Y. S. Lin, T. H. Tsai, S. C. Hung, and S. W. Tien, "Enhanced lithium electrochromism of atmospheric pressure plasma jet-synthesized tungsten/molybdenum oxide films for flexible electrochromic devices," Journal of Solid State Electrochemistry, vol. 17, pp. 1077-1088, Apr 2013.
[152] Y. S. Lin, T. H. Tsai, and S. W. Tien, "Atmospheric pressure plasma jet-synthesized electrochromic organomolybdenum oxide thin films for flexible electrochromic devices," Thin Solid Films, vol. 529, pp. 248-252, Feb 1 2013.
[153] Y. S. Lin, P. Y. Chuang, and P. S. Shie, "Electrochromic Ni-Fe oxide thin films synthesized by an atmospheric pressure plasma jet for flexible electrochromic application," Thin Solid Films, vol. 570, pp. 394-403, Nov 3 2014.
[154] L. M. Li, X. M. Zhang, M. Zhang, P. H. Li, and P. K. Chu, "Microporous N-doped carbon film produced by cold atmospheric plasma jet and its cell compatibility," Vacuum, vol. 108, pp. 27-34, Oct 2014.
[155] Y. Wang, M. S. Wang, G. Chen, C. J. Dong, Y. D. Wang, and L. Z. Fan, "Surfactant-mediated synthesis of ZnCo2O4 powders as a high-performance anode material for Li-ion batteries," Ionics, vol. 21, pp. 623-628, Mar 2015.
[156] Y. Kowada, M. Tatsumisago, and T. Minami, "Chemical bonding and lithium ion conductions in Li(3)N," Solid State Ionics, vol. 180, pp. 462-466, May 14 2009.
[157] C. L. Perkins, S. H. Lee, X. N. Li, S. E. Asher, and T. J. Coutts, "Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy," Journal of Applied Physics, vol. 97, Feb 1 2005.
[158] J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, "Deposition and electrical properties of N–In codoped p-type ZnO films by ultrasonic spray pyrolysis," Applied Physics Letters, vol. 84, p. 541, 2004.
[159] K. Toyoura, H. Tsujimura, T. Goto, K. Hachiya, R. Hagiwara, and Y. Ito, "Optical properties of zinc nitride formed by molten salt electrochemical process," Thin Solid Films, vol. 492, pp. 88-92, Dec 1 2005.
[160] R. C. de Guzman, J. H. Yang, M. M. C. Cheng, S. O. Salley, and K. Y. S. Ng, "High capacity silicon nitride-based composite anodes for lithium ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 14577-14584, 2014.
[161] Z. L. Wang, M. Gobet, V. Sarou-Kanian, D. Massiot, C. Bessada, and M. Deschamps, "Lithium diffusion in lithium nitride by pulsed-field gradient NMR," Physical Chemistry Chemical Physics, vol. 14, pp. 13535-13538, 2012.
[162] S. B. Bayram and M. V. Freamat, "Vibrational spectra of N-2: An advanced undergraduate laboratory in atomic and molecular spectroscopy," American Journal of Physics, vol. 80, pp. 664-669, Aug 2012.
[163] F. R. Gilmore, "Potential energy curves for N2, NO, O2 and corresponding ions," Journal of Quantitatives Spectroscopy and Radiative Transfer, vol. 5, pp. 369-IN3, 1965.
[164] S. Forster, C. Mohr, and W. Viol, "Investigations of an atmospheric pressure plasma jet by optical emission spectroscopy," Surface & Coatings Technology, vol. 200, pp. 827-830, Oct 1 2005.
[165] P. J. Bruggeman, N. Sadeghi, D. C. Schram, and V. Linss, "Gas temperature determination from rotational lines in non-equilibrium plasmas: a review," Plasma Sources Science & Technology, vol. 23, Apr 2014.
[166] A. Sarani, A. Y. Nikiforov, and C. Leys, "Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements," Physics of Plasmas, vol. 17, Jun 2010.
[167] E. A. Rohlfing, "Optical-Emission Studies of Atomic, Molecular, and Particulate Carbon Produced from a Laser Vaporization Cluster Source," Journal of Chemical Physics, vol. 89, pp. 6103-6112, Nov 15 1988.
[168] A. Ricard, H. Malvos, S. Bordeleau, and J. Hubert, "Production of Active Species in a Common Flowing Postdischarge of an Ar-N2 Plasma and an Ar-H2-Ch4 Plasma," Journal of Physics D-Applied Physics, vol. 27, pp. 504-508, Mar 14 1994.
[169] H. B. Wang, T. Maiyalagan, and X. Wang, "Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications," Acs Catalysis, vol. 2, pp. 781-794, May 2012.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *